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Abstract

The application of artificial neural networks to solve classification and function approximation
problems is no longer an art. Using a neural network does not simply imply the presentation
of a data set to the network and relying on the so-called “black-box” to produce - hopefully
accurate - results. Rigorous mathematical analysis now provides a much better understanding
of what is going on inside the “black-box”. The knowledge gained from these mathematical
studies allows the development of specialized tools to increase performance, robustness and

efficiency.

This thesis proposes that sensitivity analysis of the neural network output function be used
to learn more about the inner working of multilayer feedforward neural networks. New sen-
sitivity analysis techniques are developed to probe the knowledge embedded in the weights
of networks, and to use this knowledge within specialized sensitivity analysis algorithms to
improve generalization performance, to reduce learning and model complexity, and to improve

convergence performance.

A general mathematical model is developed which uses first order derivatives of the neural
network output function with respect to the network parameters to quantify the effect small
perturbations to these network parameters have on the output of the network. This sensitivity
analysis model is then used to develop techniques to locate and visualize decision boundaries,
and to determine which boundaries are implemented by which hidden units. The decision
boundary detection algorithm is then used to develop an active learning algorithm for classi-
fication problems which trains only on patterns close to decision boundaries. Patterns that
convey little information about the position of boundaries are therefore not used for training.

An incremental learning algorithm for function approximation problems is also developed to
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incrementally grow the training set from a candidate set by adding to the training set those
patterns that convey the most information about the function to be approximated. The sensi-
tivity of the network output to small perturbations of the input pattern is used as measure of
pattern informativeness. Sensitivity analysis is also used to develop a network pruning algo-
rithm to remove irrelevant network parameters. The significance of a parameter is quantified
as the influence small perturbations on that parameter have on the network output. Variance

analysis is employed as pruning heuristic to decide if a parameter should be removed or not.

Elaborate experimental evidence is provided to illustrate how each one of the developed
sensitivity analysis techniques addresses the objectives of improved performance, robustness
and efficiency. These results show that the different models successfully utilize the neural
network learner’s current knowledge to obtain optimal architectures and to make optimal use

of the available training data.



Opsomming

Die toepassing van kunsmatige neurale netwerke om klassifikasie- en funksiebenaderingsprob-
leme op te los, is nie meer 'n kuns nie. Die gebruik van 'n neurale netwerk impliseer nie
meer bloot die toepassing van 'n data stel op die netwerk, en die verwagting dat die “swart
boks” - hoopvol akkurate - resultate lewer nie. Omvattende wiskundige analises verskaf nou
'n baie beter begrip van wat binne die “swart boks” aangaan. Die kennis wat van hierdie
wiskundige analises gewin is, laat die ontwikkeling van gespesialiseerde hulpmiddels toe om

prestasie, robuustheid en effektiwiteit te verbeter.

Hierdie tesis stel voor dat sensitiwiteitsanalise van die neurale netwerk afvoer funksie
aangewend word om meer oor die inner werking van multi-vlak vorentoe-voer neurale netwerke
te leer. Nuwe sensitiwiteitsanalise tegnieke word ontwikkel om die kennis vervat in die gewigte
van netwerke te ondersoek, en om hierdie kennis aan te wend binne gespesialiseerde sensi-
tiwiteitsanalise algoritmes om sodoende veralgemeningseienskappe te verbeter, om die kom-
pleksiteit van leer en model kompleksiteit te verminder, en om konvergensie eienskappe te

verbeter.

'n Algemene wiskundige model is ontwikkel wat gebruik maak van die eerste orde afgelei-
des van die neurale netwerk afvoer funksie met betrekking tot netwerk parameters om die
effek van klein versteurings aan hierdie netwerk parameters op die afvoer van die netwerk te
kwantifiseer. Hierdie sensitiwiteitsanalise model word dan gebruik om tegnieke te ontwikkel
om besluitnemingsgrense op te spoor en te visualiseer, en om te bepaal watter besluitnem-
ingsgrense word deur watter versteekte eenhede geimplementeer. Die algoritme om besluit-
nemingsgrense op te spoor word dan aangewend om 'n aktiewe-leer algoritme vir klassifikasie

probleme te ontwikkel, wat leer deur gebruik te maak van slegs daardie patrone wat naby
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besluitnemingsgrense 1&. Gevolglik word patrone wat min inligting bevat in verband met die
ligging van besluitnemingsgrense nie vir leer aangewend nie. 'n Inkrementele leer algoritme is
ook ontwikkel vir funksiebenaderingsprobleme waarin die leerversameling inkrementeel vanuit
'n kandidaat leerversameling gegroei word deur daardie patrone by te voeg wat die meeste
inligting vervat oor die funksie wat benader word. Die sensitiwiteit van die netwerk afvoer
tot versteurings in die toevoer patroon word gebruik as 'n maatstaf van die informatiwiteit
van daardie patroon. Sensitiwiteitsanalise is ook gebruik om ’'n algoritme te ontwikkel wat
irrelevante parameters van die netwerk snoei. Die belangrikheid van 'n parameter word gek-
wantifiseer as die invloed wat klein versteurings in daardie parameter het op die afvoer van die
netwerk. Variansie analise word gebruik as heuristiek om te besluit of 'n parameter gesnoei

kan word al dan nie.

Omvattende eksperimentele bewyse word verskaf om te illustreer hoe elkeen van die sensiti-
witeitsanalise tegnieke wat in hierdie tesis ontwikkel is, die doelwitte van verbeterde prestasie,
robuustheid en effektiwiteit adresseer. Hierdie resultate toon aan dat die onderskeie modelle
suksesvol gebruik maak van die neurale netwerk se huidige kennis om optimale argitekture

op te stel, en om optimaal van die beskikbare leerdata gebruik te maak.
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Chapter 1

Introduction

“Keep it simple:
as simple as possible,
but no simpler”

- A Einstein.

The past decade has shown artificial neural networks (NN) to be very powerful modeling and
analysis tools. Much research effort has been expended to better understand why NNs are
so successful - to probe the so-called “black box”. We now know that using a NN to solve a
problem does not just involve pushing data into the network and expecting good results at

the other end. There are more to using NNs...

This thesis shows how sensitivity analysis of the neural network output can be utilized to
analyze the knowledge embedded in the network weights in order to develop efficient sensi-
tivity analysis algorithms to improve learning performance. Having the support of rigorous
mathematical analysis, the neural network sensitivity analysis model developed in this thesis

addresses the following important performance aspects of neural networks:

e Generalization performance: The accuracy achieved on a set of data points not
seen during training is one of the most important measures of performance, referred
to as generalization. Although the objective of learning algorithms is to minimize the

training error, the objective of learning should also be to minimize the generalization
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error. If a NN has too many free parameters (i.e. weights), and is overtrained, the
network may overfit the training set, causing memorization of the training data. Such

memorization of training data leads to bad generalization.

e Complexity: The computational complexity of a learning algorithm is influenced by
the optimization method used and the architecture of the network. The number of

learning calculations is directly dependent on the number of weights in the network.

e Convergence: The convergence characteristics of a learning algorithm refer to the
ability to find an accurate approximation to the function that maps model inputs to

outputs. That is, the ability to converge to “good” local minima.

e Comprehensibility: Comprehensibility refers to a general understanding of the oper-
ation of the NN and the data being modeled. Here we specifically refer to the ability to
extract hidden features, or knowledge, about the data; or some explanation facility to

present the numerically encoded knowledge in a symbolic way.

Much research concentrated on developing techniques to address these aspects individually, i.e.
the optimal setting of initial weights, optimal learning rates and momentum, finding optimal
NN architectures, sophisticated optimization techniques, adaptive activation functions, noise
injection and ensemble networks. Optimal weight settings and optimal learning parameter
settings target the improvement of generalization and training time. The construction of opti-
mal architectures improves generalization performance and may reduce complexity depending
on the complexity of the architecture selection algorithm. Optimization techniques improve
convergence and generalization, but often at the expense of increased complexity. Adaptive
activation functions improve training time and generalization, while ensemble networks im-
prove generalization at the expense of increased complexity. Comprehensibility is facilitated
through algorithms that extract symbolic rules from trained networks, and algorithms that

visualize classification boundaries.

In this thesis the performance aspects discussed above are addressed through the develop-
ment of decision boundary visualization, active learning and network pruning algorithms
which make use of sensitivity information of the NN output to small perturbations in net-

work parameters. The next section outlines the objectives of this thesis and shows how the
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sensitivity analysis models developed in this thesis address these performance issues.

1.1 Thesis Objectives

The main objective of this thesis is to develop a sensitivity analysis model for multilayer
feedforward neural networks, and to design different sensitivity analysis tools based on this
model. The thesis has as sub objectives that the developed tools should improve generaliza-
tion, reduce complexity, improve convergence and facilitate comprehensibility of the network
and the problem domain. As vehicle to achieve these goals, the thesis concentrates on one
neural network optimization technique, i.e. gradient descent, and considers only stochastic

learning where weight adjustments are made after each pattern presentation.

The sensitivity analysis model is based on the analysis of the influence that small perturbations
of NN parameters (which can be input units, hidden unit activations and weights) have on the
output of the NN. First order derivatives of the NN output function with respect to network
parameters are used to quantify this influence perturbations have on the output. Based on

these derivatives, the following sensitivity analysis tools are developed:
e An algorithm to visualize the position of decision boundaries, which helps to
better understand the functioning of the NN and the problem domain.

e A selective learning algorithm for classification problems, which uses the decision
boundary algorithm to dynamically select training patterns near decision boundaries.

The selective learning algorithm addresses generalization, complexity and convergence.

e An incremental learning algorithm for function approximation problems, which

addresses generalization, complexity and convergence.

e A pruning algorithm to optimize NN architectures in order to reduce complexity and

to improve generalization.

It is illustrated in the chapters how these tools achieve the sub objectives.
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1.2 Contribution

The study of NN output sensitivity analysis led to the development of a few new algorithms,

each supported by a mathematical model. The specific contributions of this thesis are:

e A comparison of the characteristic principles and complexity of the two approaches to

NN sensitivity analysis, i.e. (1) with regard to the objective function and (2) with regard
to the NN output function. This comparison led to the conclusion that these approaches
are conceptually the same, while NN output sensitivity analysis is less complex and does

not rely on simplifying assumptions.

An algorithm to visualize decision boundaries, that can be used to locate the boundaries
formed in input space and to determine which boundary is implemented by which hidden
unit. The algorithm can also be used to detect irrelevant input and hidden units. NN
rule extraction algorithms can use this algorithm to extract thresholds for continuous

valued parameters in rule clauses.

A selective learning algorithm for classification problems that prunes patterns from a
candidate training set. The selective learning algorithm selects for training only those
patterns that lie closest to decision boundaries. For this purpose the decision boundary

algorithm is used to find all patterns near boundaries.

An incremental learning algorithm for function approximation problems which dynam-
ically grows the training set by adding to it only those patterns that have the highest

influence on the NN output.

A pruning algorithm which can be used to prune input units, hidden units and weights.

A new statistical pruning heuristic is developed based on variance analysis.

Mathematical derivations of the sensitivity analysis equations for feedforward, func-

tional link and product unit neural networks.

In addition to the contributions listed above, appendix C contains an algorithm which dy-

namically adapts the sigmoid activation functions in the hidden and output layers.

This

algorithm, referred to as 7-learning, has as objective to improve generalization performance,
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and as such fits into one of the objectives of this thesis to produce techniques to improve
generalization. To this extend, the appendix analyzes the effects that the scaling of output
values has on training time and show how generalization is improved by learning the shape

of the sigmoid activation function.

1.3 Outline

The thesis is organized as follows. The next section presents an overview of learning using

multilayer NNs, with the objective to introduce the assumptions used throughout the thesis.

Chapter 2 presents an overview of sensitivity analysis. It is shown how sensitivity analysis
originates from perturbation theory. Different uses of sensitivity analysis in NNs are discussed
in section 2.2, and a comparison between the two types of NN sensitivity analysis, i.e. with
respect to the objective function and with respect to the NN output function, is presented
in section 2.4.3. Section 2.4.3 shows that these two approaches to sensitivity analysis are
conceptually the same, but that NN output function sensitivity analysis is less complex. Sec-
tion 2.5 illustrates experimentally that the output sensitivity analysis equations accurately
approximate the true derivatives of the function that maps inputs to outputs. The sensi-
tivity analysis applications covered in this thesis are introduced in section 2.6. Section 2.7
shows mathematically how sensitivity analysis can be applied to different NN types, including

feedforward, functional link and product unit NNs.

Algorithms to visualize decision boundaries are developed in chapter 3. Definitions of decision
boundaries are given in section 3.2, supported by a mathematical explanation. Section 3.3
illustrates, using artificial and real-world problems, how the decision boundary algorithms

can be used to locate and visualize boundaries.

Chapter 4 develops two new active learning algorithms based on sensitivity analysis. The
sensitivity analysis selective learning algorithm is developed in section 4.3, while section 4.4
presents the sensitivity analysis incremental learning algorithm. For both algorithms a math-

ematical model is presented, the computational complexity is analyzed and results of their
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application are reported in comparison with standard fixed set learning. Before the presen-
tation of these algorithms, an overview of active learning is presented in section 4.1.1, and a
general mathematical model for active learning is developed in section 4.2. A definition for
pattern informativeness - the fundamental principal of active learning algorithms developed

in this thesis - is given in section 4.2.3.

Neural network architecture selection is considered in chapter 5. An overview of architecture
selection methods is presented in section 5.1, and a summary of pruning algorithms is given
in section 5.1.1. A general pruning algorithm is presented in section 5.2. A pruning algorithm
that uses output sensitivity analysis is developed in section 5.2.3. A definition of parameter
significance is given in section 5.3.2, and a new statistical test is designed in section 5.3.3.
Pruning heuristics based on parameter significance and the statistical test are presented in
section 5.3.4. Sensitivity analysis pruning algorithms are developed in section 5.3.5. Results

of the application of the sensitivity analysis pruning algorithm are presented in section 5.4.
Conclusions and topics for future research are discussed in chapter 6.

Appendix A summarizes the symbols used throughout the thesis. Definitions of key terms used
and defined in the thesis are listed in appendix B. An automatic scaling learning algorithm
is presented in appendix C. The effects of scaling of output values are discussed, the new

gamma learning algorithm is developed and results are presented.

Appendix D contains the complete learning equations for feedforward NNs trained using
gradient descent, online learning. The derivations of the NN output sensitivity analysis equa-
tions for feedforward NNs and product unit NNs, as well as for objective function sensitivity

analysis, are presented in appendix E.

A list of publications based on the research presented in this thesis is given in appendix F.
1.4 Neural Network Learning
Various multilayer NN types have been developed, for example feedforward NNs, recurrent

neural networks (RNN), functional link neural networks (FLNN), and product unit neural

networks (PUNN). This thesis concentrates on feedforward NNs where gradient descent
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is used to compute the error between the target and network output values. These calculated
errors are then backpropagated through all the layers of the network to adjust the network
weights [Rumelhart et al 1986, Zurada 1992b]. There are no feedback connections to previous
layers. In a RNN, feedback connections are used as a mechanism to model the temporal
characteristics of the problem being learned. Architecture specific RNNs have been developed
that simply duplicate layers to store the state of these layers at previous time steps. For
this purpose the hidden layer and/or the output layer can be duplicated for any number of
time steps [Ludik 1995a]. In a functional link NN the input layer is expanded to a layer of
functional units, where a functional unit is a higher-order combination of linear input units
[Ghosh et al 1992, Hussain et al 1997, Zurada 1992b]. In a product unit NN, product units
are used in the hidden layers to compute the netto input value to hidden units, instead of

summation units [Durbin et al 1989, Ghosh et al 1992, Janson et al 1993, Leerink et al 1995].

While sensitivity analysis can be applied to all these NN types, as illustrated mathematically
in section 2.7, this thesis applies the developed sensitivity analysis techniques to feedforward
NNs only, since the main objective of this thesis is to introduce new sensitivity analysis
techniques (for a specific NN type) and to illustrate the application of these techniques (to
that NN type) to improve learning performance. Further research, beyond this thesis, will
investigate the application of the sensitivity analysis techniques developed in this thesis to
other NN types. Thus, for the purpose of this thesis a three layer feedforward NN architecture
with one input layer, one hidden layer and one output layer is assumed. With reference to
figure A.1, a bias unit is added to the input and hidden layers. Generalization to more
than one hidden layer is straightforward as illustrated in appendix E. Although sensitivity
analysis can be applied to any differentiable activation function, this thesis assumes sigmoid
activation functions which are differentiable, monotonic increasing functions. In the light of

these assumptions, what follows next is an explanation of learning and generalization.

Consider a finite set of input-target pairs D = {d® = (z®),#{»))|p =1,..., P} sampled from
a stationary density Q(D), with zz(p),tgcp) eERfori=1,---,Tand k =1,---, K; zgp) is the
value of input unit z; and t,(cp ) is the target value of output unit o; for pattern p. According
to the signal-plus-noise model

1) = (ZP)) 4 (@) (1.1)
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(»)

where p(Z) is the unknown function, the input values z;"’ are sampled with probability density

w(Z), and the C_;; (®) are independent, identically distributed noise sampled with density ¢(¢),

having zero mean.

The objective of learning is then to approximate the unknown function u(Z) using the infor-
mation contained in the finite data set D. For NN learning this is achieved by dividing the
set D randomly into a training set D7 and a test set Dg. The approximation to p(Z) is found

from the training set Dr, and the generalization accuracy is estimated from the test set Dg.

Since prior knowledge about (D) is usually not known, a nonparametric regression approach
is used by the NN learner to search through its hypothesis space H for a function Fy y (Dp; W)
which gives a good estimation of the unknown function u(2), where Fyy(Dr; W) € H. For
multilayer NNs, the hypothesis space consists of all functions realizable from the given network
architecture as described by the weight vector W. The function Fyy : Rf — RX is found
which minimizes the empirical error

Pr
> (Fun (Z0), W) — i9)?2 (1.2)

p=1

1

where Pr is the total number of training patterns. The hope is that a small empirical

(training) error will also give a small true error, or generalization error, defined as
a0 W) = [(Fan(2.W) — 070D (1.3

For the purpose of NN learning, the empirical error in equation (1.2) is referred to as the
objective function to be optimized by the optimization method (e.g. gradient descent, scaled
conjugate gradient, simulated annealing, etc.). For the purposes of this thesis gradient descent

is used to optimize weights.

In the spirit of this explanation of learning, the sensitivity analysis techniques developed in
this thesis have as objective to decrease the generalization error £g through manipulation of
the way in which training patterns in D are presented for learning, and through architecture

manipulation.

The notation and symbols used in this thesis are summarized in appendix A, and introduced

throughout the thesis when needed.



Chapter 2

Sensitivity Analysis

P(0+ AG) — P(6) ~ P (0) A0

This chapter presents a short overview of NN sensitivity analysis techniques. The chap-
ter includes a comparison of objective function and NN output sensitivity analysis, and an

illustration of the applicability of NN output sensitivity analysis to different NN types.

2.1 Introduction

Sensitivity analysis has its birth from perturbation analysis, which is a study of the be-
havior of a function in a small region about a point, or more than one point. Perturba-
tion analysis allows the study of the characteristics of a function (or performance measure)
under small perturbations of the function’s parameters [Ho 1987, Ho 1988, Holtzman 1992,
Zurada et al 1997]. In perturbation analysis we are interested in evaluating the disturbance
in the function’s response to small perturbations in its parameters. Assuming that the per-
formance function is differentiable, the relationship between the perturbed response of this
function and parameter perturbations is expressed by a Taylor expansion of that function.

For example, for a one dimensional performance function P,

A0P1(9)+A2—0;2'P”(9)+"' (2'1)

P(0+20) = P(O) + 57
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where 0 is a parameter of the function, and A6 is a small perturbation of #. The Taylor
expansion shows that the derivatives of the function with respect to the perturbed parameter

encapsulate the characteristics of that function under the A# perturbations.

Sensitivity analysis is a technique to calculate these derivatives, and to use the derivatives to

draw conclusions about the characteristics of the function.

In terms of neural networks (NN), the performance measure can be expressed as either the
objective (error) function to be optimized (as in equation (1.2)), or the NN output function
Fnn(Dp; W). The parameters of both these NN performance measures are the weights, input
unit activations and hidden unit activations. Sensitivity analysis of a NN therefore refers to
the study of the behavior of the objective function or the NN output function with respect
to small perturbations in the weights, input and/or hidden unit activations, as derived from
the corresponding function derivatives. Sensitivity analysis of any of the before mentioned
performance functions, i.e. the objective function or the NN output function, requires the per-
formance function to be differentiable, which is the case if differentiable activation functions

are used in the hidden and output layers.

The main objective of this chapter is to give a short overview of NN sensitivity analysis
techniques. In particular, sensitivity analysis of the objective function & with respect to
NN parameters and sensitivity analysis of the NN output function Fyy with respect to
parameters are discussed and compared. An overview of the uses of sensitivity analysis in
NNs is presented in section 2.2. Section 2.3 presents, in general, a theoretical discussion of
the origin of sensitivity analysis. Neural network sensitivity analysis techniques are discussed
in section 2.4, with a comparison of the two main approaches to NN sensitivity analysis for
network pruning. The proposed uses of NN sensitivity analysis are introduced in section 2.6,
while section 2.5 presents experimental results to illustrate the accuracy of the NN output
sensitivity analysis approach in approximating the derivative of the underlying function. The
chapter concludes with an illustration that the output sensitivity analysis approach can be

applied easily to NNs of different types.
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2.2 Sensitivity Analysis in Neural Networks

Parameter sensitivity information have been used for different purposes in neural networks:

e Optimization: The calculation of the gradient of a function forms an important
part of optimization. One of the first uses of sensitivity analysis is therefore in op-
timization problems [Blanning 1974, Cao 1985, Holtzman 1992, Kibsgaard 1992]. In
NNs, derivatives of the objective function with respect to the weights are computed
to locate minima by driving these derivatives to zero (refer to equations (D.14) and
(D.21)) [Rumelhart et al 1986]. Second order derivatives have also been used to de-
velop more sophisticated optimization techniques to improve convergence and accuracy
[Battiti 1992, Becker et al 1988, Mgller 1993]. Koda uses stochastic sensitivity analysis
to compute the gradient for time-dependent networks such as recurrent neural networks

(RNN) [Koda 1995, Koda 1997].

e Robustness and stability: Neural network robustness and stability analysis is the
study of the conditions under which the outcome of the NN changes. This study is
important for hardware implementation of NNs to ensure stable networks that are
not adversely affected by weight, external input and activation function perturbations
[Alippi et al 1995, Oh et al 1995, Stevenson et al 1990, Wang et al 1994]. Instead of us-
ing derivatives to compute the gradient of the objective function with respect to the
weights, Jabri and Flower use differences to approximate the gradient, thereby signifi-

cantly reducing hardware complexity [Jabri et al 1991).

e Generalization: Fu and Chen state that good generalization must imply insensitivity
to small perturbations in inputs [Fu et al 1993]. They derive equations to compute the
sensitivity of the NN output vector to changes in input values, and show under what
conditions global NN sensitivity can be reduced. For example, using small slopes for the
sigmoid activation function, using as small as possible weights, reducing the number of
units, and ensuring activation levels close to 0 or 1 (for appropriate activation functions
such as the sigmoid function) will reduce network sensitivity. Choi and Choi derive a
NN sensitivity norm which expresses the sensitivity of the NN output with respect to

input perturbations [Choi et al 1992]. This NN sensitivity norm is then used to select
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from sets of optimal weights the weight set with lowest NN sensitivity, which results in

the best generalization.

e Measure of nonlinearity: Lamers and Kok use the variance of the sensitivity of the
NN output to input parameter perturbations as a measure of the nonlinearity of the
data set [Lamers et al 1998]. This measure of nonlinearity is then used to show that
the higher the variance of noise injected to output values, the more the problem is

linearized.

e Causal inference: Sensitivity analysis has been used to assess the significance of
model inputs. Engelbrecht, Cloete and Zurada use exact derivative calculations to com-
pute the significance of each input parameter [Engelbrecht et al 1995b]. Inputs with
high significance values have a high influence on the NN output. Goh derived a sim-
ilar method using differences to approximate the gradient of the NN output function
with respect to inputs [Goh 1993]. Real-world applications of causal inferencing using
sensitivity analysis include the work of Modai et al where sensitivity analysis is used
to find those psychiatric parameters that have the highest influence on the short-term
outcome of psychiatric disorders [Modai et al 1995], and Guo and Uhrig who use sen-
sitivity analysis to find those parameters that have the highest influence in the loss in
electricity production in a nuclear power plant [Guo et al 1992]. In a Bayesian con-
text, Laskey derives equations to compute parameter significances for Bayesian neural

networks [Laskey 1995].

e Selective learning: Hunt and Deller use weight perturbation analysis to determine the
influence each pattern has on weight changes during training [Hunt et al 1995]. Only
patterns that exhibit a high influence on weight changes are used for training. Chapter 4
presents new active learning models based on sensitivity analysis (also introduced in
[Engelbrecht et al 1998a]). These models use a measure of pattern informativeness to

dynamically select patterns during training.

e Decision boundary visualization: Goh uses an approximation to the derivative
of the NN output function with respect to inputs, using differences, to graphically
visualize decision boundaries [Goh 1993]. Chapter 3 shows how exact derivative cal-

culations can be used to locate and visualize decision boundaries (also introduced and
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applied in [Engelbrecht et al 1998a, Engelbrecht et al 1998b, Engelbrecht et al 1999a,
Engelbrecht 1999c, Viktor et al 1998a]). Viktor uses the decision boundary algorithm
developed in chapter 3 to improve the accuracy of rules extracted from trained NNs in
a cooperative learning environment [Viktor 1998b], while Engelbrecht and Viktor show

the same results for individual learners [Engelbrecht et al 1999a).

e Pruning: Sensitivity analysis has been applied extensively to NN pruning. Ap-
proaches range from pruning weights, inputs and/or hidden units using approxi-
mations to compute derivatives or using exact derivative calculations. One tech-
nique is to compute the sensitivity of the objective function with respect to NN pa-
rameters [Burrascano 1993, Cibas et al 1996, Gorodkin et al 1993b, Hassibi et al 1993,
Hassibi et al 1994, Karnin 1990, Le Cun 1990, Moody et al 1995, Mozer et al 1989,
Pedersen et al 1996, Schittenkopf et al 1997]. Another method of sensitivity analysis
pruning is to compute the sensitivity of the NN output function to parameter perturba-
tions [Czernichow 1996, Cloete et al 1994c, Dorizzi et al 1996, Engelbrecht et al 1995b,
Engelbrecht et al 1996, Engelbrecht et al 1999, Fletcher et al 1998,
Takenaga et al 1991, Viktor et al 1995, Zurada et al 1994, Zurada et al 1997]. Section
2.4 elaborates on these pruning methods, while chapter 5 presents a pruning algorithm

based on output sensitivity analysis.

e Learning derivatives: Basson and Engelbrecht develops a new learning algorithm
for feedforwards NNs that also learns the first-order derivatives of the NN output with
respect to each input unit while learning the underlying function [Basson et al 1999].
The NN consists of two parts, one representing the learned function, and the other
representing the derivatives of the learned function. Concepts from sensitivity theory
are used to create a training set for the training of the derivative part of the NN using

gradient descent.

2.3 Theoretical Development

This section presents a formal definition of perturbation analysis, and shows how sensitivity

analysis follows from a Taylor expansion of the performance measure around the parameter
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of interest:

Definition 2.1 Perturbation Analysis: Let P be a performance measure of a system, and
0 a parameter of this system. Without loss of generality, assume 6 is scalar. Then, from a
Taylor ezxpansion of P around 0, the change in performance due to perturbation A@ of 6 is
expressed as [Ho 1987, Ho 1988]

AG?
ED

Al A§?

PO + A9) = P(9) + TP' () + 77>” @)+ =P () + - (2.2)

Therefore, perturbation analysis is the study of the performance of the system P with respect
to a small perturbation Af of parameter . The sum %P’ 0)+ A2—0;2P” (0) +- - is the change
in performance P(f) due to the perturbation Af. Ideally, %P’ 0) + Az—é!’ZP" @) +---—0
when A8 — 0.

Equation (2.2) shows that the derivatives play a very important role in determining the
influence of parameter perturbations on the output of the performance function. This chap-
ter investigates how the derivatives can be used to quantify the response of the system to
parameter perturbations, and how these derivatives can be calculated. This study of how
the derivatives influence the performance function is referred to as sensitivity analysis.
Algorithms that use derivatives to analyze models are referred to as sensitivity analysis

techniques.

Sensitivity analysis techniques differ mainly in the performance measure used, the order of
the derivatives that are considered, whether the analysis is in continuous time or for discrete

time intervals, and the way in which the derivatives are calculated.

Due to computational considerations, sensitivity analysis is based on approximations of equa-
tion (2.2), usually first-order or second-order approximations. For example, a first-order
approximation yields

P(0+ A0) =~ P(0) + P (0)A0 (2.3)

Sensitivity analysis that uses a second-order approximation is more accurate, but also more

complex and time consuming than a first-order approximation due to the calculation of
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the Hessian matrix [Bishop 1992, Buntine et al 1994, Gorodkin et al 1993b, Le Cun 1990,
Hassibi et al 1994].

Usually, sensitivity analysis is done at discrete time intervals for that time interval only.
Sensitivity analysis can also be performed for continuous time models, referred to as stochastic
sensitivity analysis [Cao 1985, Koda 1995, Koda 1997]. Koda derives stochastic sensitivity
analysis formulae for RNNs [Koda 1995, Koda 1997]. He derives a sensitivity density function
(to be used to estimate the gradient for learning purposes) viewed as the sensitivity of the
state of the NN at an unit at time 7" with respect to a perturbation in the input at another

unit at time ¢t < 7.

Different methods can be used to calculate the gradient information needed for sensitivity
analysis, i.e. through simulations, analytical approximations or exact analytical calculations

(considering only first order derivatives):

e Simulation calculations: A brute-force way of calculating first order sensitivity in-
formation is to perform different simulations, each with only the parameter value 6
being different. The performance function P is evaluated for each simulation. The av-
erage performance over all simulations gives an indication of the model’s performance
with respect to changes in parameter 8. This brute-force approach is mathematically
expressed as [Ho 1987, Ho 1988]

1 N | N
lim [ Y PO+ A0)— =) PO)]/A0 (2.4)

N—00,A0—0 N

where N is the total number of simulations. This simulation approach to compute

sensitivity information is time consuming and only approximate.

e Analytical approximations: From equation (2.3), the first order derivatives of the
performance measure can be approximated using differences [Goh 1993, Jabri et al 1991,
Kibsgaard 1992, Mozer et al 1989]

0P i, _ PO+A0)—P0)
a9 T Af

(2.5)

which holds only when A8 — 0. A fixed value is selected for the perturbation A6,

and the derivative P’ () is evaluated for each observation/pattern p. The method of
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derivative approximation by means of differences is computationally less expensive than

calculation through simulation, but still an approximation of the true derivatives.

Iwatsuki, Kawamata and Higuchi [Iwatsuki et al 1989], as well as Choi and Choi
[Choi et al 1992], approximate sensitivity information by means of statistical calcula-
tions. They define statistical sensitivity analysis as the performance measure variance

normalized by the variance of the parameter variations.

¢ Exact analytical calculations: FExact derivative calculations of first-order and
second-order Taylor expansions have been used extensively to calculate sensitiv-
ity information [Cibas et al 1996, Czernichow 1996, Fu et al 1993, Dorizzi et al 1996,
Engelbrecht et al 1995b, Engelbrecht et al 1996, Engelbrecht et al 1998a,
Fletcher et al 1998,  Schittenkopf et al 1997,  Burrascano 1993, Guo et al 1992,
Hashem 1992, Hassibi et al 1994, Laskey 1995, Le Cun 1990, Schittenkopf et al 1997,
Takenaga et al 1991, Zurada et al 1994, Zurada et al 1997]. While exact calculations
(as in appendix E) are more expensive, they are more accurate than analytical ap-
proximations. Second-order sensitivity calculations are even more expensive due to the
calculation of the Hessian matrix. Usually, approximations to the Hessian matrix are

used instead [Bishop 1992, Gorodkin et al 1993b, Le Cun 1990, Hassibi et al 1994].

A totally different approach to sensitivity analysis is developed by Holtzman [Holtzman 1992].
Instead of using the approximation in equation (2.3), the parameter 6 is considered as a
random variable, and < P(6) > and var(P(0)) are estimated as a function of the mean and
variance of §; < e > denotes the expectation of e. A small variance var(P(0)) reveals an

insignificant parameter 6.

2.4 Neural Network Sensitivity Analysis

Neural networks can approximate most linear and non-linear input-output mappings through
a combination of weights. Funahashi [Funahashi 1989] and Hornik, Stinchcombe and White
[Hornik 1989, Hornik et al 1990] have proven that any continuous mapping can be ap-
proximately realized by a multilayer NN with monotonically increasing differentiable ac-

tivation functions. Furthermore, Hornik et al [Hornik et al 1990] and Gallant and White
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[Gallant et al 1992] show that, when a NN converges towards the underlying (target) func-
tion, all the NN derivatives also converge towards the derivatives of the underlying function.
This property of NNs allows efficient use of the NN derivatives to compute sensitivity infor-
mation. (Also refer to section 2.5 for experiments which illustrate the accuracy of analytical

derivative calculations.)

Section 2.3 presented a short overview of the different ways in which sensitivity information
can be calculated. This section considers only the two main approaches to NN sensitivity
analysis, i.e. with respect to the objective function and with respect to the NN output
function, using exact analytical calculations. A general formulation of the two approaches
is given, and their assumptions and complexity are discussed. The functionality of the two

approaches are then compared, with reference to pruning.

2.4.1 Objective Function Sensitivity Analysis

One of the most widely used methods of NN sensitivity analysis is that of the objective
function with respect to NN parameters. Usually, the sum squared error (SSE) as defined in
equation (1.2) is used as objective funtion. If £ denotes the objective function, 6= (01,---,6r)
the parameter vector of the NN, 6; a single parameter, and A#; a small perturbation of that

parameter, then from (2.2)

- 1, = 1 "o, =
EOr, 0+ A0y, 01) = E0) + & (O)A6; + 5&" (YA} + -+ (26)

is the Taylor expansion of £ around 6;. From equation (2.6), the change in error due to

perturbation A#; is

E1, 05+ Dby, 07) — £0) = £ (D)AG, + € D)AG +-- (27)

The first order term & (5) is used in gradient descent optimization to drive the NN
to a local minimum [Rumelhart et al 1986]. In this case 6; represents a weight of the
NN. The second order term has also been used in optimization to improve convergence
[Battiti 1992, Becker et al 1988]. Objective function sensitivity analysis has been used
widely in pruning of NN parameters. Optimal Brain Damage (OBD) [Gorodkin et al 1993b,
Le Cun 1990, Pedersen et al 1996] and Optimal Brain Surgeon (OBS) [Hassibi et al 1993,
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Hassibi et al 1994, Pedersen et al 1996] prune weights with low “saliency,” while Optimal Cell
Damage (OCD) [Cibas et al 1994a, Cibas et al 1994b, Cibas et al 1996] prunes irrelevant in-
put and hidden units. OBD, OBS and OCD use second order derivatives to approximate

saliencies.

Objective function sensitivity analysis in OBD, OBS and OCD are based upon assumptions
to reduce the complexity of calculating equation (2.7) [Cibas et al 1994b, Cibas et al 1996,
Gorodkin et al 1993b, Hassibi et al 1993, Hassibi et al 1994, Le Cun 1990]. These assump-

tions are discussed below:

¢ Extremal approximation assumption: It is assumed that pruning is applied only
after convergence is reached. At the local minimum, the derivative of the objective func-
tion is approximately zero, which means that the first term, & (§)A9i, can be removed
from equation (2.7). The extremal approximation assumption also relies on the assump-
tion that noise follows a Gaussian, zero mean distribution. The extremal approximation

assumption is not valid if many outliers occur in the training set.

¢ Quadratic approximation assumption: The objective function is assumed to be
well approximated by a second-order expansion around its minimum point. This is not
always the case, especially for flat surfaces with a bath tub-like shape. Gorodkin et
al show for some experiments that the second order approximation does not give an
accurate description of the cost function [Gorodkin et al 1993b]. This assumption also

applies only for objective functions that are linear or quadratic.

e Diagonal approximation assumption: OBD and OCD assume that the off-diagonal
terms of the Hessian matrix are zero. This assumption is only valid if it can be assumed
that the principal curvature of the error surface is captured in the diagonal terms.
However, there may be regions in the error surface of a problem where small changes in
some weights result in very large changes in the error gradient. That is, in regions where
the principle curvature is not parallel to the weight axes. Becker and Le Cun illustrate
this to be true for experiments investigated by them [Becker et al 1988]. They show
through an eigenvalue decomposition of the Hessian matrix that off-diagonal terms

also have high eigenvalues, indicating regions in the error surface that are sensitive
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to weight perturbations. Hassibi and Stork also found the diagonal assumption to be
incorrect, leading to the pruning of the wrong weights [Hassibi et al 1993]. The diagonal
assumption loses some information about the characteristics of the objective function
and error surface. For this reason, OBS does not assume off-diagonal terms to be zero,
but uses the full Hessian matrix which is extremely expensive to compute - especially

for large networks.

e Levenberg-Marquardt assumption: It is assumed that the errors between the target

(p) )

are approximately zero. All ¢;” — oip

(p) _ Ol(cp) terms are therefore

and output values, ¢
removed from the sensitivity equations (refer to section E.2 for the equations with and
without the error terms). Assuming a Gaussian noise with zero mean for the input
space, the correlation between errors and the second-order derivatives of the objective
function vanishes for large training sets. However, if many outliers occur in the training

set, the Levenberg-Marquardt assumption may lead to inaccuracies.

Using these assumptions, OBD and OCD define the saliency measure Sy, of parameter 6;

from equation (2.7) as

= 1
So. = €01, 0i + Ay, -, 0r) — €(0) ~ S HE (2.8)
and OBS as
~ 1 67
S, = EO1,--+ 0+ Dby, 0) = E0) ~ 5 (2.9)

where H = ‘327‘;" is the Hessian matrix containing all the second order derivatives, and [H~!];

denotes the i** diagonal element of the inverted Hessian.

The equations for calculating ‘327‘;: (refer to section E.2 where the complete equations are
derived) depend on the objectiv;z function (usually the SSE function) and the activation
functions (usually sigmoid functions). For NNs that use a different objective function, the
OBD, OBS and OCD sensitivity analysis models change substantially. Changes in activation

functions cause only minor changes in the sensitivity equations.
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2.4.2 Output Sensitivity Analysis

Sensitivity analysis of the NN output, from now on referred to as NN output sensitivity anal-
ysis, is based on the first-order approximation in equation (2.3), and has been used for several
NN applications [Basson et al 1999, Choi et al 1992, Cloete et al 1994c, Czernichow 1996,
Dorizzi et al 1996, Engelbrecht et al 1995b, Engelbrecht et al 1996, Engelbrecht et al 1998a,
Engelbrecht et al 1998b, Goh 1993, Guo et al 1992, Engelbrecht et al 1999a,
Engelbrecht 1999c, Engelbrecht et al 1999d, Engelbrecht et al 1999e, Fletcher et al 1998,
Fu et al 1993, Laskey 1995, Modai et al 1995, Takenaga et al 1991, Viktor et al 1995,
Viktor et al 1998a, Zurada et al 1994, Zurada et al 1997]. Without loss of generality assume
one output unit. If Fnn denotes the output function of the NN, 6= (01,---,0r) the parameter

vector, 6; a single parameter and Af; a small perturbation of 6;, then

- -

FNn (01,10 + Abiy -+, 07) — Fan(0) = Fyn(0)9,A6; (2.10)

The change in output due to the perturbation is then entirely described by the derivative

/ e 0; L AG;L--- _ N
fNN(O)Hz — AE'IE)O fNN(ela 191 + Aeé, ,9[) fNN( )
¢ K3

(2.11)

Output sensitivity analysis therefore consists of simply calculating 6?3’, N for all parameters

0; (refer to section E.1.1 for the complete equations for feedforward NNs).

Output sensitivity analysis has been used to study the generalization characteristics
of NNs [Choi et al 1992, Fu et al 1993], for causal inferencing to determine the signifi-
cance of input parameters [Engelbrecht et al 1995b, Goh 1993, Guo et al 1992, Laskey 1995,
Modai et al 1995], to quantify the degree of non-linearity in the data [Lamers et al 1998], to
detect and visualize decision boundaries [Engelbrecht et al 1998a, Engelbrecht et al 1998b,
Engelbrecht et al 1999a, Engelbrecht 1999c, Goh 1993, Viktor et al 1998a), to
prune oversized NN architectures [Cloete et al 1994c, Czernichow 1996, Dorizzi et al 1996,
Engelbrecht et al 1995b, Engelbrecht et al 1996, Engelbrecht et al 1999e, Fletcher et al 1998,
Takenaga et al 1991, Viktor et al 1995, Zurada et al 1994, Zurada et al 1997], for active
learning [Engelbrecht et al 1998a, Engelbrecht et al 1999d], and for automatically learning
first-order derivatives [Basson et al 1999]. For pruning purposes, sensitivity analysis is

used to compute the significance of weights, input and hidden units [Cloete et al 1994c,
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Engelbrecht et al 1995b, Engelbrecht et al 1996, Engelbrecht et al 1999e, Viktor et al 1995,
Zurada et al 1994, Zurada et al 1997].

Output sensitivity analysis as presented in this thesis is not based on any assumptions to
reduce model complexity. The only assumptions are that (1) the activation functions are at
least once differentiable, and (2) the NN should be well trained to accurately approximate
the true derivatives. This is necessary for pruning to correctly remove irrelevant parameters.
This assumption is not as strict as the extremal approximation assumption of OBD, OBS
and OCD, since the validity of the output sensitivity analysis model does not depend on the

network being in a local minimum.

The output sensitivity equations are independent of the objective function, since the
NN output is taken as performance function, and not the objective function as in OBD, OBS
and OCD. Whatever error function is used, the equations to compute the derivatives of the
NN output function with regard to network parameters, as given in appendix E.1.1, remain
the same. They do, however, depend on the type of activation function used, due to the need
to calculate %La’“, where 6 can be an input unit (refer to equation (E.6)), a hidden unit (refer
to equation (E.7)), or a weight (refer to equations (E.8) and (E.9)), and the need to calculate
Ay;

57> where 0 can be an input unit (refer to equation (E.11)), or a weight (refer to equation

(E.9)).

2.4.3 Comparison of Neural Network Sensitivity Analysis Models

The objective of this section is to compare the two approaches to NN sensitivity analysis
as discussed in sections 2.4.1 and 2.4.2. After a general comparison of the complexity and
characteristics of the two approaches, the section concludes with a mathematical comparison

between OBD and output sensitivity analysis for NN pruning.

The main difference between objective and NN output sensitivity analysis is the performance
function used. Objective function sensitivity analysis uses the error function to be optimized
as measure of the change in error caused by small parameter perturbations as expressed in

equation (2.7). Output sensitivity analysis, on the other hand, uses the actual NN output
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function as performance measure to quantify the change in NN output due to small pertur-
bations, as expressed in equation (2.10). Conceptually, the two approaches mean the same:
The error of a single pattern is computed as the difference (tip ) ol )) between the target
value tgcp ) and the actual output value ol(fJ ) of the kth output unit for pattern p. A change in
error, due to some perturbation, is determined by a change in the output value caused by

that perturbation. This relationship is further illustrated in table 2.1 and equations (2.13)

and (2.14), considering the assumptions as for OBD.

Parameter | Error Sensitivity ‘ Output Sensitivity
62 9

2 S’“ ~ (fok) [Z] 1wk1fyj"’gz] a2 = fo Z; lwkjfy]vﬂ
from (E.39) from (E 6)

) 2&k (f’ )2w2 doy, __ f w

Yj ayr kj By; o, Wkj
from (E.45) from (E.7)
9?2 ! 2]

Wi aw%j ~ (fok)2y]2' 313:] = foky]
from (E. 51) from (E8)
82 ! 8 ! !
from (E. 59) from (E.9)

Table 2.1: Comparison of Objective Function and Output Sensitivity Analysis

While objective function and NN output sensitivity analysis mean conceptually the same
thing, it is more complex to compute objective function sensitivity information. Since the
goal of learning is to minimize the objective function, the first order derivative of the objective
function, &£, is approximately zero at convergence. Thus requiring second order derivatives to
be computed. Since this needs the calculation of the Hessian matrix, objective function sensi-
tivity analysis is computationally expensive. In contrast, with NN output sensitivity analysis,
first order information is sufficient to quantify the influence of parameter perturbations, since

we can assume that [Zurada et al 1997]

—

hmo(zA]-"NN( YAGZ +..) =0 (2.12)

where Fxn is the NN output function. It is much less expensive to calculate the Jacobian

matrix than the Hessian matrix.

Output sensitivity analysis is also more general than objective function sensitivity analysis in
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that the latter depends on the error function (objective function) to be optimized. Usually, the
sum squared error function is used, but for any other error function, the sensitivity equations
as summarized in table 2.1 need to be redefined. The output sensitivity analysis equations,

on the other hand, remain the same whatever objective function is used.

Since both sensitivity analysis approaches have been applied to pruning of NN architectures,
this application is used to find a mathematical relationship between the two methods. For
this purpose OBD is used, considering all its assumptions as listed in section 2.4.1. To derive
this relationship, assume a NN with one output og. Although the comparison below is for
one pattern only, it can quite easily be generalized to include the entire training set through
application of a suitable norm. Table 2.1 summarizes the sensitivity equations for the two

approaches as obtained from appendix E.

From table 2.1, irrespective of which NN parameter is considered, the following general rela-
tionship applies (assuming least squares as objective function):

2
% ~ (%)2 (2.13)
This supports the statement that objective function sensitivity analysis and NN output sen-
sitivity analysis are conceptually the same (under the assumptions listed in section 2.4.1).
This means that the same parameter significance ordering will occur for the two methods. In
the case of pruning, the same parameters will therefore be pruned (also refer to section 5.2.3

where this relationship is explored again in the context of pruning). In general, for more than

one output the following relationship holds:

& RE < o

illustrating that the change in model error due to parameter perturbations is simply an
additive function of the changes in NN output due to these perturbations. Therefore, instead
of using a more complex objective function sensitivity approach, output sensitivity analysis

can be used to the same effect.

The next section empirically investigates how well the true derivatives of the learned function

are approximated.
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2.5 First-Order Output Sensitivity Analysis Results

It has been proven theoretically that feedforward NNs with monotonically increasing dif-
ferentiable activation functions can approximate any continuous mapping [Funahashi 1989,
Hornik 1989, Hornik et al 1990]. The derivatives of the realized function then also converge
to the true derivatives [Gallant et al 1992, Hornik et al 1990]. This section empirically inves-
tigates how well the true derivatives are approximated by the analytical sensitivity equations
given in appendix E. For this purpose, two one-dimensional functions are approximated us-
ing a three layer feedforward network with sigmoidal activation functions trained by gradient

descent.

Firstly, the experimental procedure is described. For each function, two experiments are
performed. The first uses the same training and test set pairs for 50 simulations, where each
simulation starts with different initial conditions. The use of the same training and test sets
allow graphs to be plotted to illustrate the approximation accuracy. The second experiment
performs 50 simulations, each on different training and test set pairs, and different initial

conditions.

The correlation coefficient, defined as [Steyn et al 1995]
Y@ —7) 3 (vi — )

050y
\/Z?:l 3312 - %(Z?:I xi)Q\/Z?:l i‘/iz - %(Z?:I Yi)?

where x; and y; are observations, T and i are respectively the averages over all observations z;

T =

and y;, and o, and oy are the standard deviations of the z; and y; observations respectively,
can be used to quantify the linear relationship between variables x and y. In this section, the
correlation coefficient is used to quantify the linear relationship between the approximated
(learned) function and the true function, as well as between the approximated derivative and
the true derivative. A correlation value close to 1 indicates a good approximation to the true

function. For example, the correlation coefficient

ZP (p)tl(gp) 1P  (p) ZP tip)

. =10 T Plp=1% Z2p=1
2 2
VD o — LD o2 St — B 1)

is calculated as measure of how well the NN approximates the true function.

(2.16)
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All results reported in this section are averages over the 50 simulations.

Function 1

The first function approximated is
0= f(z) =sin(2n(1 — 2?)) (2.17)

where z was sampled from an uniform distribution, i.e. z ~ U(—1,1), and the output o was
scaled to the range [0,1]. No noise term was added to the function. The true derivative of

this function is calculated as
f(z) = —4mz cos(2n(1 — 2%)) (2.18)

For training purposes, the learning rate was fixed at 0.05, while the momentum was 0.9.
Training sets consisted of 240 patterns, while the test sets consisted of 60 patterns. Training
stopped when a mean squared error (MSE) of 0.05 was reached on the training sets, which is

the point at which overfitting was observed.
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Figure 2.1: Output sensitivity for f(z) = sin(27(1 — 2?))
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Figure 2.1(a) plots the true function and its approximation for the training and test sets. The
approximation to the true derivatives is illustrated by figure 2.1(b). The average correlation
between the true and approximated functions over the 50 simulations is given in table 2.2.
These results illustrate that sensitivity analysis of the output with respect to the inputs do
represent good approximations to the true derivatives, having high correlation values and
very similar correlations between the training and test sets. Note that these results depend
on how well the network is trained. Better approximations to the true derivatives can be
obtained if the network is trained to a higher accuracy, provided that the network does not

overfit the training set.

Correlation Coefficient for
Function Approximation
Experiment | Training Set Test Set

Same sets 0.993506 £ 0.000352 | 0.992226 + 0.000438
Different sets | 0.965214 + 0.020753 | 0.961285 + 0.023324

Correlation Coefficient for
Derivative Approximation
Experiment | Training Set Test Set

Same sets 0.938029 £ 0.003602 | 0.941139 + 0.003329
Different sets | 0.931128 4 0.010456 | 0.928263 £ 0.01374

Table 2.2: Correlation coefficients for f(z) = sin(27(1 — 22)), and its derivative

Function 2

The second function was used with noise added, where { ~ N(0,1),
0= f(z) = e 3 sin(2rz(z — 1)) + ¢ (2.19)

where z ~ U(—1,1), and the output was scaled to the range [0,1]. The true derivative of this
function is calculated as

!

f (2) = e **[(4nz — 27) cos(2n2(z — 1)) — 3sin(27z(z — 1))] (2.20)

A fixed learning rate of 0.01 and a momentum of 0.9 were used. Training sets consisted of
720 patterns and test sets contained 180 patterns. Learning stopped when a MSE of 0.01 was

reached on the training sets, which is the point where overfitting was observed.
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Figures 2.2(a) and 2.2(b) respectively illustrate the approximation to the true function and its
derivatives. Table 2.3 summarizes the average correlation values. Again, these results show
high correlations between the true and approximated functions. Also, the correlation values
obtained for the training and test sets are very similar, illustrating no severe discrepancies
between the NN’s generalization of the derivative and the true derivative of the function.
These correlation values show an acceptable approximation to the true derivative using the
output sensitivity analysis equations, thus indicating that output sensitivity analysis can be
used effectively in applications that need accurate approximations to the true derivatives. Of

course, better approximations to the true derivatives will be obtained for a smaller MSE on

the training set, provided that no overfitting occurs.
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Figure 2.2: Output sensitivity for f(z) = e 3%sin(27z(1 — 2))
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Correlation Coefficient for
Function Approximation
Experiment | Training Set Test Set

Same sets 0.997326 + 0.001751 | 0.997950 + 0.001114
Different sets | 0.998592 + 0.000072 | 0.998463 + 0.0000131

Correlation Coefficient for
Derivative Approximation
Experiment | Training Set Test Set

Same sets 0.931647 + 0.001554 | 0.928797 + 0.001298
Different sets | 0.998592 + 0.001272 | 0.998463 + 0.004036

Table 2.3: Correlation coefficients for f(z) = e=3*sin(272(1 — 2)), and its derivative

2.6 Proposed Uses of Neural Network Output Sensitivity
Analysis

The main focus of this thesis is on the uses of output sensitivity analysis information of
feedforward multilayer neural networks. The uses presented and discussed in the following
chapters have as objectives to improve generalization and convergence performance, and to

decrease model and time complexity.

The first application of sensitivity analysis is to visualize the position of decision boundaries
in input space, and to determine which hidden unit implements which boundary. Chapter 3
presents definitions of decision boundaries and shows how sensitivity analysis can be used to
extract meaning from these boundaries. The boundary detection model presented in the next

chapter is used in the selective learning algorithm developed in chapter 4.

Chapter 4 presents two new active learning algorithms that use output sensitivity informa-
tion to dynamically select training patterns from a candidate training set. Both a selective
learning algorithm for classification problems and an incremental learning algorithm for func-
tion approximation are presented. Sensitivity information is used as a measure of pattern

informativeness, facilitating the selection of the most informative patterns.

Chapter 5 presents a pruning algorithm based on NN output sensitivity analysis. Parameter

significance values, computed as a function of output sensitivity measures, are used to identify
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and prune irrelevant parameters. The pruning model is applied to the pruning of the input

and hidden layers.

2.7 Sensitivity Analysis of Different Neural Network Types

Sensitivity analysis can be applied to different multilayer NN types, as long as these NN
types use differentiable activation functions. This section shows mathematically that out-
put sensitivity analysis can be applied to feedforward neural networks (FFNN), functional
link neural networks (FLNN) and product unit neural networks (PUNN). Koda developed a
sensitivity analysis model for continuous-time recurrent neural networks (RNN), which will
not be repeated here [Koda 1995, Koda 1997]. The interested reader is referred to Koda’s
work for illustrations of the applicability of sensitivity analysis to RNNs. Also, Czernichow
[Czernichow 1996] and Dorizzi et al [Dorizzi et al 1996] showed that output sensitivity anal-
ysis can be applied to Radial Base Function NNs.

The section starts with FFNNs, and then shows how the sensitivity equations change for the

other network types.

2.7.1 Feedforward Neural Networks

This section presents a general formulation of sensitivity analysis for feedforward neural net-
works. The reader is referred to appendix E.1.1 where the complete derivations for the
sensitivity of the NN output to network parameters are given for this network type, using the

NN architecture depicted by figure A.1.

Assume a three layer architecture with an input layer, one hidden layer and an output layer,
and a bias unit in the input and hidden layers. For a FFNN, we have in general that the

sensitivity S(S’;) of the output layer to input perturbations for a specific pattern p is:
So. = FP WEP v (2.21)

where W and V are respectively the weight matrices between the hidden and output layers,
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and the input and hidden layers. The derivative matrices are defined as

FP = diag(f féé’) e IS
Fggp) = dla‘g( ) fy2 )" 9 15‘113))

For FFNNs with sigmoid activation functions the derivatives are defined as

0(5) _ Ol(cp)(l_ Ol(cp))
P = P -y

where ogf )

and y(-p )

;) are respectively the activations of output unit o, and hidden unit y; for

pattern p.

2.7.2 Functional Link Neural Networks

This section illustrates that sensitivity analysis can also be applied to functional link neural
networks (FLNN). In FLNNs the input layer is expanded into a layer of functional, higher-
order units [Ghosh et al 1992, Hussain et al 1997, Zurada 1992b]. The input layer, with di-
mension I, is therefore expanded to functional units hi,hg,---,hr, where L is the total
number of functional units, and each functional unit h; is a function of the input parameter
vector (z1,--+,21), i.e. hy(z1,-+-,21). The weight matrix U between the input layer and the

layer of functional units is defined as

1 if functional unit h; is dependent of z;
U, = (2.22)
0 otherwise

For FLNNSs, all the sensitivity equations with reference to input parameter perturbations need
to be updated as follows:
S = FP WE® VFY) (2.23)

where V is the weight matrix between the functional link layer and the hidden layer, and

B = diag(F7),, £, £7)) (2.24)
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with
® _ O
hi = o )

i

(2.25)

The sensitivity equations with reference to other network parameters remain the same as for

FFNNs.

2.7.3 Product Unit Neural Networks

Lastly, the applicability of sensitivity analysis to product unit neural networks (PUNN) is
illustrated. Assume a NN with product units in the hidden layer, with linear activations.
That is, the normal summation units are replaced with product units such that the net
input to hidden unit y; is given as [Durbin et al 1989, Ghosh et al 1992, Janson et al 1993,

Leerink et al 1995]
I

netd = [[ 7" (2.26)

i=1
Since the hidden units are linearly activated, the sensitivity of output unit o; to input unit

z; for pattern p is expressed as

ozkz— Z kg ( ep cos(me;) (2.27)
= 2
where
I
pj = Z'Ujiln|zi(p)|
i=1
I
¢j = Z’UjiIi
i=1
with

0 if 2" >0

I, =
1 if 2P <0

It is assumed that ZZ(P ) # 0.

The reader is referred to appendix E.1.2 for the complete PUNN sensitivity analysis deriva-

tions.

The purpose of this section was to show mathematically that output sensitivity analysis can

be applied to different NN types. For the rest of this thesis a three layer FFNN with sigmoid
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activation functions is assumed. Future work beyond this thesis will include an empirical

investigation to test the sensitivity analysis tools, developed in later chapters, on the other

NN types.



Chapter 3

Sensitivity Analysis Decision

Boundary Visualization

“The sublime and the ridiculous
are often so nearly related that
it 1s difficult to class them separately”

-Tom Paine

This chapter illustrates how sensitivity analysis of the NN output with respect to input and
hidden units can be used to visually inspect the position of decision boundaries, and to

determine which decision boundary is implemented by which hidden units.

3.1 Introduction

The first application of NN sensitivity analysis is presented in this chapter, i.e. the detection
and visualization of decision boundaries in classification problems. The main objective of NN
learning in classification problems is to construct optimal decision boundaries in the input
space to discriminate among the different classes. A decision boundary is a region in input
space of mazimum ambiguity in classification - in other words, a region of uncertainty in the

classification. It is the task of the hidden units to form these boundaries that separate the

33
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different classes. Provided that the network contains an optimal number of hidden units, each
hidden unit implements an unique discriminating boundary. The optimal number of hidden
units can be obtained from pruning an oversized network, or by growing an undersized network

as discussed in chapter 5.

Decision boundaries reveal many interesting characteristics of the modeled data set, which

helps to better understand the problem being modeled:

¢ Relevant input parameters. If no boundary can be defined over an input parameter,
that parameter does not contribute to the classification and can therefore be removed
from the model. This is exactly the effect of the sensitivity analysis pruning algorithm
presented in chapter 5, where an average over training pattern sensitivities is used as
pruning criterion. Lee and Langrebe explicitly use decision boundaries to perform input
layer pruning. They define a decision boundary feature matrix from which relevant fea-
tures (i.e. relevant input parameters) are extracted [Lee et al 1992]. Irrelevant features

are removed from the network.

e Rule extraction. Decision boundaries aid in the extraction of conditional if-then
rules from continuous valued input parameters of the form IF input_parameter rela-
tional_operator boundary THEN... Such rules help to better understand under which
input conditions classification changes, since they accurately describe boundary condi-

tions [Engelbrecht et al 1999a, Viktor et al 1998a, Viktor 1998b].

e Informative patterns. Decision boundaries describe regions of input space where
classification is uncertain [Engelbrecht et al 1998a]. Patterns in these regions are con-
sidered as being most informative, since they convey the most information to refine
boundaries. These informative patterns are used for dynamic pattern selection during

training in chapter 4.

e Hidden unit analysis. Visualization of decision boundaries helps to understand the
functioning of hidden units. It helps to determine which hidden unit implements which

boundary, allowing the identification of hidden units that learn the same boundary, or
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hidden units that implement no boundary at all [Engelbrecht 1999c]. Rule extraction al-
gorithms find the set of hidden units that cause an output unit to produce a positive clas-
sification [Craven et al 1993, Towell et al 1993, Viktor et al 1995, Viktor 1998b]. Then,
the set of input units that causes each hidden unit to be activated is determined. Knowl-
edge of which hidden unit implements which decision boundary makes it easier to deter-
mine thresholds over the possible values of input parameters that cause a change in clas-
sification [Engelbrecht et al 1999a, Viktor et al 1998a, Viktor 1998b]. These thresholds
are the positions of the decision boundaries. For example, in a rule such as if A < 0.5
then B, the value 0.5 is a threshold for parameter A, and a hidden unit will approximate

the boundary at A = 0.5.

Several approaches have been developed to locate decision boundaries. The objective of
this chapter is to illustrate how sensitivity analysis can be used to wvisualize the position of
boundaries over each input parameter, and to see which boundary is implemented by which
hidden unit. The objective is not to present a new algorithm to define the equations of the
boundaries. The selective learning algorithm presented in the next chapter uses the decision

boundary algorithm to dynamically select patterns close to boundaries.

This chapter is outlined as follows. A short overview of decision boundary detection algo-
rithms is presented in section 3.1.1. The sensitivity analysis decision boundary detection
algorithm is formulated in section 3.2. The algorithm is then illustrated on artificial and
real-world problems in section 3.3, illustrating how a better understanding of the underlying

data can be obtained.

3.1.1 Related Work

Usually, the detection of decision boundaries involves computationally expensive algorithms.
The simplest way to find boundaries is to extensively sample input space, which is a time
consuming process - especially when many boundaries exist over input space [Lee et al 1992,
Pratt et al 1994]. The search space can, however, be reduced if prior knowledge of the problem
is available. For example, Cohn, Atlas and Ladner use distribution information from the

environment to find decision boundaries [Cohn et al 1994b]. However, in many real-world
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applications prior knowledge is not available.

Baum implements an iterative search to locate boundaries [Baum 1991]. This approach is
efficient for less complex problems with a few boundaries, but scales to be expensive for

problems with many boundaries.

Hwang, Choi, Oh and Marks invert the NN output function, and use this inverted function
together with selective sampling to locate boundaries [Hwang et al 1990, Hwang et al 1991].
The inversion algorithm receives a sampled output, and through iterative gradient descent
computes the desired input vector which forms the boundary. Crucial to the efficacy of this
algorithm is the output sampling density. If too small, the algorithm may fail to locate all

the boundaries.

Pratt and Christensen develop a method that combines hidden unit activation space sampling
with solving a system of linear equations to obtain decision boundaries [Pratt et al 1994]. The
characteristics of the sigmoid function is utilized to reduce sampling space: using sigmoid
activation functions, the activation value of hidden units is within the finite range [0, 1].
Activation values in this range are sampled for each hidden unit, with the objective to find
the set of activation values that causes an output unit to produce the value 0.5. The next
step is to find the points in input space that produce these sample activations. This involves
solving a set of linear equations Az = y, where A is a J x I matrix, z is a 1 x I vector and y

is a 1 x J vector; I is the input dimension, and J is the dimension of hidden space.

Goh introduces a sensitivity analysis approach to visualize the position of decision boundaries
closely related to the approach presented in this chapter [Goh 1993]. While this chapter uses
exact analytical calculations to calculate sensitivity information, Goh approximates input
parameter sensitivity using differences. In addition, this chapter also shows how this approach

can be used to identify the boundary implemented by each hidden unit.

3.2 Sensitivity Analysis Decision Boundary Detection

This section identifies two types of decision boundaries that can be formed for a single

input parameter, and presents formal definitions for these boundary types. A theoretical
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explanation of these boundaries are then given, and algorithms for the visualization of the
boundaries are developed. Since it is very difficult to visualize n-dimensional boundaries

where n > 3, this study concentrates on definitions and visualizations from two dimensions.
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Figure 3.1: Artificial rule classification problem defined in equation (3.5)

Figure 3.1 illustrates, for an artificial problem defined in equation (3.5) on page 44, the two
types of boundaries, referred to in this thesis as azis-parallel boundaries and non-azxis-parallel
boundaries. An axis-parallel boundary for an input z; is a boundary that can be described
by the equation z; = ¢, where ¢ is a value of z;. A non-axis-parallel boundary spans over a
range of values of z;, for example [c1, ¢2], and is governed by an equation which is a function
of at least one other input parameter. Examples of axis-parallel boundaries in figure 3.1
are z1 = 0.3 and z; = 0.7, while a non-axis-parallel boundary spans over z; € [—1,0.3] and

z2 € [—0.4,0.8].

Consider the following definitions of these decision boundaries, based on the assumptions

given:
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Assumption 3.1: A NN implements a differentiable mapping Fyn(Dr; W) : RI — RX,
where Dr is the training set, W represents the weights, I is the dimension of input

space, and K is the dimension of output space.

Assumption 3.2: The activation functions f,, in the output layer are monotonically in-

creasing, bounded, and produces a binary discrete output ogf ) = fox (netgz,)c ) for each

) _ ZJ+1 (p)

output unit ok, representing a specific class. (netgﬁ =D j=1 WkiY; s where y741 is the

hidden layer bias unit (see equation (D.4)))

If a continuous activation function such as the sigmoid function is used, the class to which a

pattern belongs is determined from a rule such as

o — 1 if £, (net?)) > 0.7
0 if fo, (netd)) <0.3

which ensures a binary output. To ensure that output values are produced close to 1 or 0, a

sigmoid function with large steepness A is usually used, for example A > 5 in

1

fok (netok) = 1 + ¢ netoy

Definition 3.1 Axis-parallel Decision Boundary: Under assumptions 1 and 2, if there
(p)

erists an input parameter value ;"' and a small perturbation Az; of zz(p ) such that, for any

output unit oy, fok(z?),---,zlgp),---,zgp)) # fok(z?),---,zi(p) —i—Azi,---,z?)), then a decision

boundary is located in the range [zgp),zgp) + Az;] of input parameter z;, where p denotes a

single pattern.

Definition 3.2 Non-axis-parallel Decision Boundary: Under assumptions 1 and 2,
(p)

i1

and z(p) with z(p) < zg) such that

if there exist two input parameter values z i ;
2 21

(p)

; € [zz(f ),zg )], a small perturbation Az; of zi(p ), and any output unit og,

fok(z?), e z(p),---,zgp)) # fok(zy)),---,zzgp)—kAzi,---,zgp)), then a decision boundary spans

[t}
over the range of values [sz),2§f)

for z

| of input parameter z;, where p denotes a single pattern.

From definition 3.1, a decision boundary is located at the point in input space where a small

perturbation to a value of an input unit causes the value of an output unit to change from
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one class to another. Similarly, definition 3.2 defines a range of input parameter values over

which a decision boundary is formed.

These definitions are theoretically justified from a first order Taylor expansion of f,, around

zZ(p ). For any differentiable function f, , the characteristics of that function under small

perturbations Az; of its input parameter z; are expressed by the Taylor series

0 1, 506°
fok(z?))a"'azi(p)"_Azia” ) fok(z1 ) "azgp)a"'azgp))-l_A f(")+_ Z,? ‘(fo)];
(92Z 2 oz
(3.1)
Under the assumption of small Az;,
. 0% f,
20" Joy
Alzlfio(2Azz PEOL ) =0 (3:2)
and equation (3.1) can be reduced to
0fo
fok(z§p)""’zz'(p)+Azi""’z§p))zfok(zyj)"'"zz(p)"' (p))+A 8f(Pk) (3'3)
2

1

Returning to definitions 3.1 and 3.2, under assumption 3.2, the second term in equa-

tion (3.3) determines whether the value of an output unit changes. That is, the

higher the value of Zfz’j), the greater the chance that fok (z§p ),---,zgp ) §p )) #
z

i

Jox (z§p ), P + Az, - 2P )) Therefore, patterns with hlgh (p) values lie closest to de-

? z

cision boundaries [Engelbrecht et al 1998a, Engelbrecht et al 1998b Engelbrecht et al 1999a,
Engelbrecht 1999c, Viktor et al 1998a].

This point is further illustrated in figure 3.2, which plots, for example, the sigmoid activation
function f(z) and its derivative %. The peak of the derivative at z = 0 coincides with the
inflection point of f(z). For classification problems, the inflection point is used as threshold

to decide between the two discrete output values.

Since o(p) f%(net(p)) doy, __ oy, Ofoy

0 = B 5, which is simply the sensitivity of output unit o to
z; Ok z;

(»)

perturbations in the input value z;’. If sigmoid activation functions are used, equation (E.6)

is used to calculate :ZO(;“,) for each pattern p.

The first-order sensitivity analysis above assigns a “measure of closeness to bound-

aries” for each pattern [Engelbrecht et al 1998a, Engelbrecht et al 1999a, Engelbrecht 1999c,
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Figure 3.2: Sigmoid activation function, and derivative

Viktor et al 1998a]. Chapter 4 refers to this measure of closeness as pattern informativeness
(refer to definition 4.2). Highly informative patterns convey the most information about deci-

sion boundaries. These patterns lie closest to the boundaries, and therefore have the highest

doy,
le(p )

values.

The position of boundaries can be visualized drawing scatter plots of 880(2) versus zP) for each
2

)
3

output o; and input z;, for each pattern p. Peaks in these graphs give an indication of the po-
sition of axis-parallel boundaries, while a set of approximately equally high sensitivity values
corresponds to a non-axis-parallel decision boundary (refer to section 3.3 for some illustra-
tions). These graphs can be used to investigate regions of input space for which classification

is uncertain, and to determine under what conditions the result of the classification changes.

In addition to finding and visualizing the position of decision boundaries, another objective
is to determine which boundary is implemented by which hidden unit. For this purpose a
similar first order sensitivity analysis can be used to visualize over which part of the input

space a hidden unit is active. In this case, using a Taylor series expansion of the hidden unit
(p)

activation y; around input parameter values z;”’ (similar to that in equation (3.3)), graphs of

% versus zz-(p ) indicate the range of input values over which hidden unit y; is active, hence
z.

3

giving an indication of the boundary implemented by hidden unit y;. Here the sensitivity

of hidden unit y; with regard to input parameter perturbations is calculated using equation
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(E.11) - assuming sigmoidal activation functions and a three layer architecture. Visualization

of these sensitivity analysis results may reveal hidden units implementing the same boundary,

thus duplicating function, and hidden units that learn no boundaries at all (for which %
%

will be approximately zero).

Find below two complete algorithms to visualize boundaries defined in the input space and to

determine which hidden unit implements which boundary. First, the algorithm to visualize

boundaries formed in the input space:

1. for each pattern p =1,---, P

(a) for each input parameter z;, i = 1,---,I and output unit o, k=1,---, K

compute

aok
927

with one forward pass through the network, using equation (E.6) for sigmoid

activation functions

(b) plot aio(’;) versus zi(p ) for each input-output pair (z;,0r) on separate graphs

i

Next, an algorithm to visually inspect which decision boundary is implemented by which

hidden unit, i.e. to find the point(s) in input space for which the hidden unit is most active:

1. for each pattern p=1,---, P

(a) for each input parameter z;, i = 1,---,I and hidden unit y;, j=1,---,J

compute
9y;
827

K3

with one forward pass through the network, using equation (E.10) for sigmoid

activation functions

(b) plot aaz%) versus zi(p ) for each input-hidden pair (z;,y;) on separate graphs

%
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The next section applies these visualization algorithms to artificial and real-world problems.

3.3 Experimental results

The purpose of this section is to illustrate, on artificial problems, how sensitivity analysis
can be used to (1) visualize decision boundaries formed in the input space, and (2) to vi-
sually inspect which boundary has been implemented by which hidden unit. The section
then reports results of the algorithms’ application to one real-world problem. This approach
to decision boundary visualization has been applied successfully by Engelbrecht and Vik-
tor [Engelbrecht et al 1999a), Viktor, Engelbrecht and Cloete [Viktor et al 1998a] and Viktor
[Viktor 1998b].

Simple artificial experiments have been chosen to illustrate specific aspects, and to compare
the NN visualized boundaries with theoretically known boundaries. The results of only one
simulation of each experiment are reported. For each experiment gradient descent training
was used with sigmoid activation functions in the hidden and output layers. A learning rate

of 0.1 and momentum of 0.9 were used for all experiments.

The first artificial problem is to discriminate between two classes using two dimensional input.
One class is inside a circle of radius 0.5 centered at the origin, and the other class outside the
circle, but bounded by a unit square. The classification rule is expressed as

0 if /22 +25<05

class = (3.4)
1 otherwise

where z; and 29 are the input parameters. A training set of 250 patterns and a test set
of 150 patterns were randomly generated, sampling the inputs from an uniform distribution,
i.e. z1,29 ~ U(—1,1). The theoretical boundaries for this problem is illustrated in figure 3.3,
using the patterns as contained in the training set. A 2-3-1 architecture was used to learn
this classification rule, that is, two inputs, three hidden units and one output unit. Training

was stopped after 500 epochs.

From equation (3.4), the theoretical boundaries for this problem are z; = 0.5,21 = —0.5,29 =

0.5 and z3 = —0.5. This problem is used to illustrate
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Figure 3.3: Circle classification problem defined in (3.4)
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Figure 3.4: Boundary positions for circle classification problem after 50 epochs
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Figure 3.5: Boundary positions for circle classification problem after 500 epochs

1. that the visualized boundary positions are close to the theoretical boundaries;

2. the visualization of axis-parallel decision boundaries.

Figures 3.4 and 3.5 visualize the position of the boundaries for this problem. These figures

doy,
621-(]J )
have a clear distinction between boundaries. Figure 3.4 illustrates the boundaries for inputs

for each pattern p. A different color is used for different boundaries to

plot the values of

z1 and z after 50 epochs. At this point no boundaries have formed for z1, while two clear axis-
parallel boundaries formed for z3. Note the peaks for input zo at approximately zo = —0.4
and zo = 0.4. Figure 3.5 illustrates two axis-parallel boundaries for z; after 500 epochs at
approximately z; = —0.45 and zy = 0.48 (similar results were obtained for z2). Figure 4.2(b)
on page 89 displays a scatter plot that visualizes the learned decision boundaries after 500

epochs.

The second artificial problem implements the following classification rule:

1 if (21 > 0.7) or ((21 <0.3) and (22 > —0.2 — 27))
class = (3.5)

0 otherwise
A training set of 400 patterns and a test set of 100 patterns were randomly created, with

21,29 ~ U(—1,1). The theoretical boundaries for this problem are illustrated on the scatter

plot in figure 3.1, on page 37. A 2-4-1 network was trained for 200 epochs.
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Figure 3.6: Artificial rule classification boundary positions after 200 epochs

Classification rule (3.5) clearly defines axis-parallel decision boundaries at z; = 0.7 and 2, =
0.3, and a non-axis-parallel boundary over z; € [—1,0.3] and 22 € [—0.4,0.8]. This problem

is used to illustrate

1. that the visualized boundary positions accurately approximate these theoretical bound-

aries;
2. the visualization of axis-parallel and non-axis-parallel decision boundaries;
3. which boundaries are implemented by which hidden units;

4. hidden units that do not implement any boundaries (3 hidden units are sufficient for

this problem).

Figure 3.6 visualizes the boundary positions for inputs z; and z». Distinctive peaks formed
at approximately z; = 0.7 and z; = 0.3, respectively for the two axis-parallel boundaries.
Figure 3.6 also shows a range of high sensitivity values, with output sensitivity approximately
7, for 21 € [-0.8,0.3], and a high sensitivity range for 2o € [—0.35,0.65] - closely representing

the non-axis-parallel boundary.
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Figure 3.7: Artificial rule classification boundary implemented by each hidden unit
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Figure 3.7 visualizes for each hidden unit its implemented decision boundary. From these
figures hidden unit y; implements the non-axis-parallel boundary, with hidden unit sensitivity
of approximately 6 (on the y-axis), which spans z; € [—0.8,0.3] and 2z € [—0.35,0.65]. Hidden
yo implements the axis-parallel boundary at z; = 0.7, while y4 implements the boundary
at z; = 0.3. Hidden unit y3 has sensitivity values of approximately zero for all patterns,
indicating that y3 implements no decision boundary and can therefore be pruned. The pruning
algorithm in chapter 5 utilizes these pattern sensitivity information to select hidden units for

pruning.

The last artificial problem is borrowed from [Belue et al 1995], which is a four-class problem
using two dimensional input of which one is insignificant. A total of 600 patterns were drawn

from four independent bivariate normal distributions. Classes were distributed according to

m; 0.50 0.05
M= " ].Y= (3.6)
0 0.05 0.50
for i =1,---,4, where y is the mean vector and ) is the covariance matrix; m; = —3,mg =

0,m3 = 3 and my4 = 6. For training purposes, 480 training patterns and 120 test patterns
were used. Training was done with a 2-3-4 network, trained for 200 epochs. All inputs were

scaled to the range [—1,1].

Figure 3.8 represents a scatter plot of the decision boundaries obtained from the training set.
This figure illustrates three axis-parallel boundaries at z;1 =~ 0.5, 21 = 0.0 and 2z; = —0.4. This

experiment is specifically chosen to illustrate

1. the applicability of the visualization algorithm to multi-output problems;

2. that no boundary is located for the insignificant input parameter zo;

3. which boundaries are implemented by which hidden units.
Figure 3.9 shows that no boundaries were formed for input zo, indicating that this input can
be removed. These graphs also illustrate axis-parallel boundaries at z; = —0.4 for output o1,
21 = —0.4 and z; = 0 for output 09, 21 = 0 and z; = 0.5 for output o3, and z; = 0.5 for

output o4. Figure 3.10 illustrates that hidden unit y; implements the boundary at z; = —0.4,

99 implements the boundary at z; = 0 and y3 implements the boundary at z; = 0.5.
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Figure 3.8: Four-class artificial classification problem defined in equation (3.6)

Next, results are shown of the application of the decision boundary visualization algorithm
to a real-world problem. The iris classification problem (obtained from the UCI repository
[UCI]) is used for this purpose. For the iris problem, a 4-2-3 architecture was used with a
pruned architecture consisting of only 2 hidden units (refer to chapter 5 where the optimal
architecture is determined), with a training set of 100 patterns and a test set of 50 patterns.
Training was stopped when a 100% correct classification on the test set were obtained, using
a learning rate of 0.1 and momentum of 0.9. Figure 3.11 visualizes the boundaries obtained
for the output unit corresponding to class iris versicolor for the two input parameters petal

length and petal width. No boundaries formed for the other two input units.

The boundaries illustrated in figure 3.11 were used as thresholds in a NN rule extraction
algorithm, which resulted in a 2% increase in the accuracy of the extracted rules over the test
set, with a 4% increase in the accuracy of the least accurate rule [Engelbrecht et al 1999a,

Viktor et al 1998a, Viktor 1998b].
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3.4 Conclusions

This chapter presented a simple idea to locate and visualize decision boundaries formed in
the input space. Derived from a first order expansion of the Taylor series of an output unit
function around values of an input parameter, sensitivity information was used to locate two
types of decision boundaries that can be formed over an input parameter, referred to as axis-
parallel and non-axis-parallel decision boundaries (viewed in one dimension only). Formal
definitions for these decision boundary types were given, and their visualization illustrated
on artificial problems. These experiments showed that the presented sensitivity analysis

algorithm can effectively be used to
1. accurately visualize the position of decision boundaries
2. determine which hidden unit implements which boundary

3. visually identify irrelevant input parameters

4. visually identify hidden units that implement no boundaries at all.
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Results on a real-world problem further illustrated the applicability of the decision bound-
ary algorithm. The algorithm succeeded in extracting accurate boundaries which improved
the accuracy of rules extracted by a NN rule extraction algorithm [Engelbrecht et al 1999a,
Viktor et al 1998a]. For a more elaborate analysis of the efficiency of the decision boundary

algorithm presented in this chapter, the reader is referred to [Viktor 1998b].

The objective of the chapter was simply to present the idea that sensitivity analysis can be
used to locate patterns close to boundaries. This information will be used in the following

chapters to further develop NN sensitivity analysis tools.



Chapter 4

Active Learning using Sensitivity

Analysis

“What can be done with fewer is done in vain with more.”

William of Ockham (1285-1349)

This chapter presents two new active learning algorithms which use output sensitivity in-
formation to dynamically select training patterns from a candidate set during training. A
selective learning algorithm is developed for classification problems and an incremental learn-

ing algorithm for function approximation problems.

4.1 Introduction

Ockham’s razor states that unnecessarily complex models should not be preferred to simpler
ones - a very intuitive principle [MacKay 1992a, Thodberg 1991]. A neural network (NN)
model is described by the network weights. Model selection in NNs consists of finding a set
of weights that best performs the learning task. In this sense, this thesis views the data, and
not just the architecture as part of the NN model, since the data is instrumental in finding
the “best” weights. Model selection is then viewed as the process of designing an optimal NN

architecture as well as the implementation of techniques to make optimal use of the available

53
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training data. Following from the principle of Ockham’s razor, is a preference then for both
simple NN architectures and optimized training data. Usually, model selection techniques
address only the question of which architecture best fits the task. This chapter explores the
question of which data best describes the task. Sensitivity analysis data selection techniques
are therefore investigated to make optimal use of the available training data. Chapter 5, on

the other hand, considers architecture selection using sensitivity analysis.

Training data consists of input-target vector pairs, which is only a finite sample from the
distribution describing the input space. The objective of NN training is to find a good
approximation to the function that relates input vectors to corresponding target vectors,
not only for the training space, but for the entire input space. That is, the trained NN
should generalize well. This objective is achieved by iteratively adjusting weights using some

optimization algorithm.

Gradient descent is one of the most popular optimization techniques used for NN train-
ing, resulting in the widely used backpropagation (BP) neural network [Battiti 1992,
Rumelhart et al 1986]. Although backpropagation neural networks (BPNN) have been used
successfully in many applications, they may suffer from problems inherent to gradient descent
optimization. That is, convergence of standard BPNNs [Rumelhart et al 1986] tends to be
slow, and they usually yield local optimum solutions. Consequently, generalization perfor-
mance is reduced. These weaknesses are even more evident for recurrent neural networks
[Cloete et al 1994a, Ludik 1995a], and is worsened even further when the training set is very
large. In cases where non-monotonic activation functions are used, more local minima are in-

troduced, and the chance of getting stuck in a local minimum is increased [Gaynier et al 1995].

Much research has been done to improve the generalization performance and training
time of multi layer NNs. Research mostly concentrated on the optimal setting of ini-
tial weights [Denoeux et al 1993, Wessels et al 1992], optimal learning rates and momentum
[Darken et al 1992, Magoulas et al 1997, Orr et al 1993, Salomon et al 1996, Vogl et al 1988,
Weir 1990, Yu et al 1997, Jacobs 1989], finding optimal NN architectures using pruning tech-
niques [Cibas et al 1996, Engelbrecht et al 1996, Engelbrecht et al 1999e, Fletcher et al 1998,
Hassibi et al 1994, Karnin 1990, Le Cun 1990, Schittenkopf et al 1997, Zurada et al 1997,
Reed 1993] (also see chapter 5) and construction techniques [Fritzke 1995, Hirose et al 1991,
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Huang 1994, Kwok et al 1995, Lee 1991, Liang et al 1994, Lim et al 1994], sophisticated
optimization techniques [Battiti 1992, Becker et al 1988, Cohen et al 1997, Mgller 1993,
Rosen et al 1997, Tang et al 1994], adaptive activation functions [Engelbrecht et al 1995a,
Fletcher et al 1994, Maillard et al 1994, Weigl et al 1994, Zurada 1992a] (also refer to ap-
pendix C where a new automatic scaling algorithm is presented which dynamically changes the
shape of the sigmoid activation function) and ensemble learning [Baxt 1992, Tumer et al 1996,
Hashem et al 1994, Jacobs et al 1997, Kehagias et al 1997, Sollich et al 1996]. This chapter
explores an alternative approach to improve generalization and training time, i.e. active

learning using sensitivity analysis.

Standard error back-propagating NNs are passive learners. These networks passively receive
information about the problem domain, randomly sampled to form a fixed size training set.
Random sampling is believed to reproduce the density of the true distribution. However,
more gain can be achieved if the learner is allowed to use current attained knowledge about
the problem to guide the acquisition of training examples. As passive learner, a NN has no
such control over what examples are presented for learning. The NN has to rely on the teacher

(considering supervised learning) to present informative examples.

The generalization abilities and convergence time of NNs are much influenced by the training
set size and distribution: Literature has shown that to generalize well, the training set must
contain enough information to learn the task. Here lies one of the problems in model selection:
the selection of concise training sets. Without prior knowledge about the learning task,
it is very difficult to obtain a representative training set. Theoretical analyses provide a
way to compute worst-case bounds on the number of training examples needed to ensure a
specified level of generalization. A widely used theorem concerns the Vapnik-Chervonenkis
(VC) dimension [Abu-Mostafa 1989, Abu-Mostafa 1993, Baum et al 1989, Cohn et al 1991,
Hole 1996, Opper 1994]. This theorem states that the generalization error £z of a learner
with VC-dimension dy¢ trained on Pr random examples will, with high confidence, be no
worse than a bound of order dy¢/Pr. For NN learners, the total number of weights in a
one hidden layer network is used as an estimate of the VC-dimension. This means that the
appropriate number of examples to ensure an £g generalization is approximately the number

of weights divided by &g.
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The VC-dimension provides overly pessimistic bounds on the number of training exam-
ples, often leading to an overestimation of the required training set size [Cohn et al 1991,
Gu et al 1997, Opper 1994, Robel 1994¢, Zhang 1994]. Experimental results have shown that
acceptable generalization performances can be obtained with training set sizes much less than
that specified by the VC-dimension [Cohn et al 1991, Rébel 1994c]|. Cohn and Tesauro show
that for experiments conducted, the generalization error decreases exponentially with the
number of examples, rather than the 1/Pr result of the VC bound [Cohn et al 1991]. Exper-
imental results by Lange and Manner show that more training examples do not necessarily
improve generalization [Lange et al 1994]. In their paper, Lange and Ménner introduce the
notion of a critical training set size. Through experimentation they found that examples
beyond this critical size do not improve generalization, illustrating that an excess patterns

have no real gain. The critical training set size is problem dependent.

While enough information is crucial to effective learning, too large training set sizes may be of
disadvantage to generalization performance and training time [Lange et al 1996, Zhang 1994].
Redundant training examples may be from uninteresting parts of input space, and do not
serve to refine learned weights - it only introduces unnecessary computations, thus increasing
training time. Furthermore, redundant examples might not be equally distributed, thereby

biasing the learner.

The ideal then, is to implement structures to make optimal use of available training data.
That is, to select for training only informative examples, or to present examples in a way to
maximize the decrease in training and generalization error. To this extent, active learning

algorithms have been developed.

Cohn, Atlas and Ladner define active learning (also referred to in the literature as example
selection, sequential learning, query-based learning) as any form of learning in which the
learning algorithm has some control over what part of the input space it receives information
from [Cohn et al 1994b]. An active learning strategy allows the learner to dynamically select
training examples, during training, from a candidate training set as received from the teacher
(supervisor). The learner capitalizes on current attained knowledge to select examples from
the candidate training set that are most likely to solve the problem, or that will lead to a

maximum decrease in error. Rather than passively accepting training examples from the



CHAPTER 4. ACTIVE LEARNING USING SENSITIVITY ANALYSIS o7

teacher, the network is allowed to use its current knowledge about the problem to have some
deterministic control over which training examples to accept, and to guide the search for
informative patterns. By adding this functionality to a NN, the network changes from a

passive learner to an active learner.

With careful dynamic selection of training examples, shorter training times and better gen-
eralization may be obtained. Provided that the added complexity of the example selection
method does not exceed the reduction in training computations (due to a reduction in the
number of training patterns), training time will be reduced [Hunt et al 1995, Sung et al 1996,
Zhang 1994]. Generalization can potentially be improved, provided that selected examples
contain enough information to learn the task. Cohn [Cohn 1994a] and Cohn, Atlas and Lad-
ner [Cohn et al 1994b] show through average case analyses that the expected generalization
performance of active learning is significantly better than passive learning. Seung, Opper and
Sompolinsky [Seung et al 1992], Sung and Niyogi [Sung et al 1996] and Zhang [Zhang 1994]
report similar improvements. Results presented by Seung, Opper and Sompolinsky indicate
that generalization error decreases more rapidly for active learning than for passive learning

[Seung et al 1992].

This thesis identifies two main approaches to active learning, i.e. incremental learning and
selective learning. Incremental learning starts training on an initial subset of a candidate
training set. During training, at specified selection intervals (e.g. after a specified number of
epochs, or when the error on the current training subset no longer decreases), further subsets
are selected from the candidate examples using some criteria or heuristics, and added to the
training set. The training set consists of the union of all previously selected subsets, while
examples in selected subsets are removed from the candidate set. Thus, as training progresses,
the size of the candidate set decreases while the size of the actual training set grows. Note
that this thesis uses the term incremental learning to denote data selection, and should not
be confused with the NN architecture selection growing approach. The term NN growing is
used in this thesis to denote the process of finding an optimal architecture starting with too

few hidden units and adding units during training.

In contrast to incremental learning, selective learning selects at each selection interval a new

training subset from the original candidate set. Selected patterns are not removed from the
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candidate set. At each selection interval, all candidate patterns have a chance to be selected.
The subset is selected and used for training until some convergence criteria on the subset is
met (e.g. a specified error limit on the subset is reached, the error decrease per iteration is too
small, the maximum number of epochs allowed on the subset is exceeded). A new training
subset is then selected for the next training period. This process repeats until the NN is

trained to satisfaction.

The main difference between these two approaches to active learning is that no examples
are discarded by incremental learning. In the limit, all examples in the candidate set will
be used for training. With selective learning, training starts on all candidate examples, and

uninformative examples are discarded as training progresses.

The rest of this chapter is organized as follows. Section 4.1.1 summarizes research related
to active learning. Section 4.2 presents a general mathematical formulation of active learn-
ing, and learning aspects such as subset selection criteria, subset termination criteria and
subset sizes are discussed. The concept of pattern sensitivity is introduced and pattern sen-
sitivity norms are defined. The sensitivity of a patterns is then used as a measure of the

informativeness of that pattern.

The Sensitivity Analysis Selective Learning Algorithm (SASLA) is presented in section 4.3.
SASLA is developed specifically for selective learning of classification problems. A math-
ematical model is presented and the idea of pattern selection around decision boundaries
is discussed. An algorithm is given, and complexity and convergence issues are addressed.
Section 4.3.5 presents results and conclusions on the application of SASLA to artificial and

real-world classification problems.

The Sensitivity Analysis Incremental Learning Algorithm (SAILA) is presented in section 4.4.
SAILA is specifically developed for application to function approximation and time series
problems. A mathematical model and algorithm are presented, and complexity and con-
vergence issues are discussed. Results obtained from the application of SAILA to function
approximation and time series problems are presented and discussed in section 4.4.5. The
objective is to show that the sensitivity analysis active learning algorithms either improve

on passive learning, or perform at least as good as passive learning. For this purpose, the
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proposed active learning algorithms are compared to standard BP learning, using gradient de-
scent to illustrate how the new learning algorithms efficiently address the problems of gradient

descent. The term fized set learning (FSL) is used to denote standard passive BP learning.

Section 4.5 draws conclusions on the efficiency and applicability of the presented active learn-

ing algorithms.

For notational convenience, a three layer NN architecture (input layer, one hidden layer and
output layer) is assumed. The sensitivity analysis models presented in this thesis can, how-
ever, be easily extended to NN architectures which contain more than one hidden layer (see
appendix E.1.1). Although the results presented in this chapter concentrate on gradient de-
scent optimization, the sum squared error objective function and sigmoid activation functions,
the sensitivity analysis models assume no specific optimization method, objective function or
activation functions. The only assumptions are that the activation functions are at least once
differentiable, and monotonic increasing. Note that optimal architectures are not necessarily
assumed. The objective is to compare the performance of the different learning algorithms,

irrespective of the optimality of that architecture.

How does this chapter fit into the objectives of the thesis? The chapter follows the main
theme of exploring applications of sensitivity analysis to multilayer feedforward NNs. In this
case, the application is data selection through active learning as part of the model selection
process. The data selection algorithms presented also address the sub objectives of studying
generalization performance, training time and convergence under the proposed sensitivity

analysis applications.

4.1.1 Related Work

Several methods have been developed that manipulates the presentation of training pat-
terns. These methods can be divided into two groups: training set manipulation tech-
niques and active learning techniques. Training set manipulation techniques performs a
pre-processing step in the training data to assign a specific order in which patterns will be
presented for learning. This order is maintained during training, and does not change dy-

namically. Such training set manipulation techniques have as objectives to decrease training
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time and to improve generalization performance through the preprocessing of the training

set. Active learning algorithms dynamically changes the training sets during training.

Four different training set manipulation techniques are reviewed below, and it is shown,
with reference to active learning definition 4.1 below, why these training set manipulation
techniques are not considered as active learning algorithms. A survey of selective learning

and incremental learning algorithms is then presented.

Definition 4.1 Active Learning: Define active learning as any form of learning in which
the learning algorithm has some deterministic control during training over what part of the

input space it receives information from [Cohn et al 1994b].

Training set manipulation techniques

Ohnishi, Okamoto and Sugie suggested a method called Selective Presentation where the
original training set is divided into two training sets. Omne set contains typical patterns,
and the other set contains confusing patterns [Ohnishi et al 1990]. With “typical pattern”
the authors mean a pattern far from decision boundaries, while “confusing pattern” refers
to a pattern close to a boundary. The two training sets are created once before training.
Generation of these training sets assumes prior knowledge about the problem, i.e. where in
input space decision boundaries are. In many practical applications such prior knowledge
is not available, thus limiting the applicability of this approach. The Selective Presentation
strategy alternately presents the learner with typical and then confusing patterns. The learner
therefore has no control over the patterns presented for training, and the two sets remain fixed
during training. Selective Presentation do not adhere to the definition of active learning, and

is not viewed as an active learning algorithm.

Kohara developed Selective Presentation Learning for forecasting applications [Kohara 1995].
Before training starts, the algorithm generates two training sets. The one set contains all pat-
terns representing large next-day changes, while patterns representing small next-day changes
are contained in the second set. Large-change patterns are then simply presented more often
than small-change patterns (similar to Selective Presentation). Again, the learner plays no

role in the pattern selection process, and each training set remains fixed during training.
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Selective Presentation Learning does not adhere to the definition of active learning.

Slade and Gedeon [Slade et al 1993] and Gedeon, Wong and Harris [Gedeon et al 1995] pro-
posed Bimodal Distribution Removal, where the objective is to remove outliers from training
sets during training. Frequency distributions of pattern errors are analyzed during training
to identify and remove outliers. Although the NN uses current attained knowledge to prune
outliers from the training set, this thesis does not consider Bimodal Distribution Removal as
an active learning algorithm. It is rather a training set filtering algorithm. The NN still trains
on all non-outlier training patterns whether they are informative or not. If the original train-
ing set contains no outliers, the method simply reduces to FSL with the added complexity of

analyzing an error frequency distribution at each epoch.

Cloete and Ludik have done extensive research on training strategies. Firstly, they proposed
Increased Complexity Training where a NN first learns easy problems, and then the complex-
ity of the problem to be learned is gradually increased [Cloete et al 1993, Ludik et al 1993,
Ludik 1995a, Ludik et al 1995b]. The original training set is split into subsets of increasing
complexity before training commences. A drawback of this method is that the complex-
ity measure of training data is problem dependent, thus making the strategy unsuitable
for some tasks. Secondly, Cloete and Ludik developed incremental training strategies, i.e.
Incremental Subset Training [Cloete et al 1994a, Ludik 1995a, Ludik et al 1995b] and Incre-
mental Increased Complexity Training [Ludik et al 1994, Ludik 1995a, Ludik et al 1995b]. In
Incremental Subset Training, training starts on a random initial subset. During training,
random subsets from the original training set are added to the actual training subset. In-
cremental Increased Complexity Training is a variation of Increased Complexity Training,
where the complexity ranked order is maintained, but training is not done on each com-
plete complexity subset. Instead, each complexity subset is further divided into smaller
random subsets. Training starts on an initial subset of a complexity subset, and is in-
crementally increased during training. Finally, Delta Training Strategies were proposed
[Cloete et al 1994b, Ludik 1995a, Ludik et al 1995b]. With Delta Subset Training examples
are ordered according to inter-example distance, e.g. Hamming or Euclidean distance. Differ-
ent strategies of example presentations were investigated: smallest difference examples first,

largest difference examples first, and alternating difference.
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The training strategies proposed by Cloete and Ludik do not adhere to the definition of
active learning. The learner has no control over the training subsets created, since subsets

are created before training starts.

Selective learning

Not much research has been done in selective learning. Hunt and Deller developed Selective
Updating, where training starts on an initial candidate training set [Hunt et al 1995]. Patterns
that exhibit a high influence on weights, i.e. patterns that cause the largest changes in weight
values, are selected from the candidate set and added to the training set. Patterns that have a
high influence on weights are selected at each epoch by calculating the effect that patterns have
on weight estimates. These calculations are based on matrix perturbation theory, where an
input pattern is viewed as a perturbation of previous patterns. If the perturbation is expected
to cause large changes to weights, the corresponding pattern is included in the training set.
The learning algorithm does use current knowledge to select the next training subset, and
training subsets may differ from epoch to epoch. Selective Updating has the drawback of

assuming uncorrelated input units, which is often not the case for practical applications.

Another approach to selective learning is simply to discard those patterns that have been
classified correctly [Barnard 1991, Hampshire et al 1990]. The effect of such an approach is
that the training set will include those patterns that lie close to decision boundaries. If the
candidate set contains outlier patterns, these patterns will, however, also be selected. This
error selection approach therefore requires a robust estimator (objective function) to be used

in the case of outliers.

Incremental learning

Research on incremental learning is more abundant than for selective learning. Most current
incremental learning techniques have their roots in information theory, adapting Fedorov’s
optimal experiment design for NN learning [Cohn 1994a, Fukumizu 1996, MacKay 1992a,
MacKay 1992b, Plutowski et al 1993, Sung et al 1996]. The different information theoretic

incremental learning algorithms are very similar, and differ only in whether they consider
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only bias, only variance, or both bias and variance terms in their selection criteria.

Cohn developed neural network Optimal Experiment Design (OED), where the objective is to
select at each iteration a new pattern from a candidate set which minimizes the expectation
of the mean squared error (MSE) [Cohn 1994a]. This is achieved by minimizing output
variance as estimated from the Fisher information matrix [Cohn 1994a, Cohn et al 1996].
The model assumes an unbiased estimator and considers only the minimization of variance.
OED is computationally very expensive because it requires the calculation of the inverse of

the information matrix.

MacKay proposed similar Information-Based Objective Functions for active learning, where
the objective is to maximize the expected information gain by maximizing the change in
Shannon entropy when new patterns are added to the actual training set, or by maximiz-
ing cross-entropy gain [MacKay 1992a, MacKay 1992b]. Similar to OED, the maximiza-
tion of information gain is achieved by selecting patterns that minimize the expected MSE.
Information-Based Objective Functions also ignore bias, by minimizing only variance. The

required inversion of the Hessian matrix makes this approach computationally expensive.

Plutowski and White proposed to select patterns that minimize the Integrated Squared Bias
(ISB) [Plutowski et al 1993]. At each iteration, a new pattern is selected from a candidate
set that maximizes the change, AISB, in the ISB. In effect, the patterns with error gradient
most highly correlated with the error gradient of the entire set of patterns is selected. A
noise-free environment is assumed and variance is ignored. Drawbacks of this method are the
need to calculate the inverse of a Hessian matrix, and the assumption that the target function

is known.

Sung and Niyogi proposed an information theoretic approach to active learning that considers
both bias and variance [Sung et al 1996]. The learning goal is to minimize the expected misfit
between the target function and the approximated function. The patterns that minimizes the
expected squared difference between the target and approximated function are selected to
be included in the actual training set. In effect, the net amount of information gained with
each new pattern is then maximized. No assumption is made about the target function. This

technique is computationally expensive, since it requires computations over two expectations,
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i.e. the a-posteriori distribution over function space, and the a-posteriori distribution over

the space of targets one would expect given a candidate sample location.

A drawback of the incremental learning algorithms summarized above is that they rely on the
inversion of an information matrix. Fukumizu showed that, in relation to pattern selection to
minimize the expected MSE, the Fisher information matrix may be singular [Fukumizu 1996].
If the information matrix is singular, the inverse of that matrix may not exist. Fukumizu
continues to show that the information matrix is singular if and only if the corresponding
NN contains redundant units. Thus, the information matrix can be made non-singular by
removing redundant hidden units. Fukumizu developed an algorithm that incorporates an
architecture reduction algorithm with a pattern selection algorithm. This algorithm is com-
plex due to the inversion of the information matrix at each selection interval, but ensures a

non-singular information matrix.

Approximations to the information theoretical incremental learning algorithms can be used.
Zhang illustrates that information gain is maximized when a pattern is selected whose addition
leads to the greatest decrease in MSE [Zhang 1994]. Zhang developed Selective Incremental
Learning where training starts on an initial subset which is increased during training by adding
additional subsets, where each subset contains those patterns with largest errors. Selective
Incremental Learning has a very low computational overhead, but is negatively influenced by

outlier patterns since these patterns have large errors.

Dynamic Pattern Selection, developed by Rébel [Robel 1994a, Rébel 1994b, Rébel 1994c], is
very similar to Zhang’s Selective Incremental Learning. Robel defines a generalization factor
on the current training subset, expressed as £g/Er where £¢ and Er are the MSE of the
test set and the training set respectively. As soon as the generalization factor exceeds a
certain threshold, patterns with highest errors are selected from the candidate set and added
to the actual training set. Testing against the generalization factor prevents overfitting of the

training subset. A low overhead is involved.

Very different from the methods described previously, are incremental learning algorithms for
classification problems, where decision boundaries are utilized to guide the search for optimal

training subsets. Cohn, Atlas and Ladner developed Selective Sampling, where patterns are
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sampled only within a region of uncertainty [Cohn et al 1994b]. Cohn et al proposed an SG-
network (most specific / most general network) as an approach to compute the region of
uncertainty. Two separate networks are trained: one to learn a “most specific” concept s
consistent with the given training data, and the other to learn a “most general” concept, g.
The region of uncertainty is then all patterns p such that s(p) # g(p). In other words, the
region of uncertainty encapsulates all those patterns for which s and g present a different
classification. A new training pattern is selected from this region of uncertainty and added
to the training set. After training on the new training set, the region of uncertainty is
recalculated, and another pattern is sampled according to some distribution defined over
the uncertainty region - a very expensive approach. To reduce complexity, the algorithm is
changed to select patterns in batches, rather than individually. An initial pattern subset is
drawn, the network is trained on this subset, and a new region of uncertainty is calculated.
Then, a new distribution is defined over the region of uncertainty that is zero outside this
region. A next subset is drawn according to the new distribution and added to the training

set. The process repeats until convergence is reached.

Query-Based Learning, developed by Hwang, Choi, Oh and Marks [Hwang et al 1991] differs
from Selective Sampling in that Query-Based Learning generates new training data in the
region of uncertainty. The objective is to increase the steepness of the boundary between two
distinct classes by narrowing the regions of ambiguity. This is accomplished by inverting the
NN output function to compute decision boundaries. New data in the vicinity of boundaries

are then generated and added to the training set.

Seung, Opper and Sompolinsky proposed Query by Committee [Seung et al 1992]. The op-
timal training set is built by selecting one pattern at a time from a candidate set based on
the principle of maximal disagreement among a committee of learners. Patterns classified
correctly by half of the committee, but incorrectly by the other half, are included in the
actual training set. Query by Committee is time consuming due to the simultaneous training

of several networks, but will be most effective for ensemble networks.

The incremental learning algorithms reviewed in this section all make use of the NN learner’s
current knowledge about the learning task to select those patterns that are most informative.

These algorithms start with an initial training set, which is increased during training by
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adding a single informative pattern, or a subset of informative patterns.

In the next section a general formulation of active learning is presented.

4.2 Mathematical Model for Active Learning

One way of finding the optimal training set is to construct a power set of the candidate
training set, and to train a NN on each element of this power set (each element is a subset
of the candidate set). Although this approach will ultimately select the best training set, it
is obviously impractical due to the enormous search space involved. A much more effective
approach is active learning, where the NN uses its current knowledge to reduce the search
space for an optimal training set, or training subset sequence. (Active learning does not just
find an optimal training set, but also optimizes the sequence in which subsets is presented for

training.)

This section presents a mathematical formulation for active learning using set theory. Further
sections use the definitions and notations given in section 4.2.1. A general active learning
algorithm is presented in section 4.2.2. This section also has as objective to introduce the
concept of pattern informativeness which forms the basis of the development of the sensitivity

analysis selective and incremental learning algorithms.

4.2.1 Mathematical Formulation

This section first introduces notations that will be used throughout the rest of this chapter and
following chapters. Let Zp) = (z§p ), zép ), e ,zgp )) denote a specific input vector corresponding
to pattern p with input dimension I, and each ZZ(P ) € R Vectors i?) = (tgp ),tgp ), e ,tg?))
and o) = (ogp ), ng ), e ,o(fé)) denote the corresponding target vector and actual NN output
vector respectively. The dimension of both ) and 6®) is K, and each t,(cp ), 0,(3) ) € R. Denote

a single pattern p by the tuple (2, ).

The data set D = {(ZP),#®))|p = 1,---, Pp} is the original, complete data set with Pp = |D|
patterns; |D| is the cardinality of set D. The original data set is divided into a candidate

training set D¢, a test set D¢ and a validation set Dy, where Po = |D(| is the total number
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of patterns in the candidate set, Pq = |Dg| is the number of test patterns, and Py = |Dy|
is the total number of validation patterns. Furthermore, the sets are mutually disjoint, i.e.

DcNDg=0and DN Dy =0, and Dc U Dg U Dy = D.

The validation set is used during training to guard against overfitting. Training stops as soon
as the accuracy as measured from the validation set deteriorates. The test set is used to

measure the generalization performance of the NN.

Active learning algorithms parse through the candidate training set Do to construct an
actual training set D7 from training subsets Dg, for s = 1,2,---,5, where Dy C Dg¢.
Let Ds,,Ds,, -, Dgsg
{(Z(p),t_(p)ﬂp =1,---,Ps,)}. Then, Dg, C D¢, and each subset has Ps, = |Dg,| patterns.

denote training subsets, where for each s = 1,2,---,5, Dg, =

Dg, is the training subset selected at subset selection interval 75. If & is the epoch number
corresponding to subset selection interval 79, then & < & < -+ < &g, where S is the total
number of subset selection intervals. An epoch is defined as one pass through the current

actual training subset, Dy. Dg, is the initial training subset.

If Fyn(Dp; W) represents the function learned by the NN, then Dy is simply the candidate
training set, D¢, in the case of normal FSL. When SASLA is used, Dy is the current training
subset, Dg,_, selected at selection interval 7,. When SAILA is used, Dy is the union of all
subsets, i.e. Dp Ui;l Dgs,, where 7, < 75 is the current subset selection interval, and 7g

is the final selection interval. (The operator < denotes assignment.)
For the purposes of active learning, define the following active learning operators:

1) A= (D¢, Fnn(Dr;W)) = Dg, where Dg C D¢. The operator A~ receives as input the
candidate set D¢, performs some calculations on each pattern p € D¢, and produces the
subset Dg with the characteristics Ds C D¢, that is |Dg| < |D¢|. The objective of this
operator is therefore to produce a subset Dg from D¢ which is smaller than, or equal to, D¢.

Then, let Dy <~ Dg, where Dr is the actual training set.

2) At (D¢, Dr, Fnn(D7;W)) = Dg, where D¢, Dy and Dg are sets such that Dy C Dg,
Dg C D¢. The operator AT performs calculations on each pattern p € D¢ to determine if
that element should be added to the current training set. Selected patterns are added to subset

Dg. Thus, Dg = {p|p € D¢, and p satisfies the selection criteria}. Then, Dy <— Dy U Dg
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(the new subset is added to the current training subset), and D¢ < D¢ — Dg.

Active learning operator A~ corresponds with selective learning where the training set is
“pruned,” while A" corresponds with incremental learning where the actual training subset
“grows”. Inclusion of the NN function Fyxy as a parameter of each operator indicates the

dependence on the NN’s current knowledge.

Training Set Neural Network
& > — Fnn(Dr; W)
Dt Learner
Passive Learning
Training Set Neural Network
& > — FnN ( Dr; W)
Dy Learner

Current Knowledge

Active Learning

< Candidate
f(t)perator . Training Set
(¢) Do

Active Learning

Figure 4.1: Passive vs Active Learning

4.2.2 General Active Learning Algorithm

Dynamic pattern selection and NN training are done interactively. In active learning, pattern
selection is inextricably part of the learning algorithm. This is illustrated in figure 4.1. The
top part of figure 4.1 illustrates passive learning, with no interaction to change the training set.
The NN learner simply receives the fixed training set Dy < D¢, trains on it, and produces

the NN output function Fyy(Dr; W). The interaction between the learning algorithm and



CHAPTER 4. ACTIVE LEARNING USING SENSITIVITY ANALYSIS 69

the active learning operator to dynamically change the training set is illustrated in the bottom
part of the figure. The operator A receives the learner’s current knowledge, Fyn(Dr; W),

and the candidate training set D¢ to find a new informative training set.

In general, active learning is summarized by the following algorithm:

1. Initialize the NN architecture. Construct an initial training subset Dg, from

the candidate set D¢. Let Dy < Dg,.
2. Repeat

(a) Repeat
Train the NN on training subset Dp
until local convergence on Dp is reached to produce the function
FNN(Dr; W).

(b) Apply the active learning operator to generate a new subset Dg, at

subset selection interval 75, using either
Dg, + A= (D¢, Fnn(Dp; W), Drp « Dg,
for selective learning, or

Ds, « A" (D¢,Dr,Fyn(Dr;W))

8

Dy + DTUDSS, Dc(—Dc—DSS

for incremental learning

until global convergence is reached.
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The algorithm above refers to two convergence terms, i.e. local convergence and global con-
vergence. Local convergence refers to convergence on the training subset Dr, as triggered by
subset termination criteria. Local convergence is reached when the NN has learned the current
training subset to satisfaction, or when no more gain can be achieved from the current subset.
Global convergence refers to the criteria used to determine if the NN has learned the complete

task to satisfaction. It is possible that local convergence also means global convergence.

Note that no reference is made to the optimization method, or to the NN architecture, il-
lustrating the general active learning algorithm’s independence of the training method and

architecture.

Active learning design issues need to be addressed when developing an active learning al-
gorithm, i.e. initial subset selection and size, subset selection criteria, subset termination
criteria, and subset sizes. These issues are described briefly below, and will be revisited when

the two sensitivity analysis active learning algorithms are presented.

Initial subset selection and size

The purpose of the initial subset is to initiate training. As soon as training starts, the NN
starts to build its knowledge of the problem. Only then can pattern selection be applied
effectively to refine the NN’s knowledge.

There are basically two approaches to select an initial training subset, depending on the active
learning algorithm. For selective learning, the initial subset is the candidate training set
which will be pruned subsequently through application of the A~ operator. For incremental
learning, a subset is selected from the candidate set such that Dg, C D¢. The subset is
selected through application of a heuristic or function of the candidate set. One way is just
to select Ps, random patterns from D¢ according to some distribution law (i.e. uniform,
normal). Prior knowledge about the candidate set, if available, can also be used to construct
a distribution function according to which initial patterns will be selected. Alternatively,
patterns can be selected according to some function defined over input space, making use
of the initial network state as captured by the initial weights. For example, SAILA uses a

function based on the sensitivity of the NN output to small pattern perturbations, using the
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NN’s initial weights. Although the NN has no self-attained knowledge at this point, the initial
weights do provide information about the patterns that mostly influence the NN output in this
initial state. Training will therefore start on a set of patterns that has the largest influence
on the NN output, and consequently in weight changes (refer to section 4.2.3 where this is

explained).

The initial subset size depends on the active learning algorithm. Selective learning, for exam-
ple SASLA (presented in section 4.3) and Selective Updating [Hunt et al 1995], starts on all
candidate training patterns. Incremental learning can start on a single pattern, or a small sub-
set of patterns. The size of the initial subset is not that crucial. However, the following should
be kept in mind. If the initial training subset is too large, not much gain will be achieved with
incremental learning, since the learner will be offered a limited chance to use its knowledge
in the search for the most informative patterns. An incremental learning algorithm should
rather use a small subset of the candidate set. Provided that measures are implemented to
prevent overfitting on subsets, the initial subset size will be increased with new patterns when
no further gain can be achieved from that set. A smaller subset may mean more subset se-
lection intervals, but, as indicated by research results, does not adversely affect training time
[Cloete et al 1994b, Hunt et al 1995, Ludik et al 1993, Sung et al 1996, Zhang 1994] (also see

section 4.4.5 for results that illustrate this fact).

Subset termination criteria

Learning each training subset to the same accuracy as required for the complete set of training
data may cause overfitting of the subsets. The network may converge to an unacceptable
local optimum solution, instead of generalizing to a global optimum solution. The efficiency
of active learning algorithms relies on subset termination criteria to signal the selection of
a new subset. The term subset selection interval refers to the “time” (epoch) at which a

termination criterion is triggered and a next subset is selected.

The first criterion that springs to mind is to select a new subset at each epoch, which is
done in OED [Cohn 1994a]. This can be a time consuming process, especially if the subset

selection criteria is as complex as in OED (requiring the inversion of the Fisher information
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matrix). Instead of selecting a new subset at each epoch, subsets can be selected at each &
epochs. However, subset selection at specified epoch intervals has potential drawbacks. If the
epoch selection interval is too large and no overfitting measures are implemented, overfitting
may occur on the current subset, resulting in bad generalization. Less severely, the training
interval may be too small to learn the current subset to satisfaction, therefore limiting the

gain achieved from exploiting the NN’s current knowledge of the problem.

A subset termination criterion should rather include some reference to the error on the train-
ing subset. Plutowski and White suggest to repeat training on the current subset until no
more gain can be achieved (the training error no longer decreases) [Plutowski et al 1993].
Alternatively, they suggest to define a tolerance for each subset. As soon as the error on the
subset is lower than the specified subset tolerance, a new subset is selected. In their train-
ing strategies, Ludik and Cloete propose to linearly decrease the initial network error until
the required error on all patterns is reached [Ludik 1995a, Ludik et al 1995b]. A required
error, Es_ , is defined for each subset Dg, as a function of an error decrement, Egecrement-
Let Es, = £(Ds,; Wy) be the initial error of the network before training. The error func-
tion £(D; W) can be any measure of the accuracy of the NN fit, e.g. MSE. Then, the error

decrement is calculated as
E, _ Es, — Ec
g=—0__C
ecremen PC/PSS

where E¢ is the required error on the entire candidate set, Pc and Ps, are the number of
patterns in the candidate set and the subset respectively. The required error for subset s is

then computed as

Ess = ESO - ((3 - 1) X Edecrement)

Training on the current subset stops as soon as the error is less, or equal to, Eg,.

Zhang proposes a termination criterion based on the fact that learning capacity is proportional
to the total number of weights in the NN [Zhang 1994]. Training on a subset continues until
the error is less than the required error per connection (weight). Let 7 be the allowable error
tolerance per connection. Then, training on the current training subset D repeats until

JI +K)

T

ET = S(DT; W) S

where I,J and K are respectively the number of input, hidden and output units. Zhang
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found a value of 7 € [100, 200] to be reasonable.

The termination criteria proposed by Ludik and Cloete, and Zhang, do not directly refer
to generalization. Overfitting may therefore still occur. Roébel proposed a criterion that
validates generalization performance of the current training set, thereby preventing overfitting
on subsets [Robel 1994a, Robel 1994b, Robel 1994c¢]. Robel defines the generalization factor
p = g—‘T’, where Ey and Er are the MSE on the validation set Dy and current training
subset Dr respectively. The generalization factor indicates the error made in training on Dp
only, instead of training on the entire input space. By requiring that p < 1.0, overfitting is
prevented. Using Robel’s criterion, a new training subset is constructed when p(&) > ¢,(§),
where ¢, (§) = min{p,({—1), p+0,,1.0}; £ is the current epoch, p is the average generalization

factor over a fixed number of preceding epochs, and o, is the standard deviation.

Keep in mind that p does not give an indication of the accuracy of learning, but only the
ratio between the training and validation error. For function approximation problems (as is
the case with Robel’s work) where the MSE is used as measure of accuracy, a generalization
factor p < 1 means that the validation error is smaller than the training error - which is
desirable. As p becomes large (greater than 1), the difference between the training error and
validation error increases, which indicates an increase in validation error with a decrease in
training error - an indication of overfitting. For classification problems where the percentage

correctly classified patterns is used as measure of accuracy, p should be larger than 1.

In addition to subset termination criteria, the normal global convergence criteria on the entire
set of training data are also employed. If at any time any one of the global termination criteria

is triggered, training stops.

While this section reviewed published termination criteria, later sections elaborate on the

subset termination criteria used for this study.

Subset selection criteria

The subset selection criterion is embodied in the active learning operator as defined in sec-

tion 4.2.1. The selection criterion is the rule, heuristic or function according to which patterns
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are selected from the candidate set, and forms the base of the active learning model. For ex-
ample, for Selective Updating the selection criterion is to select those patterns that is expected
to cause the largest changes in weights. For the minimization of the integrated squared bias,
the selection criterion is to select patterns that maximizes the decrement in ISB. The selection
criterion for SASLA and SAILA, which are discussed in sections 4.3 and 4.4 respectively, is
to select those patterns that cause the output to be most sensitive to small perturbations in

the input vector.

Subset size

The subset size generally depends on the active learning operator. The size Pg, of a subset
may be a fixed number of patterns for each selection interval, or the number of patterns
may vary between selection intervals. For example, in OED only one new pattern is selected,
Selective Incremental Learning selects subsets of a specified fixed size, for SASLA subset sizes
are a function of the average pattern informativeness, and for SAILA only one pattern is

selected.

Subset sizes do have an influence on the efficacy of the active learning algorithm. For in-
cremental learning, too large subset sizes may cause too few selection intervals to optimally
utilize the NN’s knowledge. Smaller subsets give more opportunity to select informative pat-
terns, but increase the number of selection intervals. For computationally expensive selection
criteria, for example methods based on information theory, too many selection intervals may

adversely affect convergence times.

4.2.3 Pattern Informativeness

This section introduces the basic idea of sensitivity analysis active learning algorithms.
SASLA and SAILA are based on, and built upon, the concept of pattern informativeness.
A pattern that has a negligible effect on the NN outputs is said to be uninformative for

learning purposes, while informative patterns have a strong influence on the NN outputs.
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Definition 4.2 Pattern Informativeness: Define the informativeness of a pattern as the
sensitivity of the NN output vector to small perturbations in the input vector. Let ®®) denote

the informativeness of pattern p. Then,
o) — ||§(()P)H (4.1)

where ,S_",(,p) is the output sensitivity vector for pattern p (defined in (4.3)), and || ® || is any

suitable norm.

This study suggests the maximum-norm,

L) = |57 |oo = max {|ST)]} (42)
k=1, K
where Sgp ,2 refers to the sensitivity of a single output unit o; to changes in the input vector

Z. In equations (4.1) and (4.2), the output sensitivity vector is defined as

5P = |Is®| (4.3)

)

where SSZ) is the output-input layer sensitivity matrix. Each element ng),ki of the sensi-
tivity matrix is computed using equation (E.6) in appendix E for sigmoid activation func-
tions. Suitable norms for calculating the output sensitivity vector are the sum-norm, or the

Euclidean-norm. For each element & of §§p ),

Sum-norm:

I
SH =182 =182, (4.4)
=1

Euclidean-norm:

S&) = 11591, = (4.5)

Using definition 4.2 and equation (4.2), a pattern is considered informative if any one, or
more, of the output units is sensitive to small perturbations in the input vector. The larger
the value of <I>(o€), the more informative is pattern p. To illustrate this idea, consider the

weight update equations in appendix D. From equations (D.14) and (D.21),

Awyj, Avj; o (tip) — ol(cp)) (4.6)
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Each new pattern can be viewed as a perturbation of a previously presented pattern. Let
@é{? = |S((f ,2| Then, if <I>C(,€) is large, the output of unit oy is significantly influenced, and
the value of (tg’J ) ogcp )) changes significantly from the previous presentation. On the other
hand, if @é’;) is small, no significant change in the output value of unit o will occur from
the previously presented pattern. That is, the value of (t;cp ) ng )) does not change much,

making pattern p an insignificant contributor to the determination of the gradient direction

- and therefore being uninformative to the learning process.

The sensitivity analysis active learning algorithms presented in this chapter use pattern infor-
mativeness as subset selection criterion. The active learning operators therefore incorporate
pattern informativeness to select training subsets. The NN knowledge used, is the sensitivity

measures calculated from the learned weights.

4.3 Sensitivity Analysis Selective Learning

Selective learning is an active learning strategy that effectively “prunes” the original training
set during training. The NN uses its current learned knowledge to select at each selection
interval a subset of informative patterns from the candidate training set. Training commences
on the training subset until subset termination criteria are triggered, upon which a new

training subset is selected.

Selective learning algorithms certainly make sense for application to classification problems
only. In classification problems, a pattern can be identified as being classified correctly or
not. If the learner is already sure of the classification of a pattern, there is no need to re-
learn that pattern. However, during the learning process, the learner may become uncertain
about a previously correct classification, in which case the corresponding pattern should be
brought back into the training subset. A selective learning algorithm should therefore have
a good understanding of what information must be used for training, and what information
can be overlooked. It certainly makes sense that patterns which are most likely to help the
NN solve the problem must be preserved during training. For classification problems, the
objective of NN training is to find optimum decision boundaries in input space that give good

generalization. The patterns that are more likely to contribute to this objective are patterns
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in a region close to a boundary - referred to as the region of uncertainty (see page 65). In fact,
studies have shown that training on patterns near boundaries generalizes better than networks
trained on the same number of randomly chosen examples [Ahmad et al 1989, Baum 1991,

Cohn et al 1994b, Hwang et al 1991, Ohnishi et al 1990, Zhang 1994).

This section presents the Sensitivity Analysis Selective Learning Algorithm (SASLA), which
uses sensitivity analysis to select patterns in the region of a decision boundary. First order
derivatives of the output units with respect to input units are used to determine how close
a pattern lies to a decision boundary, using the model presented in chapter 3. The most
informative patterns lie closest to the boundaries. SASLA was developed with classification
problems in mind. However, it can also be applicable to function approximation problems.
Future research will investigate SASLA application to function approximation and time series

prediction.

To the author’s knowledge, this is the only study that utilizes NN output sensitivity analysis
for selective learning purposes. Closely related to this approach, is Selective Updating devel-
oped by Hunt and Deller [Hunt et al 1995], which uses principles from matrix perturbation
theory to assess the effect patterns have on weight estimates (also refer to page 62). Also,
selection around decision boundaries can be achieved by selecting only those patterns that

are not yet correctly classified.

Section 3 illustrates how sensitivity analysis can be used to determine if a pattern lies close to
a decision boundary using the decision boundary visualization ideas presented in chapter 3.
Section 4.3.2 presents a short description of the mathematical model underlying SASLA,
utilizing the characteristics of decision boundaries. A pseudocode algorithm of SASLA is
given in section 4.3.3, and its complexity is discussed in section 4.3.4. Section 4.3.5 presents
a detailed discussion of the experiments conducted, and compares SASLA with FSL. This

section also compares SASLA with the selection of unclassified patterns.

4.3.1 Decision Boundaries

The objective of a NN classifier is to construct optimal decision boundaries over input space.

Active learning algorithms which sample from a region around decision boundaries have been
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shown to refine boundaries, resulting in improved generalization performance. Paramount
to the success of decision boundary active learning algorithms, is the method used to detect

boundaries - if too complex, the model will be impractical.

Chapter 3 reviewed some approaches to decision boundary detection and presented a sensitiv-
ity analysis approach to find boundaries. The sensitivity analysis selective learning algorithm
uses these first order derivatives of the NN outputs with regard to the inputs to determine if
a pattern lies close to a boundary. SASLA does not detect decision boundaries per se, but
uses sensitivity analysis to assign a “measure of closeness to boundaries” for each pattern
[Engelbrecht et al 1998a, Engelbrecht et al 1999a, Viktor et al 1998a]. Patterns close to deci-

sion boundaries are defined to be informative. Section 3.2 explained that the value of 680(’;) is
2

used to find the position of decision boundaries. Patterns with high sensitivity, i.e. high %,
%
lie closest to decision boundaries. These patterns contain the most information for learning

purposes.

Other learning algorithms have been developed that use different approaches to select
patterns near decision boundaries. Ohnishi, Okamoto and Sugie use known characteris-
tics of the problem to select patterns around the decision boundaries once before training
[Ohnishi et al 1990]. Selective Sampling, developed by Cohn, Atlas and Ladner, uses distri-
bution information from the environment to calculate a region of uncertainty around bound-
aries, and select patterns from these regions only [Cohn et al 1994b]. Baum finds boundaries
using an iterative search and selects patterns in the region of these boundaries [Baum 1991].
In Query-Based Learning, a NN inversion algorithm is used together with selective sampling
to generate new patterns around the decision boundaries to further refine these boundaries

[Hwang et al 1991].

4.3.2 Mathematical Model

Using the notations and definitions introduced in section 4.2.1, this section defines the SASLA
operator, Ag ¢, 4, and shows how the operator is used to generate a new training subset.

Define the SASLA operator as

Agasp.4(Des Fun(Drs W) = {p € Dc|0L) > (dy,)} (4.7)
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where ®) is defined in equation (4.2), and ® is the vector
By = (@), ..., 00 . o)) (4.8)

where P¢ is the total number of patterns in the candidate set.

The function ¥ implements the rule used to select patterns. For the SASLA implementation,
¥(3a0) = (1 - AT (4.9)
where 3 is the subset selection constant (discussed below), and @, is the average pattern
informativeness,
55 2%
=== 4.10
= 222 (1.10)

Patterns with informativeness a factor larger than the average informativeness over all pat-

S|

terns are therefore selected.

The subset selection constant 8 is crucial to the efficacy of the algorithm. This selection
constant, which lies in the range [0, 1], is used to control the region around decision boundaries
within which patterns will be considered as informative. The larger the value of 3, the
more patterns will be selected. If § is too small, only a few patterns will be selected which
may not include enough information to form boundaries, with a consequent reduction in
generalization performance. Low values form 8 will however mean less computational costs.
A conservative choice of 8 close to 1 improves the chances of selecting patterns representing
enough information about the target concept, ensuring most of the candidate patterns to be
included in the initial training subset. A conservative value for # does, however, not mean a
small reduction in training set size. As training progresses, more and more patterns become
uninformative, resulting in larger reductions in training set size. Section 4.3.5 shows that for
such a conservative choice of 3, the training set is substantially reduced early in training.
The effects of different values for 8 are also investigated. If § = 1, SASLA simply generalizes

to normal FSL.

At each subset selection interval 75 (corresponding to epoch &), let the new subset be Dg,
ASasra(Dce, Fyn(Dr; W)). That is, select from the original candidate set D¢ the subset
Dg, C D¢. Then, let Dr be the subset Dg, for the next training interval. Note that, after
subset selection, the NN does not train on the difference D — Dg,. The actual training set

for the current training interval is thus reduced by |D¢ — Dg, | patterns.
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4.3.3 Selective Learning Algorithm

The sensitivity analysis selective learning algorithm is outlined below. Note that the algo-

rithm makes no reference to a specific optimization method or objective function. Although

SASLA depends on the choice of activation functions (requiring differentiable functions) and

NN architecture, the formulation is general to illustrate the algorithm’s applicability to any

activation function and architecture. It is only step 2.b.i, where the sensitivity matrix for a

pattern is calculated, that changes for different activation functions and architectures.

1. Initialize weights and learning parameters. Initialize the pattern selection constant,
B = 0.9 for a conservative choice. Construct the initial training subset, Dg, <— D¢.

Let Dy < DSO-
2. Repeat

(a) Repeat
Train the NN on training subset Dy

until a termination criterion on Dr is triggered.

(b) Compute the new training subset Dg, for the next subset selection interval
Tg:

)

i. For each p € D¢, compute the sensitivity matrix Sg i using equation

(E.6) for sigmoid activation functions.

ii. Compute the output sensitivity vector *(S” ) for each p € D¢ from equation

(4.3).

iii. Compute the informativeness ®®) of each pattern p € D¢ using equation
(4.2).

iv. Compute the average pattern informativeness from equation (4.10).

v. Apply operator Ag,q; 4 in equation (4.7) to find the subset Dg, of most

informative patterns. Then, let Dy < Dg,.

until global convergence is reached.
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Design issues specific to SASLA are discussed next:

¢ Initial subset selection and size: SASLA starts training on the entire candidate
training set. The initial training subset is therefore just D¢, consisting of Po = |Dc¢|

patterns.

e Subset termination criteria: The original implementation of SASLA selects a new
training subset at each epoch, allowing for many opportunities to make optimal use
of the NN’s knowledge in the search for the most informative patterns. Section 4.3.5
shows that, even for subset selection at each epoch, the total number of calculations
is reduced compared to that of FSL. To further reduce computations, subsets can be
selected at longer time intervals, provided that mechanisms are implemented to prevent

overfitting.

e Subset selection criteria: The SASLA active learning operator, Ag ,¢; 4, in equation

(4.7) embodies the subset selection criterion.

e Subset size: The size of each subset may differ from one selection interval to the next.
Subset sizes depend on the subset selection constant, 8, and pattern informativeness as

obtained from the knowledge embedded in the current NN weights.

The usual global termination criteria are used, i.e. training stops when the maximum number
of epochs is exceeded, or when the MSE is lower than the given threshold, or when the
percentage correctly classified patterns is higher than the given threshold. The complexity of

SASLA is investigated in the next section.

4.3.4 Model Complexity

An important requirement for any new learning algorithm is that its complexity should not be
unacceptably higher than existing algorithms. If possible, the complexity should be reduced.
The complexity of the proposed selective learning algorithm is explored in this section and
compared to that of FSL. For the purposes of this exposition, complexity is expressed as the
number of calculations and comparisons made during one training sweep through the training

set (one epoch). Calculations include additions, subtractions, multiplications and divisions.
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Since the selective learning operator Ag ,4; 4 is applied to each pattern in the candidate set

D¢, a computational cost is assigned to each pattern presentation. Let Cl(fgL and ngSL A

respectively denote the cost per pattern presentation for FSL and SASLA. Then,

cr), =c® 4 c (4.11)
and
c® + cw) + e it pattern p is selected
Cllopa=1q fsasa v (4.12)
cffl if pattern p is not selected
SASLA

where CI(,I’}) is the cost of updating weights between the hidden and output layer for one pattern,

(»)

ASASLA

and C‘(f ) is the cost of updating weights between the input and hidden layer. The term C
represents the cost to calculate the informativeness of pattern p and to make the selection
decision. Equation (4.11) illustrates a fixed computational cost for each pattern presentation
for FSL, while the computational cost per pattern presentation for SASLA depends on whether

the pattern is selected for inclusion in the training subset.

The total number of pattern presentations for FSL after £ epochs is

¢
Trsu(Do) =  Poc=¢tPe (4.13)

e=1

For SASLA, the total number of pattern presentations is

Tsaspa(Dc) = Tsaspa(Dsy) + Tsaspa(Ds,) + -+ + Tsasra(Dsg)

S &
=2 2 B

s=1 5:;53_1
S
= Z(&s - 55—1)135,.3 (4.14)
s=1

From equations (4.11) to (4.14), the total cost for all SASLA pattern presentations is

Csaspa =Crsp +Cyz = (Trsi(Do) — EASLA(DC))(C%) + C‘(f)) (4.15)

where the term Trpsr(D¢c) — Tsasra(Dc) is the difference in the total number of pattern
presentations between FSL and SASLA after ¢ epochs, and Csasra and Cpgy, respectively

represent the total training cost of SASLA and FSL; C sia is the total cost of the selective
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learning operator. From equation (4.15), a cost saving by SASLA is achieved when Csasr.4 —

Crsr < 0. If C denotes the cost saving, then

c=C — (Trst(De) — Tsasza(De))(CP) +c®)) < 0 (4.16)

Agaspa

If equation (4.16) becomes true, SASLA is more cost effective than FSL.

For one pattern presentation, Cl(,f;) = 2K(J+1)(7+I+J) calculations, and C‘(f) = (24+5K)(I+
1)(J + 1) calculations, where I,J and K are respectively the number of input, hidden and
output nodes (refer to (D.14) and (D.21) for the weight update equations).

Referring to the sensitivity analysis selective learning algorithm in section 4.3.3, the total cost

of applying the operator is

= § % (Cs,, +Cg +Cg +Cg + Cu) (4.17)

ASASLA

where S is the total number of subset selection intervals 71, -, 7s,- -+, Ts. In equation (4.17),

Cs

oz

is the total cost of calculating the sensitivity matrix for all candidate patterns. That

is, Cg,, = PcC 4@+ Referring to equation (E.6), the cost C ) of calculating the sensitivity

s&
matrix for a single pattern is simply 3IJK calculations, since the derivative f(g‘:) is already

calculated when 522) is computed (refer to equation (D.13)), and the derivative féf ) is already

available after calculating 53(,1;) (refer to equation (D.20)). Therefore,
CSoz = PC’ X Cs(p) = PC X (3IJK) (4.18)
The total number of calculations per selection interval to compute the output sensitivity
vector for all candidate patterns is (from equation (4.3))
Cs =FPo x (IK) (4.19)

To compute the informativeness of all candidate patterns, the total number of comparisons
is (from equation(4.2))
Cg = Pc x (K) (4.20)

To compute the average pattern informativeness, the cost is (from equation (4.10))

Cg=Po+1 (4.21)
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Finally, the cost of applying the selection operator is (from equations (4.7) and (4.9))

Coy=Ps+2 (4.22)

Substitution of equations (4.18) to (4.22) into equation (4.17) yields

= S(Pc(3IJK + IK + K +2) + 3) (4.23)

ASASLA

Which gives a cost saving of

C = S(Pc(B3IJK +IK + K +2) +3)

— (€Pc — Tsaspa(De))2K(J+1)(T+ 1+ J)+ (2+5K)(I +1)(J +1)) (4.24)

An analysis of equation (4.24) is presented next to establish under which conditions the cost

saving is negative or positive.

e In the worst case, all candidate patterns lie close to decision boundaries such that

SASLA prunes no patterns during training. In this case C = C 4- R Hence, SASLA

SASL

is computationally more complex than FSL when all patterns lie close to boundaries.

e Since 3IJK + 1K+ K +2 is much less than 2K (J+1)(7+1+J)+ (2+5K)(I+1)(J+1),
with a difference of 21JK +4IJK + 2K J? + 18K + 161K + 2I.J + 21 +2J, SASLA will
be computationally less expensive than FSL when the difference £ Pc — Tsaspa(D¢) is

large. As illustrated in section 4.3.5, this is the case for all the experiments investigated.

e The complexity of SASLA can further be reduced by using fewer subset selection inter-

vals, instead of selecting a new training subset at each epoch.

e Even for small candidate training set sizes, SASLA can be less complex than FSL since
the cost for weight updates is much larger than the cost of applying the selective learning

operator.

The computational complexity of SASLA and FSL is evaluated for each experiment in sec-

tion 4.3.5.
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4.3.5 Experimental results

The first goal of this chapter, i.e. the presentation of SASLA, has been dealt with in the
previous sections. This section addresses the other goals, i.e. an evaluation of the performance
of SASLA. For this purpose, SASLA is compared with FSL to establish whether SASLA’s

performance is better than, or at least comparable to, that of FSL.

Firstly, an artificial problem is used for illustrative convenience. This problem is used to
easily visualize the dynamic selection of training patterns around decision boundaries. The
section then continues with a rigorous exploration of SASLA’s application to several real-world
problems of varying complexity, using a conservative subset selection constant of 8 = 0.9.
The effects of varying (8 are illustrated on two of these real-world problems. The performance
of SASLA, with 8 = 0.9, is then compared to a selective learning approach that selects
only those patterns not yet correctly classified (this thesis refer to this selection approach
as error selection (ES)). A summary of the problems investigated is presented below. The
experimental procedure is described and the measures used to assess the performance of the

model are listed. An analysis of the experimental results is then given.

Experiments

Real-world problems of varying complexity have been selected to test the performance of
the proposed sensitivity analysis selective learning algorithm. Problems differ in candidate
training set size, input and output dimensions, complexity and the characteristics of data
values (i.e., continuous, discrete, binary, whether missing values occur, etc). Table 4.1 presents
a summary of these problems, which includes characteristics of the data sets. For problems
where attributes have missing values, these missing values were replaced by the average value
for that attribute during a data pre-processing phase. The table also lists the oversized
NN architecture for each problem (the optimized architectures are obtained in chapter 5).
Table 4.2 lists for each problem the learning parameters used, including the learning rate,

momentum, training and test set sizes, and the number of epochs the networks were trained.
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Attribute | NN Missing | Class

Problem Types Architecture | Values Distribution Source

circle continuous | 2-3-1 none classl - 75% artificial
class2 - 25%

breast cancer | discrete 10-15-1 yes benign - 65.5% [Prechelt 1994]
malignant - 34.5%

diabetes continuous | 8-40-1 none classl - 65.1% [Prechelt 1994]
class2 - 34.9%

iris continuous | 4-10-3 none setosa - 33.3% [UCT)

versicolor - 33.3%
virginica - 33.3%
wine continuous | 13-10-3 none classl - 33.1% [UCT)
class2 - 39.9%
class3 - 27.0%
glass continuous | 9-30-6 none classl - 32.7% [Prechelt 1994]
class2 - 35.5%
class3 - 7.9%
class4 - 6.1%
classb - 4.2%
class6 - 13.6%

hepatitis binary 19-20-1 in most classl - 79.87% [UCT]
continuous attributes | class2 - 20.13%

thyroid binary 21-20-3 none classl - 2.31% [Prechelt 1994]
continuous class2 - 5.11%

class3 - 92.58%

Table 4.1: Characteristics of data sets used to test SASLA

Experimental procedure

A short overview of the experimental procedure is given in this section. All the assumptions
about NN model parameters are listed. Each problem investigated is referred to as an ezper-
iment. One NN training and testing session of an experiment is referred to as a simulation.
For each experiment, 50 simulations were executed for each of the learning models. For the
purposes of this thesis, 50 FSL simulations, 50 SASLA simulations and 50 ES simulations
were carried out. This choice of the number of simulations allows the normality assumption

and faithful comparison of the means [Mitchell 1997].

The overfitting characteristics of each learning model was investigated by using an oversized

NN architecture.

Refer to a simulation pair as one simulation from each of the learning models with the same
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Train Set/ | Number of | Learning
Problem Test Set Epochs Rate Momentum
circle 250/150 500 0.1 0.9
breast cancer | 480/120 1000 0.1 0.9
diabetes 560/140 5000 0.1 0.9
ris 120/30 1000 0.1 0.9
wine 142/36 500 0.1 0.9
glass 172/42 2000 0.1 0.6
hepatitis 123/31 200 0.1 0.9
thyroid 4000/3000 300 0.05 0.5

Table 4.2: Learning parameters for SASLA vs FSL experiments

simulation number. NNs corresponding to the simulations of a simulation pair had the same
architecture, learning parameters (learning rate and momentum), initial random weights, and

training and test sets.

For each experiment, the original data set was scaled such that all input values are in the
range [—1, 1], and all outputs are in the range [0.1,0.9]. Fifty training and test set pairs were
then randomly generated from the original data set. Each simulation used a different training
and test set pair. Training continued for a fixed number of epochs (refer to table 4.2), and
was not stopped when a specified error limit was reached. This facilitates the study of the
overfitting effects of the different learning models using Robel’s generalization factor defined

in section 4.1.1.

Both FSL and SASLA used on-line learning where weights were updated after each pattern
was presented. Patterns were selected randomly from the training set during training. The
learning rate and momentum for each experiment are listed in table 4.2. For the comparison
with FSL, SASLA used a conservative subset selection constant of 8 = 0.9, and a new training
subset was selected after each epoch. Since this section deals with classification problems
only, the number of correctly classified patterns was used as measure of training accuracy
and generalization. For the purposes of this exposition assume that a pattern is correctly
classified if for each output unit oy and a pattern p, ((ogcp ) > 0.7 and t,(cp ) = 0.9) or (ol(cp ) <

0.3 and #7) = 0.1)).
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Results reported are averages over the 50 simulations, with 95% confidence intervals as ob-

tained from the t¢-distribution.

Performance Measures

A study of the performance of a learning model includes an investigation into the model’s gen-
eralization, training time (computational complexity) and convergence characteristics. Gen-
eralization is expressed as the percentage of test patterns correctly classified by the NN. Part
of the investigation into generalization performance is a study of overfitting. The gener-
alization factor as defined by Robel [Robel 1994a, Robel 1994b, Robel 1994c] (also refer to
section 4.1.1) is used to assess the overfitting characteristics of a model, but with reference
to the percentage correctly classified patterns instead of MSE. In this case, the smaller the

generalization factor, the more does overfitting affect that model.

Training time is an important consideration when studying the performance of a model. For
this study training time is expressed as a function of the number of pattern presentations.
A cost, expressed as the number of calculations and comparisons, is associated with each
pattern. The difference between the learning time of different learning models is determined
as the difference in the number of pattern presentations and the total cost saving after each

epoch.

The convergence characteristics of a learning model are expressed as the percentage of simu-

lations that did not reach a specified generalization level.

Results

This section presents results of the application of sensitivity analysis selective learning to
an artificial and several real-world classification problems. The experimental procedure and

learning parameter settings are as discussed in previous sections.

Firstly, an artificial problem is used to illustrate the working of this selective learning al-
gorithm. The objective is to show how sensitivity analysis can be used to select patterns

around decision boundaries. The artificial problem, as introduced in chapter 3, equation
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(3.4) (page 42), is to discriminate between two classes, where the one class is inside a circle
of radius 0.5 centered at the origin, and the other class outside the circle, but bounded by an

unit square (refer to equation (3.4) and figure 3.3).

The visualization of the boundaries for this problem was illustrated in chapter 3, section 3.3.
Figure 3.5 (page 42) show that only a small percentage of the training patterns in the candi-
date training set lie close to the boundaries, suggesting that we may benefit from discarding

patterns far away from boundaries.

For the same simulation, figures 4.2(a) and 4.2(b) illustrate the patterns used for training as
selected by SASLA for epoch 200 and epoch 500 respectively. Comparison of these figures
with figure 3.3 (page 42), which represents the candidate training set, reveals a substantial
reduction in the number of training patterns. These figures also show the distribution of
the selected patterns around the —0.5 and 0.5 boundaries. SASLA retains those patterns
important to form the decision boundaries. From figure 4.2 we see that those patterns which

are most distant from the boundary are discarded from epoch 200 to epoch 500.

Next, results are presented to illustrate the performance of SASLA on this artificial problem,
and to compare the performance with that of FSL. Results reported are averages over all
simulations. Figure 4.3(a) represents the learning profiles for both FSL and SASLA. Training
error and generalization performance correctly classified patterns, are plotted against the
number of pattern presentations (representing 500 epochs of training). Early in training,
the training error and generalization of SASLA exceeded that of FSL. The highest average
training error reached by SASLA is 94.4% with a corresponding 92.4% average generalization,

compared to a 92.1% average training error and 89.7% average generalization for FSL.

SASLA converged much faster than FSL in terms of the number of pattern presentations,
as illustrated in figure 4.3(a). SASLA’s faster convergence is also illustrated in figure 4.3(b),
which shows for different generalization levels how many pattern presentations were needed
by the learning models to reach these generalization levels (considering only those simulations
that did converge to these levels). SASLA performed similarly to FSL for up to a generaliza-
tion of approximately 77%. For generalization higher that 77%, FSL took substantially longer
than SASLA to reach the same generalization level. For example, FSL took on average 35 768
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Figure 4.2: Selected training patterns at different epochs for the circle classification problem

presentations to reach a 90% generalization, whereas SASLA took 20378 presentations. To
reach a high generalization level of 96%, FSL needed 84 556 presentations compared to the
27439 presentations of SASLA. The faster convergence by SASLA was achieved by the rapid
reduction in the number of training patterns. Figure 4.3(c) shows an exponential decrease
in the number of training patterns. Even after 100 epochs, the training set was reduced on
average by 55%; 68 out of the original 250 patterns were used for training during epoch 500

- a substantial reduction.

The question now arises whether the reduction in the number of training patterns, in addition
to the added computational cost, saves any costs compared to FSL. At the final epoch,
SASLA achieved an average cost saving of 10854830 + 459497 computations. A saving
in computational cost was observed very early in training, at epoch 40. This early cost
saving was achieved through an exponential reduction in the training set size, as illustrated

in figure 4.3(c).
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Next, consider figure 4.3(d) which illustrates the percentage of simulations that did not reach
specific generalization levels. SASLA showed better convergence results than FSL. SASLA
started having non-convergent simulations from a 91.3% generalization level, whereas FSL
started having non-convergent simulations from an 80% generalization level. Up to a gen-
eralization of 96%, SASLA had more converged simulations than FSL. It is only for a high

generalization of 96.67% that SASLA had more non-convergent simulations.

In the next part of this section, results of the application of SASLA to the real-world problems
listed in table 4.1 are presented and discussed. Results are presented under three headings:
Real-world Problems which compares SASLA, with a selection constant § = 0.9, with
FSL, Selection Constant’s Effects which investigates the performance of SASLA under
different values of the selection constant, 8, using the glass and wine problems, and Error

Selection which compares SASLA with ES, using the glass, wine and circle problems.

Real-World Problems

This section compares the performances of SASLA (with selection constant 5 = 0.9) to that
of FSL. The generalization performance, overfitting effects, complexity and convergence of

the two learning algorithms are compared.

Tables 4.3 and 4.4 present extensive summaries of the results obtained for all problems consid-
ered. Table 4.3 lists for each problem the following statistics as obtained at the final training

epoch (as given in table 4.1):

e The average training error, 7, and the average generalization, £, over the 50 sim-
ulations, as the percentage correctly classified patterns. Also included are the 95%

confidence intervals computed from the #-distribution.

. . =b .
e The best average generalization, £ GeSt, and the number of pattern presentations needed

to reach this best generalization.

e The average generalization factor, p, over the 50 simulations, together with 95% con-
fidence intervals. The generalization factor is computed per simulation as p = E¢/Er,

where &g is the error on the test set (generalization), and &y is the error on the training
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Presen-
Problem Er Ea E’g?“ tation P
breast cancer | (—0.048 £ 0.004) | (0.016 + 0.009) (0.064 + 0.009)
SASLA | 95.17 +0.42% 93.65 + 0.71% 96.2% | 1530 0.984 + 0.006
FSL 99.98 + 0.02% 92.03 £ 0.76% 96.2% | 2880 0.921 +0.007
diabetes (—0.070 £ 0.014) | (0.002 £ 0.017) 0.058 +0.020
SASLA | 82.98 £ 0.84% 60.87 £ 1.42% 66.0% | 20480 0.735 £ 0.019
FSL 89.97 £ 8.52% 60.47 £ 1.31% 64.3% 192660 0.676 +0.020
iris (—0.033 £ 0.008) | (=0.009 = 0.017) (0.027 £ 0.014)
SASLA | 95.22 +0.56% 93.93 + 1.44% 94.4% | 20470 0.989 + 0.017
FSL 98.52 £ 0.63% 94.8 +0.98% 95.2% | 7320 0.963 +0.010
wine (—1.283 +£0.262) | (—0.645 + 0.521) (0.005 £ 0.006)
SASLA | 98.33 +0.33% 98.89 + 0.64% 100.0% | 21317 1.006 £ 0.007
FSL 99.46 + 0.27% 99.53 £+ 0.47% 100.0% | 28189 1.001 £ 0.006
glass (—2.733 £ 1.353) | (=3.714 % 1.455) (—0.0144 % 0.026)
SASLA | 69.06 + 1.07% 70.90 £+ 1.83% 88.1% | 281485 1.029 £ 0.030
FSL 71.79 £ 1.23% 74.62 £ 1.79% 90.4% | 337120 1.043 + 0.033
hepatitis (—0.103 £ 0.007) | (0.017 = 0.020) (0.107 £ 0.022)
SASLA | 89.70 + 0.74% 77.56 +2.21% 77.9% | 7580 0.865 4+ 0.026
FSL 99.98 + 0.03% 75.85 £+ 2.08% 76.7% 14023 0.759 +£0.021
thyroid (—0.018 £ 0.017) | (—0.018 £ 0.017) (—0.0002 £ 0.0018)
SASLA | 93.39 +£1.73% 92.82 + 1.75% 94.2% | 70900 0.994 + 0.005
FSL 95.22 £+ 0.29% 94.65 £ 0.30% 94.5% 1104000 | 0.994 + 0.002
Table 4.3: Comparison of SASLA (8 = 0.9) and FSL error performance measures

set. Since the error is expressed as the percentage correctly classified patterns, the ideal

performance is when Eg > Er; thus, when p = £g/Er > 1. Usually, ¢ < £, but when

Eq is much less than &7 it indicates severe overfitting of the training set. The objective

is therefore to obtain a generalization £g as close to £ as possible and therefore p close

to 1. A higher generalization factor p thus indicates less overfitting of the training set.

In addition to the averages and confidence intervals, table 4.3 also presents estimates of the

difference in performance between SASLA and FSL for the training error, generalization and

eneralization factor. For example, considering the training errors E345L4 and EESL. for
g ple, g g T T,

each simulation 7, the estimate

o =

50

1 50
i Z(g%ASLA _ g]]j;SL)
i=1

(4.25)
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Total presented Cost Saving
Problem Pr patterns (x10%)
breast cancer
SASLA 63.66 + 8.20 75250.70 + 8 667.86 —690.871331 + 19.554722
FSL 480 480000
diabetes
SASLA 304.00 £ 11.20 1501 858.66 4+ 41254.48 | —6488.901950 4+ 292.618026
FSL 560 2800000
LS
SASLA 22.50 £ 1.52 26 310.36 + 1575.59 —172.210654 + 3.656954
FSL 120 120000
wine
SASLA 78.45 4+ 2.88 45117.77 £1068.71 —32.810974 + 4.913917
FSL 142 710000
glass
SASLA 131.42 +1.67 287906.74 +1847.39 176.860996 + 49.938683
FSL 172 344000
hepatitis
SASLA 46.64 + 3.5 10746.30 4+ 692.67 —38.909426 + 3.374711
FSL 123 24600
thyroid
SASLA 2706.80 4+ 209.34 | 848795.13 + 19710.10 —264.849156 + 274.009798
FSL 4000 1200 000

Table 4.4: Comparison of SASLA (8 = 0.90) and FSL computational complexity

is computed to obtain a 95% confidence interval, using the #distribution. These estimates
can be used to determine if there is a significant difference in performance between SASLA
and FSL. The performance difference estimates are the first entries for each problem (the

values between parentheses).

The training error and generalization performance of SASLA and FSL are also compared in
figure 4.4. While table 4.3 presents results at the last epoch, figure 4.4 illustrates how the

training error and generalization evolve during training.
Table 4.4 summarizes the following information for each learning algorithm and problem at

the final epoch:

e The average number of patterns, Pr, selected from the candidate set and used for

training, together with 95% confidence intervals for SASLA.
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e The average number of pattern presentations, together with 95% confidence intervals

for SASLA.

e The average saving in computational cost achieved by using SASLA, with 95% confi-

dence intervals.

With reference to generalization performance, it is not possible to label any of the training
methods as being superior, since they produced approximately the same average general-
ization and best generalization performances. Considering the training error, FSL achieved
higher accuracies than SASLA for all problems. Note that even though FSL achieved higher
accuracies on the training set, SASLA had better generalization performances for the breast
cancer, diabetes and hepatitis problems, while having approximately the same generalization
performance for the iris, wine and thyroid problems. It is only for the glass problem that FSL

obtained better generalization than SASLA.

The consequence of FSL having better training accuracies than SASLA, but approximately
the same generalization performance, is that FSL tends to overfit the training data. Table 4.3
shows that FSL overfitted more at the final epoch than SASLA for the breast cancer, diabetes,
iris and hepatitis problems. Figure 4.5 illustrates the overfitting effects of the two algorithms
for these problems, where the generalization factor is plotted as a function of the number of
pattern presentations. Figure 4.5 shows that FSL increasingly overfits as training progresses,
while the overfitting characteristics of SASLA stabilize. The two algorithms had the same

generalization factors for the other problems.

The larger overfitting effects for FSL can be explained by the fact that FSL trains on the
entire training set, which, for real-world problems, usually contains outlier and noisy patterns.
Dynamic pattern selection around decision boundaries reduces the effects of outliers and
patterns with a very large noise component, since these patterns lie the furthest away from
decision boundaries compared to “normal” patterns, and will have a smaller chance to be
selected. Since overfitting occurs when the network starts to memorize individual patterns
(when there are too many free parameters, which was the case for these experiments), this

explains why SASLA exhibits less overfitting than FSL.

While SASLA and FSL showed approximately the same generalization performance, SASLA



CHAPTER 4. ACTIVE LEARNING USING SENSITIVITY ANALYSIS

Generalization Factor

Generalization Factor

Generalization Factor

98

0.94 | E
093 1 1 1 1 1 1 1 1 1 06 1 1 1 1 1 1 1 1 1
0 12500 25000 37500 50000 62500 75000 87500 100000 112500 125000 0 200000 400000 600000 800000 1le+06 1.2e+061.4e+061.6e+061.8e+06 2e+06
Number of Pattern Presentations Number of Pattern Presentations
(a) Breast Cancer (b) Diabetes
1 T T T T T T T T T 1 T T T T T T T T T
FSL FSL
SASLA - SASLA ---—--
0.95
g
d
r 09
c
9
q
N
©
¢ 08
c
0]
V]
0.8
0,96 1 1 1 1 1 1 1 1 1 0,75 1 1 1 1 1 1 1 1 1

0 8000 16000 24000 32000 40000 48000 56000 64000 72000 80000
Number of Pattern Presentations

(c) Iris

0

2500 5000 7500 10000 12500 15000 17500 20000 22500 25000

Number of Pattern Presentations

(d) Hepatitis

Figure 4.5: Average generalization factor vs pattern presentations for real-world problems



CHAPTER 4. ACTIVE LEARNING USING SENSITIVITY ANALYSIS 99

Problem | Epoch

breast cancer | 4
diabetes 15
TS 5
wine 8
glass -
hepatitis 15
thyroid 218

Table 4.5: Last epoch at which FSL is less expensive than SASLA

needed much less pattern presentations than FSL to reach the same generalization perfor-
mance levels (refer to figure 4.4). This conclusion is supported by the fourth and fifth columns
of table 4.3. These columns show that SASLA needed substantially less pattern presentations

to reach its best generalization performance than FSL (except for the iris problem).

Table 4.3 and figure 4.4 show that SASLA required less pattern presentations to reach good
generalization levels compared to FSL. But does this mean that SASLA is computationally
less complex than FSL, taking in consideration the added complexity of applying the pattern
selection operator? Using the number of calculations per epoch as measure of computa-
tional complexity, equation (4.24) expresses the saving in the number of calculations by using
SASLA. The last column in table 4.4 lists the saving in computational cost (at the final epoch)
by using SASLA. Note that substantial savings in the number of calculations were achieved
for all problems, except the glass problem. Even for the conservative subset selection con-
stant, 8 = 0.9, SASLA was computationally more feasible than FSL very early in training,
as indicated in table 4.5 which lists the last epoch at which FSL was, on average, computa-
tionally less expensive than SASLA. Although SASLA showed to be computationally more
complex than FSL for the glass problem, SASLA still used less training presentations than
FSL for 2000 training epochs. (The next section shows that SASLA saved on computational
costs for lower [ values but at decreased accuracy.) The larger cost for the glass problem is
attributed to the slow and small decrease in the training set size, such that the computational
cost of applying the selection operator is larger than the saving due to the decreased training

set size.

For the other problems, these very large computational cost savings were made possible by
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the large reduction in training set size through application of the selective learning operator.
For these problems, the training set size reduced exponentially. The number of training
patterns was rapidly reduced early in training, after which the training set size asymptotically
converged to the set of patterns that defines the decision boundaries. The size of the thyroid

candidate training set was, however, not that rapidly reduced. Table 4.6 shows for selected

epochs the percentage reduction of the original training set.

Percentage reduction after epoch
Problem 25 | 100 | 200 | 300
breast cancer | 70.85 +2.73% | 81.48 4+ 2.43% | 83.85 +2.27% | 85.26 + 1.91%
diabetes 20.57 £3.47% | 30.69 £+ 2.63% | 38.05 £ 1.83% | 41.08 £ 1.99%
iris 64.17 +1.40% | 74.32 £ 1.26% | 77.90 +£1.23% | 79.22 + 1.28%
wine 19.21 + 1.57% | 32.44 +1.62% | 37.47 £ 1.72% | 40.87 + 1.94%
glass 0.69 £0.23% | 440+0.43% | 7.49+£0.57% | 9.76 = 0.67%
hepatitis 52.23 £3.97% | 59.46 + 3.12% | 62.00 +2.84% | -
thyroid 17.45 + 3.43% | 30.21 +4.84% | 35.33 £6.35% | 32.33 +5.23%
Percentage reduction after epoch
Problem | 500 | 1000 | 2000 | 5000
breast cancer | 86.02 + 1.78% | 86.74 £ 1.71% | - -
diabetes 45.03 +1.86% | 47.70 £ 1.85% | 48.07 £2.21% | 45.71 £ 2.0%
18 80.20 +£1.40% | 81.25 £1.27% | - -
wine 45.07 £2.11% | - - -
glass 11.76 £ 0.72% | 17.68 + 1.04% | 23.63 +£1.01% | -
hepatitis - - - -
thyroid - - - -

Table 4.6: Training set reduction by SASLA (8 = 0.9)

Finally, figure 4.6 compares the convergence performance of SASLA with that of FSL. This
figure plots the percentage of the 50 simulations that did not converge to specific generalization
levels. SASLA performed exceptionally well for the breast cancer and diabetes problems,
having much more converged simulations than FSL, especially for the higher generalization
levels. For the iris problem SASLA performed in general better than FSL, having more
converged simulations for most of the generalization levels. It is not possible to identify a
superior model for the hepatitis and thyroid problems. However, notice that SASLA tended to
have more converged simulations for the higher generalization levels than FSL. Also, where

FSL had more converged simulations, it was by a small percentage. FSL showed better
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convergence results for the wine and glass problems.

Selection Constant’s Effects

Section 4.3.2, page 79, explained the importance of the subset selection constant 5. While
the results presented in the previous section are for g = 0.9, this section illustrates the effect
of varying g values on performance. For this purpose the glass and wine problems are used,
and 50 simulations executed for # = 0.1,0.3,0.5 and 0.7. The results, which include averages
over the 50 simulations and associated 95% confidence intervals, are summarized in tables 4.7
and 4.8 for the glass problem (at epoch 2000), and tables 4.9 and 4.10 for the wine problem
(at epoch 500).

Presen-
I} Er Ea glgst tation P
0.9 | 69.06 +1.07% | 70.90 + 1.83% | 88.10% | 281485 1.029 + 0.030
0.7 | 66.43 +1.37% | 68.10 + 1.82% | 85.71% | 248760 1.031 + 0.036
0.5 62.73 +1.76% | 64.38 +1.70% | 83.33% | 200510 1.032 + 0.036
0.3 | 59.95 +1.41% | 60.90 +2.11% | 80.95% | 177310 1.023 + 0.045
0.1]57.26+1.19% | 57.10 +£1.99% | 78.57% | 121385 0.999 + 0.035
Table 4.7: Comparison of error performance measures for different § values for the glass
problem
Total presented Cost Saving
B Pr patterns (x10%)
0.9 | 131.42 +1.67 | 287906.74 +1847.39 | 176.860996 + 49.938683
0.7 | 111.60 & 1.75 | 252744.90 +£2124.33 | —773.633863 + 57.424777
0.5 | 94.48 +1.98 | 214170.60 +2405.99 | —1816.374341 + 65.038596
0.8 | 81.30 +£1.94 | 180981.50 + 2468.39 | —2713.542092 + 66.725490
0.1 69.20+3.03 | 152859.90 +2698.49 | —3473.725183 + 72.945519

Table 4.8: Comparison of computational complexity for different 3 values for the glass problem

Tables 4.7 and 4.9 show that the lower the value of 3, the worse the accuracy of SASLA:
The average training error and generalization over the 50 simulations deteriorated for both
problems, while the best generalization also decreased for the glass problem. Also note that

higher (8 values achieved generalization accuracies larger than the training accuracy. As
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Presen-
B Er Za g% | tation 5
0.9 | 98.33 =0.33% | 98.89 +0.64% | 100.0% | 21317 1.006 4+ 0.007
0.7 | 97.56 +0.36% | 97.97 +0.86% | 100.0% | 9823 1.004 £+ 0.011
0.51]97.01 +£0.46% | 97.42+0.91% | 100.0% | 9956 1.004 £+ 0.012
0.31]96.954+0.41% | 97.14 +0.94% | 100.0% | 8958 1.002 £ 0.012
0.1 96.64+0.45% | 96.22 +£0.95% | 100.0% | 9597 0.996 £+ 0.013

Table 4.9: Comparison of error performance measures for different 8 values for the wine
problem

Total presented Cost Saving
¢ Pr patterns (x109)
0.9 | 78.45+2.88 | 45117.77 £1068.71 | —32.810974 £ 4.913917
0.7 60.42 +1.94 | 34624.29 + 749.06 —81.060013 + 3.444165
0.5 | 51.39 +1.35 | 28384.00 £ 1138.55 | —109.752868 + 5.235048
0.3 | 45.48 +1.35 | 22697.76 = 1311.81 | —125.124575 4 2.123308
0.1 |40.974+1.15 | 22112.00 + 821.32 —138.591524 + 3.776447

Table 4.10: Comparison of computational complexity for different 8 values for the wine
problem

the value of # becomes smaller, the difference between generalization and training accuracy
becomes smaller. Lower 3 values do, however, save on computations, due to the fact that
less patterns are selected for the candidate set. However, the savings in computational cost
using low [ values do not justify the loss in accuracy for the glass problem, while the iris
problem’s decrease in accuracy is acceptable. The larger savings in computational cost for
smaller § values are due to the larger decreases in training set sizes compared to larger
values. Tables 4.11 and 4.12 illustrate for the glass and wine problems how lower [ values

decreased the training set size for selected epochs.

Tables 4.13 and 4.14 show that the smaller the value of 8 the more simulations do not converge
to generalization levels specified in the table, indicating that the lower 8 values do not select

enough information to achieve the higher generalization accuracies.

What can be concluded from the above experiments is that the best value for 8 is problem

dependent. In selecting a value for 8 the trade-off between computational cost savings and
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B

50

Reduction at epoch

100

500

1000

2000

105

0.9
0.7
0.5
0.3
0.1

1.14 £ 0.30%
7.03 £ 0.62%
16.69 + 1.46%
27.66 + 1.47%
37.30 + 2.06%

3 |25

2.97 £ 0.43%
9.80 £+ 0.84%
21.84 + 1.06%
33.29 £+ 0.84%
41.13 £ 1.43%

7.76 £ 0.51%

21.66 + 1.14%
37.24 + 1.31%
47.84 +0.95%
54.95 + 1.66%

12.86 + 1.06%
28.35 + 1.27%
39.15 + 1.61%
51.21 + 1.49%
59.91 + 1.47%

Reduction at epoch

50

100

500

18.36 £ 1.15%
50.55 + 1.02%
45.07 +1.15%
52.73 +£1.13%
59.77 £ 1.76%

Table 4.11: Training set reduction for different § values for the glass problem

0.9
0.7
0.5
0.3
0.1

19.21 + 1.57%
37.89 + 1.54%
48.62 + 1.04%
56.47 £ 0.71%
60.97 £ 0.65%

27.37 +1.42%
43.98 + 1.48%
54.02 + 1.20%
61.22 +0.79%
65.58 +0.67%

32.44 + 1.62%
48.64 + 1.19%
57.95 +0.97%
64.63 £ 0.75%
68.04 £ 0.73%

45.07 +2.11%
57.97 + 1.35%
63.81 +0.95%
68.36 + 0.81%
71.15 £ 0.81%

Table 4.12: Training set reduction for different 8 values for the wine problem

Generalization Levels
I} 60% 65% T0% T75% 80% 85% 90%
0.9 | 0% 0% 10% 29% 65% 90%  98%
0.7 | 2% 6% 18% 46% 80%  96%  100%
0.5 | 2% 20% 38% T0% 94% 100% 100%
0.3 | 8% 28% 6% 88% 98%  100% 100%
0.1 |16% 52% 84% 94% 100% 100% 100%

Table 4.13: Comparison of convergence results for different 3 values for the glass problem

Generalization Levels
I} 94% 96% 98% 100%
0.9 0% 4% 12%  12%
0.7 0% 6% 38% 38%
0.5 | 0% 10% 36% 36%
0.3 | 4% 12%  42%  42%
0.1 | 4% 12%  38% 38%

Table 4.14: Comparison of convergence results for different 8 values for the wine problem
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decreased performance needs to be considered. It is suggested that future research includes
an investigation into adaptive [ values, where the value of [ increases when performance

deteriorates, and decreases when performance improves.

Error Selection

The reader may now ask why don’t we simply select those patterns from the candidate set that
are not yet correctly classified. While this approach will be computationally less expensive
than SASLA, due to the simple selection operator, the error selection approach steps into
trouble when the candidate set contains outlier patterns (assuming a non-robust estimator
such as sum squared error is used [Hoaglin et al 1983, Huber 1981]). Since outlier patterns
will be classified incorrectly, an error selection approach will select these outlier patterns
for training. For sensitivity analysis patterns selection, on the other hand, the chance that
outliers will be included in the training set is reduced, since the selection of patterns depends
on how far they lie from the decision boundaries - outliers lie further away from decision
boundaries than “normal” patterns. SASLA might initially select these outlier patterns, but

will discard them as decision boundaries get more refined during training.

The objective of this section is to compare results obtained using an error selection scheme
with that of SASLA. For this purpose the glass and wine problems, as well as the circle
problem with outliers added to the candidate set (5% of the candidate set), were used to
train neural networks based on the following pattern selection schema: if there exists an
output unit such that (tép) = ().9)&&(0,(57) < 0.7) or (t,(ep) = 0.1)&&(0,(5)) > 0.3), then select
pattern p for training. This selection criterion coincides with the thesis assumption as to

when a pattern should be accepted as being correctly classified (see page 87).

Table 4.15 summarizes the error performance results for the ES approach in comparison with
SASLA for § = 0.9, while table 4.16 and table 4.17 respectively summarizes the complexity
and convergence results. For all problems SASLA showed to have significantly better gen-
eralization performance than ES. Table 4.15 shows that SASLA has been influenced by the
occurrence of outlier for the circle problem, previously having a 92.5% average generalization

on clean training data (refer to page 89). The results show that ES is even more affected by
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the outliers, having an average generalization of 73.4%, compared to 88.3% on clean data.
From table 4.16 it is evident that ES is computationally less intensive than SASLA, using
substantially less training patterns than SASLA. This very large reduction in training set size
by ES compared to SASLA is a cause of the worse ES generalization performance, since the

reduced training set may not contain sufficient patterns to refine the boundaries.

SASLA showed to have better convergence characteristics than ES. Table 4.17 illustrates that

ES had substantially more simulations that did not converge to the different generalization

levels.
Presen-

Problem Er Ea glé;%t tation D

glass (9.779 £ 1.118) | (10.143 £ 1.750) (0.0005 + 0.029)
SASLA | 69.06 £1.07% | 70.90 &+ 1.83% 88.10% | 281485 1.029 £+ 0.030
ES 59.28 £ 1.15% | 60.76 + 2.27% 78.60% | 192125 1.029 £+ 0.043

wine (0.060 + 0.022) | (0.079 £ 0.029) (—0.0144 + 0.026)
SASLA | 98.33 £0.33% | 98.89 +0.64% 100.0% | 21317 1.006 £ 0.007
ES 92.29 +0.02% | 90.97 £+ 0.03% 100.0% | 5704 0.985 £+ 0.020

circle (0.039 + 0.055) | (0.039 + 0.052) (0.0003 + 0.027)
SASLA | 75.51 £4.40% | 79.28 + 3.68% 94.08% | 73264 1.059 £+ 0.034
ES 71.61 £3.52% | 73.39 £ 3.17% 86.51% | 25992 1.059 + 0.028

Table 4.15: Comparison of SASLA (8 = 0.9) and ES error performance measures

Total presented Cost Saving

Problem Pr patterns (x10%)
glass

SASLA | 131.42 £1.67 | 287906.74 +1847.39 | 176.860996 + 49.938683

ES 67.92 +1.88 183 540.80 +£2037.27 | —4333.405094 + 55.071407
wine

SASLA | 78.00 + 2.88 4511777 £1068.71 | —32.810974 +4.913917

ES 11.16 + 3.46 7766.29 £ 486.73 —290.322597 £ 2.237983
circle

SASLA | 153.93 +14.19 | 100459.60 4= 4430.68 | —1.540722 + 0.797522

ES 79.63 +£12.81 | 31324.80 £1031.40 | —13.985036 + 0.185652

Table 4.16: Comparison of SASLA (8 = 0.9) and ES computational complexity
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Problem ‘ Generalization levels

glass 60% 65% T70% T75% 80% 85% 90%
SASLA | 0% 0% 10% 30% 64%  90%  98%
ES 10% 18% 62% 90% 100% 100% 100%

wine 90% 95% 96% 97% 98% 99% 100%
SASLA | 0% 0% 4% 4% 12%  12%  12%
ES 10% 48% 48% 8% 8% 8% 8%

circle 75% 80% 85% 90% 95%
SASLA | 0% 6% 40% 86% 100%
ES 0% 14% 84% 100% 100%

Table 4.17: Comparison of SASLA (8 = 0.9) and ES convergence results

In conclusion, although ES is computationally more efficient than SASLA, the better conver-

gence and generalization results of SASLA make it the preferred selective learning algorithm.

4.3.6 Conclusive Remarks

Section 4.3 presented a new selective learning algorithm that uses pattern sensitivity infor-
mation to dynamically select those training patterns that contain the most information about
the position of decision boundaries. Although, from the problems investigated in this sec-
tion, it is not possible to label either this selective learning algorithm, SASLA, or FSL as
having a superior generalization performance, SASLA generally showed to be more robust to
overfitting. Furthermore, SASLA required less pattern presentations to reach approximately
the same generalization levels. A major advantage of SASLA is the exponential reduction in
training set size, and consequently a very large saving in computational costs. SASLA also
showed a more favorable convergence rate than FSL for most of the problems, especially for

higher generalization levels.

It was shown that the best value for the selection constant g is in fact problem dependent.
Smaller 8 values do reduce computational effort substantially, but at the cost of degraded

generalization performance.

As stated in section 4.1.1, not much research has been done in selective learning. The available

literature does not contain sufficient information to reproduce experiments for comparative



CHAPTER 4. ACTIVE LEARNING USING SENSITIVITY ANALYSIS 109

purposes. However, a comparison between SASLA and ES has been done, which showed,
for the problems investigated, SASLA to have significantly better generalization and conver-
gence results, while ES did save on computations. The circle problem, with outliers added,

illustrated ES to be affected more by the occurrence of outliers than SASLA.

It is proposed that future research beyond this thesis includes an investigation into the effects
of dynamic § values, and larger subset selection intervals. Such a study may even further

reduce the complexity of SASLA and increase its generalization performance.

4.4 Sensitivity Analysis Incremental Learning

Based on Shannon’s sampling theorem, Malinowski and Zurada showed that there is an
optimal number of training points for which best generalization is obtained, given a NN
architecture and approximation accuracy (assuming continuous target functions on which a
fast Fourier transform can be performed) [Malinowski et al 1993]. It is obvious beneficial to
have such an optimal set of training points to approximate a function. Training time can
be reduced by training on only the absolutely necessary data, and generalization improved,
since the NN learner is not bombarded with confusing data points. However, calculation of
such an optimal training set assumes knowledge of the function to be approximated and the
computationally expensive calculation of the discrete Fourier transform of this function. In
reality, we usually do not have prior knowledge about the function, but only a set of data

points that captures the relationship between input parameters and function output.

Function approximation then involves training the NN on all the available training data.
Section 4.1 discussed why we rather seek to implement mechanisms to trim the training set in
order to train only on those patterns that convey the most information about the function to
be approximated. One paradigm of such pattern selection algorithms is the set of incremental

learning algorithms.

Incremental learning is an active learning strategy where the learner dynamically selects,
during training, the most informative patterns from a candidate training set. Incremental

learning algorithms prune the candidate set, and grows the actual training subset by adding
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to the current training subset those patterns selected and removed from the candidate set.
At each subset selection interval, the learner uses its current knowledge about the function
to select patterns from the candidate set. After pattern selection, training continues on the

increased training subset.

In general, the idea is to select the patterns that have the highest influence on the learn-
ing objective. The selected patterns should maximally decrease the discrepancy between
the approximated function and the true function. Several methods have been developed to
dynamically select the most influential patterns, differing in the measure of pattern infor-
mativeness. Measures of pattern informativeness include pattern error, expected MSE, and

integrated squared bias (refer to section 4.1.1 which surveys these methods).

This section presents the Sensitivity Analysis Incremental Learning Algorithm (SAILA),
which uses pattern sensitivity information as measure of informativeness. First order deriva-
tives of the output units with respect to the input units are used to quantify the influence a
pattern has on the output value of the function approximated by the network. Patterns with
the highest influence on outputs cause the largest changes in weights to achieve maximum
gain in bringing the approximation closer to the true function. In the development of this
algorithm we consider only function approximation problems, including time series. However,
SAILA can be applied to classification problems. Future research will include an empirical

investigation into the applicability of SAILA to classification problems.
This is the first attempt to apply sensitivity analysis to incremental learning.

Section 4.4.1 discusses how sensitivity information can be used to select training patterns. A
mathematical model of SAILA is presented in section 4.4.2, while a pseudocode algorithm of
SAILA is given in section 4.4.3. This section also discusses algorithm design issues, including
subset termination criteria, subset size, etc. The complexity of the algorithm is analyzed in

section 4.4.4, while section 4.4.5 presents experimental results.

4.4.1 Pattern Selection Rationale

The objective of incremental learning is not to bombard the learner with all the information

in the training set at once, but to incrementally present information about the problem - a
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soft approach to learning. The learner is given the opportunity to first master the information
it currently has before receiving more from the teacher (supervisor). In this way the learner
is in control, and guides the learning process to request only information that will maximally

increase its performance.

The selection of new information, or training patterns, must be done in a way to achieve
maximum gain in terms of learning performance and speed of learning. SAILA has the
viewpoint that the derivatives of the learned function embody the information to achieve
this objective. The learner therefore uses the derivatives of the function as reflected by its
current knowledge to guide the search for the most informative patterns. For this purpose
SATLA uses the definition of pattern informativeness (definition 4.2, section 4.2.3) to assign
an informative measure to patterns in the candidate training set. The learner then selects as

new information those patterns with the highest informative measure.

But, what does this really mean? Chapter 2 illustrated in section 2.5 that a FFNN accurately

approximates the first order derivatives of the learned function, using the analytical equations

to calculate 86‘33) (defined in equation (E.6)). By recognizing that the peaks of the derivative
%

of a continuous function represent the areas of the highest tempo of change in that function,
a maximum change in the NN’s weights can be achieved if training starts on patterns that
lie in the region of derivative peaks. This is illustrated next from the sensitivity equations in

appendix E and the learning equations in appendix D, assuming sigmoid activation functions.

From equation (E.6), for a pattern p,

aOk; ’ J '
PRORS FE T wi £ vy (4.26)
i =1

The factors f(gf ) and fg%) ) occur in the equations to calculate weight changes during training.

From equations (D.14) and (D.13),

Ay =n(t — o) [P y; (4.27)
and from (D.21) and (D.20),
! K !
Avji =17 ?g’) (t;cp) — ogcp)) (Sf) Wh;jZ; (4.28)

k=1
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Thus, a change in %ﬁ;, due to a perturbation Az; of zgp ), implies a change A f:g’ ) in ?Sjp )
and a change A fo(f) in fo(f) . This is because the output values y](-p ) of the hidden units and
(p)

the output values o’ of the output units change, since

W= vy
(Sf) _ Ol(cp)(l_ Ol(cp))

! 7 !
Because Awy; fo(f) s Avj; o f(gf) and Avj; féf ) , a maximum change in weights is
Bok
azfp )

achieved for patterns p which have the highest absolute derivatives | |, i.e. the most

informative patterns.

The effect of incrementally selecting and learning the most informative patterns is that the
position of the hidden units are correctly fixed over input space early in training. Since the
objective of learning in function approximation is to fit the hidden units over input space,
much efficiency is gained if this process is speeded up, leaving only the fine tuning of the fit

after the hidden units have been oriented correctly.

The selection of informative patterns is next illustrated with two simple one-dimensional

functions. Performance results are postponed until section 4.4.5.

Function 1

The first illustrative example is to approximate the function f(z) = 2%, where z ~ U(—1,1).
The candidate training set for SAILA consisted of 120 patterns, while FSL had a fixed training
set of 120 patterns. A 1-3-1 NN architecture was used for both FSL and SAILA, with the
same initial conditions. Figure 4.7 plots the NN output for different learning intervals for
both SAILA (see figure 4.7(a)) and FSL (see figure 4.7(b)). For SAILA the NN output is
plotted for different training increments, where an increment is the subset selection interval
when a new pattern is added to the training subset. For FSL the output is plotted for selected

epochs.

Figure 4.7(a) shows that very early in training, at increment 7 (epoch 75) which corresponds
in total to only 399 pattern presentations, SAILA succeeded in approximating the shape of the

target function. FSL only succeeded to approximate the shape of the true function after 170
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Figure 4.7: SAILA and FSL output for f(z) = 22

epochs, or 20400 pattern presentations. The figures also show a much better approximation
to the true function by SAILA compared to FSL. Even after FSL was trained for 1000 epochs
(120000 pattern presentations), its approximation is not as good as that of SAILA, which

was stopped after increment 168 (98 586 pattern presentations, epoch 1000).

Figure 4.8 plots for selected increments the pattern informativeness values for all the patterns
in the complete training set. This figure also indicates the pattern selected at each increment.
Note how these patterns correspond to the peaks of the pattern informativeness graphs. For
this problem a hidden unit is fitted over each side of the parabola. The figure illustrates how
SAILA first selects patterns in the region where the output of each hidden unit is 0.5, then

moving towards the asymptotic ends of the sigmoid activation functions.

Function 2

The next function was chosen to illustrate what happens when the peaks of the true function
varies substantially (and consequently also the peaks of the derivative). The function f(z) =
sin(27z)e™*, as depicted by the solid line in figure 4.9, where z ~ U(—1,1), was trained using

a 1-10-1 NN architecture. The output values were scaled to the range [0, 1]. The fixed training
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Figure 4.8: SAILA pattern informativeness for f(z) = 22

set for FSL and the candidate training set for SAILA consisted of 600 patterns.

The evolution of the approximations by each learning algorithm is illustrated in figure 4.9
for selected increments and epochs. Figure 4.9(a) illustrates that SAILA starts learning the
function from left to right, reason being that the derivatives are much larger on the left
side. After increment 246 (epoch 996), which corresponds to 116 601 pattern presentations,
a very good approximation to the entire function was obtained. In contrast, figure 4.9(b)
shows that FSL had trouble approximating the function. FSL failed even after 1000 epochs,
corresponding to 600000 pattern presentations, to approximate the far right part of the
function. SAILA was successful in this region of the function because the learner explicitly
received information in this region when the corresponding patterns became most informative,

allowing the network to accurately fit the hidden units in this difficult region.

Figure 4.10 plots the pattern informativeness values for each pattern at selected increments.
This figure also shows how SAILA learned the function by first approximating the left side of
the function with the larger derivatives, then gradually moving towards the right side when all
the high sensitivity patterns of the left side have been removed from the candidate set. Note
in the figure how the selected patterns correspond to the peaks of the pattern informativeness

graphs.

The reader may now ask why don’t we simply select those patterns from the candidate set that
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Figure 4.9: SAILA and FSL output for f(z) = sin(27z)e™?

have the highest error as done by Zhang [Zhang 1994] and Robel [Rébel 1994a, Rébel 1994b,
Robel 1994c]. Surely, patterns that have the largest error do lead to large changes in weights
due to the (t,(ep) —ogcp)) term in the weight update equations (see equations (D.13) and (D.20)).
However, this approach steps into trouble when the candidate set contains outlier patterns,
for which a large error will be obtained. Error pattern selection algorithms will select these
outlier patterns early in training. For sensitivity analysis pattern selection, the chance that
outliers will be included in the training set is reduced, since the error term plays no explicit
role in the sensitivity calculations. The inclusion of outliers in the training set depends
on how far they lie from the peaks of the derivative of the approximated function. Recall
that training in SAILA starts with those patterns close to derivative peaks, moving out -
in the limit - to patterns with low sensitivity. Therefore, if outliers are located far from
derivative peaks, their selection is postponed until all patterns with larger sensitivity have
been selected. As illustrated in section 4.4.5, it is possible that training will stop without
including low sensitivity patterns in the training set, thus excluding these outliers from the

training set. It is only when outliers lie in the region of high derivative peaks that SAILA

will include them in the training set.

Important to the success of incremental learning algorithms are subset termination criteria
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Figure 4.10: SAILA pattern informativeness for f(z) = sin(2nz)e™*

and subset sizes. These SAILA design issues are discussed in section 4.4.3.

4.4.2 Mathematical Model

Using the notations and definitions introduced in section 4.2.1, this section defines the SATLA
operator, .Ag ArnA» and shows how this operator is used to select new patterns from the

candidate set D¢ to be added to the training subset Dp. Define the SAILA operator as

Aé srna(De, D, Fyn(Dr; W) = {p € Dc|@®) = q:Ifl?'..XPC{CI)g%)};Vq € D¢, not yet selected}
(4.29)

()

where @ is defined in equation (4.2).

At subset selection interval 75, let Dg, <« .Agf arpa(De, Dr, Fny(Dp; W)). That is, select
from the candidate set D¢ the subset Dg, C D¢, with the number of patterns Ps, = |Dg, |
a fixed size. Then, let Dr <~ Dy U Dg, and D¢ <~ D¢ — Dg,. Therefore, after selection
interval 75, Dy <+ U?:lDst and D¢ < D¢ — Ui'lesz- The effect of the SAILA operator
is therefore to gradually prune the candidate set and to grow the training set, by adding to

the training set all patterns selected and removed from the candidate set.

Training for the next interval is done using the increased training subset Dr. The NN therefore

trains only on Pr = |Dp| patterns which is a subset of the original set of training patterns.
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4.4.3 Incremental Learning Algorithm

A pseudocode algorithm for incremental learning using sensitivity analysis is given below. A
general formulation is given to show SAILA’s applicability to any differentiable activation

function.

1. Initialize weights and learning parameters. Initialize the subset size, Ps_, i.e. the
number of patterns selected from the candidate set. Construct the initial training

subset Dg, C D¢. Let Dy < Dg,.
2. Repeat

(a) Repeat
Train the NN on training subset Dr

until a termination criterion on Dy is triggered (discussed below).

(b) Compute the new training subset Dg, for the next subset selection interval

Ts:

)

i. For each p € D¢, compute the sensitivity matrix S((f;,ki using equation
(E.6) for sigmoid activation functions.
ii. Compute the output sensitivity vector 5‘9’ ) for each p € D¢ from equation
(4.3).
iii. Compute the informativeness ®®) of each pattern p € D¢ using equation
(4.2).
iv. Apply operator .Ajg' A4 in (4.29) to find the subset Dg, of the P, most

informative patterns. Then, let D <— Dr U Dg, and D¢ <~ D¢ — Dg,.

until global convergence is reached.

The algorithm design issues specific to SAILA are discussed next:

e Initial subset selection and size: The SAILA implementation discussed in this thesis

starts training on one pattern, selected from the candidate set D¢ using the operator
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defined in equation (4.29). This choice was made to investigate the efficiency of SAILA

under a conservative initial subset size.

e Subset selection criteria: The SAILA operator A¢ ;7 4, defined in equation (4.29)
embodies the subset selection criterion, which chooses the most informative pattern

based on first order sensitivity information.

e Subset size: SAILA implements a very conservative subset size: at each subset selec-

tion interval, only one new pattern is selected from D¢ and added to Dr.

e Subset termination criteria: The objective of SAILA is to continue training on
the current training set Dr to achieve maximum gain from the new patterns before
requesting new information. However, the learner should not be allowed to memorize
the training subset, and should not spend too much time on Dp without achieving
sufficient gain. For this purpose several termination criteria are incorporated and tested,
after each sweep through D (after each training epoch), to test whether a new pattern

needs to be added:

1. The total number of training sweeps through the current training subset is limited
to make sure that the NN does not indefinitely train on the set without achieving

much.

2. If the error on Dy or the validation set Dy decreases sufficiently (i.e. sufficient
gain is achieved from learning on D7), a new subset is selected. For the current
implementation a new subset is selected when the error is decreased by 80% since
training started on the current training subset. This may sound a bit strict, but
other criteria will stop training on the subset if the learner cannot achieve this

goal.

3. If the average decrease in error per epoch for the current training interval is too
small for the training set D7 or the validation set Dy, a new subset is selected.
This measure will prevent the learner from training on Dt with achieving too little
gain. Also, by considering the error on the validation set, overfitting is avoided.
The current SAILA implementation scales the threshold for the average error per

epoch linearly in the order of magnitude of the training error. The algorithm starts
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with a threshold of 0.001, dividing it by 10 as the order of magnitude of the error
decreases. If the average decrease in error for Dy or Dy is less than this threshold,

a new subset is selected.

4. If the error £y on the validation set increases too much, a new subset is selected.
Currently, Dy is increased when &y > ?V—I—agv, where £y is the average validation
error over the previous epochs, and og, is the standard deviation in validation
error. The goal of this termination test is to prevent the learner from memorizing

the current training subset.

Learning by SAILA therefore amounts to the optimization of the empirical error function
S
E(De; W) =Y _E(U%_ Ds ;W) (4.30)
s=0

by first optimizing £(Dg,; W), then £(Dg, U Dg,; W), then £(Dg, U Dg, U Dg,; W), etc.

4.4.4 Model Complexity

This section analyzes the complexity of SAILA, and compares it to that of FSL. For this
purpose complexity is expressed as the number of calculations and comparisons made during
training. Calculations include additions, subtractions, multiplications and divisions. It is also
assumed that FSL implements a mechanism to avoid overfitting, similar to that implemented
by SAILA. That is, after each epoch the validation error & on the validation set Dy is
calculated to detect overfitting when &y > £y + og, - The cost of evaluation of the errors on
Dr, D¢ and Dy by SAILA is then the same as that by FSL, and can thus be ignored in the

analysis of computational complexity.

Firstly, the computational cost of FSL is summarized from section 4.3.4. The total cost of
learning after £ epochs is, from equations (4.11) and (4.13),
Crsi = ESL(DC)(Cl(/{p/) + ngp))

= ¢Po(cl) +c) (4.31)

To compute the computational cost of SAILA, assume that training starts on Pg, patterns,

that a fixed number of P patterns is selected at each selection interval, that there are in
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total S selection intervals, and each selection interval consists of £; — &s—1 epochs. The total

number of pattern presentations for SAILA after S selection intervals is

S
Tsarra(Dr) =Y (€ —&s-1)(Psy + (s — 1) P) (4.32)

s=1

where &, is the epoch number corresponding to subset selection interval 75, and & = 0.
Equation (4.32) gives the total number of SAILA pattern presentations. The total number
of patterns in Dy after S subset selection intervals is [Dy| = min{SP, Pc}, while |D¢| =
max{Pz — SP,0}.

The total cost of incremental training using sensitivity analysis is

Csarna=Cus Tsara(Dr)(C) + ) (4.33)

I
which is the cost of applying the selection operator S times to the shrinking candidate set,
plus the cost of training on the selected patterns in Dy. The cost of applying the SAILA

operator is expressed as

Abgiia — CA;AILA (DCO) + C‘A}—AILA (Dey) + oo+ CA;_AILA (DCS)
S
- Z CAZAJLA (DCS )
s=1
S Po, S
= 3@ +cP +c)+PY P, (4.34)
s=1p=1 s=1

where D¢, is the candidate set at subset selection interval 7,, and P, is the number of

patterns in the candidate set at selection interval 75,. The total cost to select P patterns from
)

z

the current candidate set for all selection intervals is P Zle P¢,. The cost qu’f,

)

of calculating

(p)

the sensitivity matrix, the cost Cg’ to compute the output sensitivity vector, and the cost Cg

to compute the informativeness of pattern p are respectively derived from equations (4.18),

(4.19) and (4.20):

c? = 3IJK

() _
¢y’ = IK
P = K
Therefore,
S S
Cat,, = > Po,x 3IJK +IK+K)+ P> P, (4.35)

s=1 s=1
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A cost saving using SAILA is obtained when

C = Csarca—Crsi

=C + (Tsarpa(Dr) — Trs(De))(CR) +¢®)) <0 (4.36)

A-SFAILA
The computational complexity of SAILA depends on the subset size P and the number of
subset selection intervals S. This dependency on P and S is not straightforward, but is
based on a few trade-offs. If P is small, the incremental decrease in the size of the candidate
training set is small, and the cost C AL a3 in equation (4.35), is large compared to when
larger subset sizes are used. Also, smaller P may cause more subset selection intervals. On the
other hand, larger P causes less subset selection intervals, but may cause longer training times
on the larger subsets, thereby increasing costs. Equation (4.35) further shows that a large
number of subset selection intervals also increases complexity due to an increased number of
sensitivity evaluations over the current candidate training set D¢,. However, coupled with a
large P, the size of the candidate training set decreases more rapidly, with fewer patterns for

which sensitivity calculations need to be performed.

So, when will SAILA be computationally less expensive than FSL? From equation (4.36),

SATILA needs less computations when
Cas,  + Tsara(Dr)(CF) +C) < Tus (Do) () + ) (4.37)

From section 4.3.4, page 84, (B3IJK +IK+K) < (CI(,‘I;) -I-C‘(f)), and since the number of subset
selection intervals is less than the number of epochs, i.e. S <&, and Pg, < Pc, we have that
Zle Pc, < €Pc. Then, for the current SAILA implementation where P = 1, C AL s
TFSL(DC)(Cl(/[Z;) + C‘(f)). Equation (4.37) will then be true when Trsr(D¢) >> Tsarpa(Dr),
since TFSL(Dc)(CI(,‘I;) + C‘(}’)) >> 7E‘AILA(DT)(C1(/€) + C‘(f)). The experimental results reported

in the next section show this to be true.

4.4.5 Experimental Results

The objective of this section is to study the performance of SAILA through comparison
of its generalization, overfitting, convergence and complexity with that of FSL. Two one-

dimensional, one two-dimensional and two time series problems were used as benchmarks. The
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Train/Test/ Learning | Momen- | Maximum | Archi-
Problem | Equation | Validation Sets | Rate tum Epochs tecture
F1 (4.38) 120/40/40 0.1 0.9 2000 1-3-1
F2 (4.39) 600/200/200 0.1 0.9 2000 1-10-1
F3 (4.40) 600,/200/200 0.1 0.9 2000 2-5-1
TS1 (4.41) 600/200/200 0.05 0.9 4000 2-5-1
TS2 (4.42) 180/60/60 0.05 0.9 1000 10-10-1

Table 4.18: Summary of the functions used to test SAILA

characteristics of these problems are described below, as well as the experimental procedure.
An overview of the performance measures are given, after which the results of the experiments

are presented.

While this section compares SAILA with normal fixed set learning, the author acknowledges
the importance of detailed comparisons of SAILA with other incremental learning algorithms.
Such a comparative study is currently being done by a master’s student under the author’s

supervision. The interested reader is referred to [Adejuma 1999].

Experiments

Function approximation problems of varying complexity are selected to test the performance
of the proposed incremental learning algorithm. The problems differ in input dimensions, the
number of hidden units needed to solve the problem, and the smoothness of the function. A
summary of these problems is presented in table 4.18. Figures 4.11 and 4.12 visualize each
of the functions and time series. The learning parameters for each problem are also listed in

table 4.18.

The architectures given in table 4.18 are not optimal for these problems. Oversized archi-
tectures were used to allow an investigation into the overfitting effects of the two learning
algorithms. Figures 4.11 and 4.12 illustrate each problem, and serve as an indication of the
complexity of the problems. A symbolic label is given for each problem for easy reference.

Each function and time series is described next.
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Figure 4.11: Functions used to test SAILA
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Figure 4.12: Time series used to test SAILA
Function F1 is defined as
Fl1: f(2)=2* (4.38)

where z ~ U(—1,1). All the output values are in the range [0, 1], and no noise was added.
This function is illustrated in figure 4.11(a).
Function F2, as illustrated in figure 4.11(b), is defined as

F2: f(z)=sin(2mz)e * +( (4.39)
where z € U(—1,1), and ¢ ~ N(0,0.1). Output values were scaled to the range [0, 1].
Function F3, which is illustrated in figure 4.11(c), is defined as

: _ Lo o
F3: f(z,2)= 2(z1 + 23) (4.40)

where 21,20 ~ U(—1,1), and all outputs are in the range [0, 1].

The henon-map, represented by figure 4.12(a), was selected as one of the time series problems

to test SAILA. This times series, labelled TS1, is defined as

TSl:Ot = Zt

2zt = 140329 — 1422 (4.41)
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where z1, 20 ~ U(—1,1). The output values o; were scaled such that o; € [0, 1].

The last problem was a difficult time series with irrelevant parameters taken from

[Cibas et al 1994a, Cibas et al 1994b, Cibas et al 1996], and is defined as

TSQ:Ot = Zt

2z = 0326 —0.62p_4 +0.52,—1 +0.322_¢ — 0.227_, + (4.42)

where z; ~ U(—1,1) for t = 1,---,10, and {; ~ N(0,0.05) is zero-mean noise sampled from
a normal distribution. All output values were scaled to the range [0,1]. This more difficult

time series problem is illustrated in figure 4.12(b).

Experimental Procedure

The experimental procedure followed in this section is very similar to that of section 4.3.5.
For each function, or experiment, 50 simulations were executed for both SAILA and FSL. The
results reported are averages over these simulations. NNs that correspond to the simulations
of a simulation pair had the same architecture, learning parameters, initial weights, and
candidate training, test and validation sets. The candidate training set D¢, test set Dg
and validation set Dy were randomly created such that Do N Dg = 0 and Dc N Dy = 0.

Table 4.18 summarizes the sizes of these data sets.

Performance Measures

The performance of SAILA is investigated through analysis of its generalization, training time,
complexity and convergence. Generalization is expressed as the mean squared error (MSE) on
the test sets. Robel’s generalization factor is used to illustrate the overfitting characteristics
of the learning models (refer to section 4.2.2, page 73). Since the MSE is used as measure of
the accuracy of the function approximation, a generalization factor p > 1 indicates that the
generalization error £z is larger than the training error £7. Therefore, if p increases during
training, it serves as an indication that the learner is overfitting the training set (only when
p > 1). When p decreases, the overfitting effects are reduced. If, at any learning interval,

the generalization factor of one learning algorithm is larger than the generalization factor of
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another, it does not mean that the former algorithm overfits more than the latter. Overfitting

can only be concluded if p increases substantially above 1.

Training time is expressed as the number of pattern presentations, while the total number
of calculations and comparisons as expressed in equation (4.36) serves as measure of com-
putational complexity. The convergence characteristics of the two learning algorithms are
evaluated as the percentage of the simulations that did not converge to specific generalization

levels.

Results

This section presents results of the application of the sensitivity analysis incremental learning
algorithm to the functions summarized in table 4.18 and figures 4.11 and 4.12. (An expla-
nation of the working of SAILA was presented in section 4.4.1.) The results are summarized
under four headings: generalization performance, overfitting effects, complexity and

convergence.

Generalization Performance

Table 4.19 presents a summary of the training and generalization performances of SAILA and
FSL for all functions and time series problems. The results listed are averages over the 50
simulations, together with 95% confidence intervals, as obtained at the final epoch (as given
in table 4.18). Values in parentheses are estimates of the difference in performance between
SASLA and FSL, calculated similarly to that of SASLA in equation (4.25). Generalization

and training errors are expressed as the MSE over the respective data sets.

Table 4.19 show that SAILA performed significantly better than FSL for functions F1 and
F3, and time series TS1. Although FSL performed better than SAILA for function F2, it
is by a very small margin. For time series TS2, FSL had significantly lower training error
than SAILA, but the two algorithms obtained very similar generalization performances (FSL

severely overfitted the training set as discussed below).

Figures 4.13 and 4.18, which plot accuracy as a function of the number of pattern presentations
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Presen-
g = —best

Problem Er Ea Ea tation D

F1 (—0.123 + 0.040) | (—0.119 + 0.039) (0.063 + 0.046)
SAILA | 0.037 £ 0.003 0.039 + 0.003 0.039 | 179260 | 1.069 =+ 0.053
FSL | 0.160 & 0.040 0.158 = 0.040 0.158 | 42120 | 1.007 = 0.043

F2 (0.008 = 0.005) | (0.009 = 0.005) 0.035 =+ 0.024
SAILA | 0.035 + 0.004 0.036 == 0.004 0.036 | 100000 | 1.032 & 0.021
FSL | 0.027 £ 0.003 0.027 + 0.003 0.030 | 385800 | 0.997 + 0.018

F3 (—0.044 + 0.023) | (—0.045 £ 0.024) (—0.015 £ 0.029)

SAILA | 0.011 £ 0.003 0.013 £ 0.003 0.006 | 182250 | 1.004 £ 0.025
FSL 0.055 £+ 0.023 0.056 £ 0.024 0.057 | 560400 | 1.019 +0.024

TS1 (—0.080 + 0.034) | (—0.081 +0.034) (—0.004 £+ 0.016)
SAILA | 0.003 £ 0.0005 0.003 £ 0.0005 0.004 | 212540 1.013 £ 0.017
FSL 0.083 £ 0.034 0.084 £ 0.034 0.085 | 363000 1.016 + 0.012

TS52 (0.019 + 0.003) (0.006 + 0.005) (—2.3034 £ 0.795)
SAILA | 0.029 £ 0.003 0.033 £ 0.005 0.026 | 49820 1.252 £ 0.208
FSL 0.009 £ 0.001 0.027 £ 0.004 0.027 | 180000 | 3.555 £ 0.797

Table 4.19: Comparison of SAILA and FSL error performance measures

respectively for the functions and time series problems, illustrate that the generalization
performance of SAILA was consistently better than that of FSL for all problems except
for function F2 and time series TS2. Figure 4.13(b) does show that SAILA and FSL had
approximately the same accuracies per pattern presentation for function F2. SAILA initially
had a better generalization than FSL for time series T'S2, but at the final epoch FSL achieved

a slightly better generalization (refer to 4.18(b)).

Overfitting Effects

The effectiveness and importance of the validation error subset termination criteria to control
overfitting are very evident from figures 4.14 and 4.19. These figures show how the generaliza-
tion factor p for the two learning algorithms evolved during training. A prominent fluctuating
overfitting characteristic is observed for SAILA. As soon as overfitting increased too much, a
new training subset was selected. The selection of training subsets then continued until the
overfitting effects were reduced. For all the problems p for SAILA was close to 1 which indi-

cates no severe overfitting. FSL exhibited the same overfitting characteristics for all functions
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except time series T'S2 (figure 4.19(b)), for which FSL substantially overfitted since training
started (also refer to table 4.19 which show that FSL had a very high average generalization
factor of 3.555 at the final epoch). After 60000 presentations, FSL started to overfit function
F2 (figure 4.14(b)), having a continuous increase in p. For function F3 (figure 4.14(c)) a
generalization factor less than 1 was obtained for SAILA throughout training, whereas FSL

achieved this only after 34 500 pattern presentations.

Complexity

Using equation (4.36) to calculate the cost saving by using SAILA instead of FSL, table 4.20
illustrates that SAILA was computationally much less demanding than FSL. For all the
experiments SAILA required much less pattern presentations, which resulted in the large
cost savings - even for the conservative subset size of one pattern. For all problems, except
function F1, the savings in computational cost by using SAILA increased linearly as a function
of the epochs. Figure 4.16 shows that the computational cost for function F1 did not follow
this trend. For function F1, FSL became computationally more efficient than SAILA after
1114 epochs (corresponding to 133680 FSL pattern presentations). At this point most of
the patterns from the candidate set have been selected (refer to figure 4.17(a)). However,
FSL did not really gain anything, since SAILA achieved a much lower error than FSL, even
after 4060 SAILA pattern presentations (corresponding to 263 epochs, using only 33 of the

candidate patterns for training). At this point SAILA was less expensive to use.

The cost effectivity of SAILA is further illustrated in the fifth column of table 4.20, which
lists the number of presentations required by the different algorithms to reach their best gen-
eralization performances. For all problems, except function F1, SAILA used substantially less
presentations to reach its best generalization. Note that although FSL used less presentations,

its best generalization is higher than that of SAILA.

The lower computational cost by SAILA was made possible by the fact that SAILA used only
a small percentage of the candidate set to achieve its good generalization results. Figure 4.17
shows how the size of the actual training set growed during training for each of the problems.

Table 4.21 shows for selected epochs the percentage of the original candidate set that was used
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Total presented Cost Saving
Problem Pr patterns (x10%)
F1
SAILA | 120 185627.34 + 5823.73 | —8.013119 + 0.838617
FSL 120 240000
F2
SAILA | 97.34 £13.14 | 156720.27 £ 10302.30 | —584.538752 + 9.664226
FSL 600 1200000
F3
SAILA | 107.02 £ 8.50 | 105220.36 +£8053.00 | —319.836765 + 2.404214
FSL 600 1200000
TS1
SAILA | 252.92 + 23.87 | 436 258.54 + 36 259.02 | —573.114675 + 10.935313
FSL 600 1200000
TS2
SAILA | 85.48 £9.93 31428.68 + 3830.49 —209.530168 £ 5.986019
FSL 180 180000

Table 4.20: Comparison of SAILA and FSL computational complexity

by SAILA for training. This table also shows in comparison with FSL how many patterns

were in the training subset at the final epoch (as given in table 4.18), and the point of best

average generalization performance. Except for function F1, SAILA used substantially less

patterns than the size of the candidate set to reach its best generalization errors.

Number of Patterns
Growth after epoch in in Dr at at best

Problem | 50 200 600 1000 2000 | Do final epoch generalization
Fi 59% 18.8% 72.0% 92.8% 100% | 120 120 100

F2 1.1% 29% 9.8% 12.6% 16.2% | 600 97 97

F3 0.5% 09% 52% 9.1% 16.8% | 600 107 98

TS1 0.4% 05% 3.0% 7.0% 16.9% | 600 253 235

TS2 1.0% 14% 20.5% 47.5% - 180 85 50

Table 4.21: Training subset growth by SAILA
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Convergence

The convergence performance of SAILA is compared to that of FSL in figures 4.15 and 4.20.
These figures plot the percentage of simulations that did not reach specific generalization
errors. SAILA had exceptionally better convergence results than FSL for function F1 (fig-
ure 4.15(a)) and time series TS1 (figure 4.20(a)). For function F1, FSL failed to converge even
for high generalization levels of 0.1 (42% of the simulations did not converge at this level).
SAILA, on the other hand, had a 100% convergence up to a 0.054 generalization level. For
time series TS1, FSL also had non-convergent simulations from a high generalization level of
0.1 (32% of the simulations did not converge), whereas SAILA had a 100% convergence up to
a level of 0.01. For function F3 (figure 4.15(c)) SAILA had much better convergence results
than FSL up to a generalization level of 0.005, after which FSL performed better. For this
problem FSL also started to have non-convergent simulations from a generalization error of
0.1, for which 20% of the simulations did not converge. SAILA had non-convergent simula-
tions only from a level of 0.028. The convergence results for time series TS2 (figure 4.20(b))
were very similar for the two learning algorithms. For function F2 (figure 4.15(b)) FSL showed
better convergence than SAILA.

In general, SATLA had very good convergence properties compared to FSL.

Conclusive Remarks

Section 4.4 presented a new incremental learning algorithm that uses pattern informativeness
to select from a candidate set the patterns that convey the most information about the
function being approximated. The problems investigated in this section show that SAILA
presented exceptionally well generalization results compared to FSL, and exhibited good
convergence results compared to that of FSL. The results presented show a definite saving in

computational cost using SAILA.

The results presented were for a conservative subset size of only one pattern. It is proposed

that future research beyond this thesis includes an investigation into larger subset sizes.

Results published in the literature for the incremental learning algorithms overviewed in
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ol

Algorithm | Epoch | &r Ea

| | Pr
SAILA 2000 0.003 £ 0.0002 | 0.003 £ 0.0002 | 100 +9
Robel 2000 0.004 +0.001 | 0.003 £0.001 | 69+ 10

Table 4.22: Comparison of SAILA with Robel on henon-map

section 4.1.1 are not appropriate for comparison with SAILA, since incomplete information
about the experimental procedures are given in these publications. This prompted the author
of this thesis to commission a masters student to perform an in-depth comparison of the
performances of incremental learning algorithms under clean and noisy data [Adejuma 1999].
However, a single set of results from [R6bel 1994b], concerning the henon-map (TS1), can be
compared with that of SAILA. Table 4.22 concludes this section to show that very similar
performance results were obtained by the two incremental learning algorithms. The results
show Robel to have a larger variance in performance than SAILA, whose results are more

concentrated around the average performance.

4.5 Conclusion

This chapter presented two new active learning algorithms: a selective learning algorithm
for classification problems (SASLA), and an incremental learning algorithm for function ap-
proximation problems (SAILA). These active learning algorithms use a measure of pattern
informativeness to dynamically select, during training, those patterns from a candidate set
that convey the most information of the problem being learned. First order derivatives of
the NN output function with respect to input parameters is used to quantify the informative-
ness of patterns. For classification problems the most informative patterns lie closest to the
decision boundaries, and encapsulate the optimal position of these boundaries. For function
approximation problems the most informative patterns describe the areas of the approximated
function where the tempo in change of the function output is very high. These patterns cause

the largest changes in weights.

The selective learning algorithm starts training on the entire candidate set and prunes unin-

formative patterns from the training set, while incremental learning starts on a subset of the
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candidate set and incrementally adds the most informative patterns.

The results presented showed both approaches to be very effective, resulting in good general-
ization performance compared to FSL. The new algorithms exhibited good convergence and
overfitting properties. Both active learning approaches resulted in a substantial reduction in

computational cost compared to FSL.
The implementations discussed in this chapter make use of very conservative design choices,
and were applied to feedforward NNs only. Research beyond this thesis will include
e an investigation of the performance of the algorithms for less restrictive values of the
subset sizes;
e the implementation of dynamic g values for SASLA;
e an investigation into the applicability of SAILA to classification problems;

e a study of the application of the proposed active learning algorithms to different NN
types, including recurrent NNs, functional link NNs and product unit NNs; and

e a study of the performance of the algorithms under different levels of noise and the

occurrence of outlier patterns in the training set.

A comparative study of different incremental learning algorithms (including SAILA) is cur-

rently being done by Adejuma [Adejuma 1999].



CHAPTER 4. ACTIVE LEARNING USING SENSITIVITY ANALYSIS

Average Mean Squared Error

03
0.28
0.26
0.24
0.22

0.2
0.18
0.16
0.14

0}
01h
0.08 |

0.06
0.04
0.02

T T T
FSL training ——
FSL generalization ------ ]
SAILA training ------- |
SAILA generalization

Average Mean Squared Error

18000 36000 54000 72000 90000 108000 126000 144000 162000 180000
Number of presentations

(a) Function F1

02

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
0

133

T T T
FSL training ——
FSL generalization ------
SAILA training
SAILA generalization

10000

20000 30000 40000 50000 60000 70000 80000 90000 100000
Number of presentations

(b) Function F2

02 T T
FSL training ——
FSL generalization ------
018 - SAILA training ------- 1
! SAILA generalization
0.16 - ¥

0.14

0.08

0.06 -

Average Mean Squared Error
o
=
T

0.04

0 L L L L L

0 5000

10000 15000 20000 25000 30000 35000 40000 45000 50000

Number of presentations

(c¢) Function F3

Figure 4.13: Average MSE vs presentations for function approximation problems



CHAPTER 4. ACTIVE LEARNING USING SENSITIVITY ANALYSIS 134

5 5
LA L O S e g
@ @
w w
c c
9 9
d d
N N
@ @
[} [}
c c
[} [}
V] V]
1 1 1 1 1 1 1 1 098 1 1 1 1 1 1 1 1 1
0 20000 40000 60000 80000 100000 120000 140000 160000 180000 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Number of Pattern Presentations Number of Pattern Presentations
(a) Function F1 (b) Function F2

Generalization Factor

096 1 1 1 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Number of Pattern Presentations

(c¢) Function F3

Figure 4.14: Average generalization factor vs generalization levels for function approximation
problems



CHAPTER 4. ACTIVE LEARNING USING SENSITIVITY ANALYSIS 135

100 ¥ t T T T 100 ¥ T T
+ FSL + + FSL +
o0l SAILA | o0l . SAILA |

70 + R 70 E
60 b 60 + E
40 R 40 * R
30 R 30 R

0t -

Percentage Simulations Not Converged
[$a}
o
T
!
Percentage Simulations Not Converged
[$a}
o
T
4+
!

w0 {1 ot -

i
| | | | 1 J. L J. J. 0 | | | | i )

0 00l 002 003 004 005 006 007 008 009 01 0 00l 002 003 004 005 006 007 008 009 01
Generalization Level (MSE) Generalization Level (MSE)

(a) Function F1 (b) Function F2

100 T ‘
FSL +

0l SAILA |

80 - k
70
60 [ e £+ + o B
50 ifww LARR B
40 -

30 + 1

HH+
e+t

HH+

20 -

Percentage Simulations Not Converged

10 k

0 | | . L L
0 0.01 0.02 0.03 0.04 0.05 0.06
Generalization Level (MSE)

(c¢) Function F3

Figure 4.15: Percentage simulations that did not converge to generalization levels for function
approximation problems



CHAPTER 4. ACTIVE LEARNING USING SENSITIVITY ANALYSIS

Number of patterns used

130
120
110
100
90
80
70
60
50
40
30
20
10
0

80 T T T T T

SAILA Cost Saving in Number of Calculations (x1000000)

10 | | | | |

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Epoch

Figure 4.16: SAILA cost saving for function F1

T 260

Function F1 —— 240

Function F3

{1 =
o
180
160
40
120
100
%

k 40

Number of patterns used

I Time Series TSI ——

0

| | |
200 400 600 800 1000 1200 1400 1600 1800 2000

Epoch

(a) For function approximation problems

0
0

400

800

| | | | |
1200 1600 2000 2400 2800 3200 3600 4000

Epoch

(b) Function F2

Figure 4.17: Average number of patterns used per epoch by SAILA

136



CHAPTER 4.

02

0.18

0.16

0.14

0.12

01

0.08

0.06

Average Mean Squared Error

0.04

0.02

Generalization Factor

0.98

I I FSLtrIa\ning —
| FSL generalization ----- |
SAILA training ------
SAILA generalization
8
- i
T
o
r 5
3
o
i 0
c
o
0
L 2
0]
o
g
B 10
\ >
<
\\

L ~ B J

1 1 T B
0 40000 80000 120000 160000 200000

Number of presentations

(a) Time Series TS1

01

0.09

0.08

0.07

0.06

0.05

ACTIVE LEARNING USING SENSITIVITY ANALYSIS

T T T
FSL training ——
FSL generalization
SAILA training
SAILA generalization

137

18000 36000 54000 72000 90000 108000 126000 144000 162000 180000

Number of presentations

(b) Time Series TS2

Figure 4.18: Average MSE vs presentations for time series problems

Generalization Factor

0

40000 80000 120000

Number of Pattern Presentations

160000 200000

(a) Time Series TS1

2.14

1.94

174

154

1.34

114

7200 14400 21600 28800 36000 43200 50400 57600 64800 72000

Number of Pattern Presentations

(b) Time Series TS2

Figure 4.19: Average generalization factor vs generalization levels for time series problems



CHAPTER 4. ACTIVE LEARNING USING SENSITIVITY ANALYSIS 138
100 ‘ ‘ ‘ 100 — ‘
X FSL + ' FSL
t+ SAILA + SAILA

Wt e, 1
° + kel +
o or 5 8t 1
8 70 . 8 70 ++ R
g r g i
i 60 - | i 60 - o g
5 . : :
i 50 |- L i 50 |- k
E W E +
@ 40+ www G 40+ ++ E
o B O S Y P o 4
g f g 0 + .
< c +H
; ;
ot 5 201 T A
s s |

0f 0f e 1

4
i
0 I I i i f | L | | 0 I I I Pt ! !
0 0002 0004 0006 0008 001 0012 0014 0016 0018 002 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Generalization Level (MSE)

(a) Time Series TS1

Generalization Level (MSE)

(b) Time Series TS2

Figure 4.20: Percentage simulations that did not converge to generalization levels for time

series problems



Chapter 5

Architecture Selection using

Sensitivity Analysis

“Plurality is not to be assumed without necessity”

-William of Ockham (1285-1349)

This chapter presents an algorithm to prune feedforward NN architectures using sensitivity
analysis. Sensitivity information is used to quantify the significance of input and hidden units,

and a statistical test based on variance analysis is used to decide which units to prune.

5.1 Introduction

Generalization is a very important aspect of neural network learning. Since it is a measure of
how well the network interpolates to points not used during training, the ultimate objective
of NN learning is to produce a learner with low generalization error. That is, to minimize the

true risk function

Ea(W) = / (Frw (5, W) — 24Oz, 1) (5.1)

where, from chapter 1, Q(Z,t-) is the stationary density according to which patterns are
sampled, W describes the network weights, and Z and ¢ are respectively the input and target

vectors. The function Fyx is an approximation of the true underlying function. Since {2 is
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generally not known, Fnn is found through minimization of the empirical error function

i(fNN(z(m, W) —#P))? (5.2)

p=1

1

Er(Dr; W) = Pr

over a finite data set Dy ~ Q. When Pr — oo, then &7 — 5. The aim of NN learning is
therefore to learn the examples presented in the training set well, while still providing good
generalization to examples not included in the training set. It is however possible that a NN
exhibits a very low training error, but bad generalization due to overfitting (memorization)

of the training patterns.

This trade-off between training error and generalization has prompted many research in
the generalization performance of NNs. Average generalization performance has been
studied theoretically to better understand the behavior of NNs trained on a finite data
set. Research shows a dependence of generalization error on the training set, the net-
work architecture and weight values. Chapter 4, and the references therein, illustrated
the influence of the training set on generalization performance. Schwartz, Samalam, Solla
and Denker show the importance of training set size for good generalization in the con-
text of ensemble networks [Schwartz et al 1990]. Other research uses the VC-dimension
[Abu-Mostafa 1989, Abu-Mostafa 1993, Cohn et al 1991, Opper 1994] to derive bounds on
the generalization error as a function of network and training set size. Best known are the
bounds derived by Baum and Hausler [Baum et al 1989] and Hausler, Kearns, Opper and
Schapire [Haussler et al 1992]. While these bounds are derived for, and therefore limited to,

discrete input values, Hole derives generalization bounds for real valued inputs [Hole 1996].

Bounds on generalization have also been developed by studying the relationship between
training error and generalization error. Based on Akaike’s Final Prediction Error (FPE)
and Information Criterion (AIC) [Akaike 1974], Moody derives the Generalized Prediction
Error (GPE) which gives a bound on the generalization error as a function of the training
error, training set size, the number of effective parameters, and the effective noise variance
[Moody 1992, Moody 1994a]. Murata, Yoshizawa and Amari derive a similar Network In-
formation Criterion [Murata et al 1991, Murata et al 1994a, Murata et al 1994b]. Using a
different approach, i.e. Vapnik’s Bernoulli theorem, Depenau and Mgller derive a bound as a

function of training error, the VC-dimension and training set size [Depenau et al 1994].
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These research results give, sometimes overly pessimistic, bounds that help to clarify the
behavior of generalization and its relationship with architecture, training set size and training
error. Another important issue in the study of generalization is that of overfitting. Overfitting
means that the NN learns too much detail, effectively memorizing training patterns. This
normally happens when the network complexity does not match the size of the training set, i.e.
the number of adjustable weights (free parameters) is larger than the number of patterns. If
this is the case, the weights learn individual patterns, and even capture noise. This overfitting
phenomenon is the consequence of training on a finite data set, minimizing the empirical error
function given in equation (5.2), which differs from the true risk function given in equation

(5.1).

Amari et al developed a statistical theory of overtraining in the asymptotic case of large
training set sizes [Amari et al 1995, Amari et al 1996]. They analytically determine the ratio
in which patterns should be divided into training and test sets to obtain optimal generalization
performance and to avoid overfitting. Overfitting effects under large, medium and small
training set sizes have been investigated analytically by Amari et al [Amari et al 1995] and

Miller et al [Miller et al 1995].

Remedies of overfitting have been studied theoretically and empirically:

e Training set size: The best way to avoid overfitting is to use a large training set.
From the central limit statement [Mitchell 1997], the empirical error function converges
to the true risk function as the number of training patterns tends to infinity. Amari
et al show that if the training set contains at least 30 times as many patterns as there
are weights, the network is unlikely to suffer from overfitting [Amari et al 1995]. For
noise free data, less patterns may be sufficient. While large training set sizes do prevent
overfitting, chapter 4 showed that redundancy in large training sets may also lead to
overfitting. Therefore, provided that large training sets do not contain redundancy,

effects of overfitting can be reduced.

e Estimations of generalization ability: During training, the generalization error
is constantly monitored to stop training as soon as performance deteriorates. Two

methods of generalization estimation have been used, i.e. early stopping and theoretical
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generalization bounds:

— Early stopping (stopped training) [Amari et al 1995, Hassoun 1995,
Reed 1993, Sarle 1995]: It is generally observed from simulations that general-
ization initially decreases early in training, reaches a minimum, and then starts to
increase, while the training error continues to decrease. The ideal is to stop train-
ing when the generalization error starts to increase, i.e. when overfitting steps in.
To find this point of overfitting, patterns not used in the test set are divided into a
training set and a validation set. During training, the validation set - which is not
used for weight adjustments - is used to estimate the generalization performance.
Training is stopped at the point where the validation error is minimized.

Early stopping is fast and easy to implement. Sarle shows empirically that early
stopping is efficient [Sarle 1995]. However, the technique is impractical for small
data sets, since the sizes of the training and validation sets will be insufficient.
Early stopping is also plagued by the question of how many patterns should be
allocated to the validation set. Sarle presents answers to this question for single
input problems [Sarle 1995], while Amari et al present a theoretical analysis to

determine the optimal sizes of the training and validation sets [Amari et al 1995].

— Generalization bounds: Theoretical generalization bounds, as overviewed
earlier in this chapter, can be used to estimate the generalization error
during training [Baum et al 1989, Depenau et al 1994, Hole 1996, Moody 1992,
Murata et al 1994a, Murata et al 1994b]. When the generalization error exceeds
the estimates, training should be stopped. This approach may not always be ef-

fective, since these bounds are usually overly pessimistic.

e Noise: Artificial noise is added to inputs during training [Holmstrom et al 1992]. Pro-
vided that the noise is sampled from a distribution having small variance and zero mean,
it can be assumed that the resulting changes in network output have insignificant con-
sequences. The addition of noise to existing patterns effectively generates new training

patterns, thereby reducing the chances of overfitting.

e Architecture Selection: Referring to one of Ockham’s statements, if several networks

fit the training set equally well, then the simplest network (i.e. the network with the
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smallest number of weights) will on average give the best generalization performance
[Thodberg 1991]. This hypothesis has been investigated and confirmed by Sietsma
and Dow [Sietsma et al 1991]. A network with too many free parameters may actually
memorize training patterns and may also accurately fit the noise embedded in the
training data, leading to bad generalization. Overfitting can thus be prevented by
reducing the size of the network through elimination of individual weights or units.
The objective is therefore to balance the complexity of the network with goodness of
fit of the true function. This process is referred to as architecture selection. Several
approaches have been developed to select the optimal architecture, i.e. regularization,
network construction (growing) and pruning. These approaches will be overviewed in

more detail below.

This thesis considers architecture selection as one of the remedies for overfitting. Learning
is not just perceived as finding the optimal weight values, but also to find the optimal ar-
chitecture. However, it is not always obvious what architecture is the best. Finding the
ultimate best architecture requires a search over all possible architectures. For large net-
works an exhaustive search is prohibitive, since the search space consists of 2% architectures,
where w is the total number of weights [Moody et al 1995]. Instead, heuristics are used to
reduce the search space. A simple method is to train a few networks of different architec-
ture and to choose the one which results in the lowest generalization error as estimated
from the GPE [Moody 1992, Moody 1994a] or the Network Information Criterion (NIC)
[Murata et al 1991, Murata et al 1994a, Murata et al 1994b]. This approach is still expen-
sive and requires many architectures to be investigated to reduce the possibility that the
optimal model is not found. The NN architecture can alternatively be optimized by trial and
error. An architecture is selected, and its performance is evaluated. If the performance is
unacceptable, a different architecture is selected. This process continues until an architecture

is found which produces an acceptable generalization error.

Other approaches to architecture selection are divided into three categories:

¢ Regularization: Neural network regularization involves the addition of a penalty term

to the objective function to be minimized. In this case the objective function changes



CHAPTER 5. ARCHITECTURE SELECTION USING SENSITIVITY ANALYSIS 144

to

£ =Er+ Nc (5.3)

where &7 is the usual measure of data misfit, and £¢ is a penalty term, penalizing
network complexity (network size). The constant A controls the influence of the penalty
term. With the changed objective function, the NN now tries to find a locally optimal
trade-off between data-misfit and network complexity. Neural network regularization
has been studied rigorously by Girosi, Jones and Poggio [Girosi et al 1995], and Williams
[Williams 1995].

Several penalty terms have been developed to reduce network size automatically during
training. Weight decay, where £¢ = %Zw?, has as objective to drive small weights
to zero [Bos 1996, Hanson et al 1989, Kamimura et al 1994a, Krogh et al 1992]. It is a
simple method to implement, but suffers from penalizing large weights at the same rate
as small weights. To solve this problem, Hanson and Pratt propose the hyperbolic and
exponential penalty functions which penalize small weights more than large weights
[Hanson et al 1989]. Nowlan and Hinton developed a more complicated soft weight
sharing, where the distribution of weight values is modeled as a mixture of multiple
Gaussian distributions [Nowlan et al 1992]. A narrow Gaussian is responsible for small
weights, while a broad Gaussian is responsible for large weights. Using this scheme,

there is less pressure on large weights to be reduced.

Weigend, Rumelhart and Huberman propose weight elimination where the penalty func-

w} /wg

tion EC = W,
1

effectively counts the number of weights [Weigend et al 1991].
Minimization of this objective function will then minimize the number of weights. The
constant wg is very important to the success of this approach. If wg is too small, the
network ends up with a few large weights, while a large value results in many small

weights. The optimal value for wy can be determined through cross-validation, which

is not cost effective.

Chauvin introduces a penalty term which measures the “energy spent” by the hidden
units, where the energy is expressed as a function of the squared activation of the hidden
units [Chauvin 1989, Chauvin 1990]. The objective is then to minimize the energy spent

by hidden units, and in so doing, to eliminate unnecessary units.
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Kamimura and Nakanishi show that, in an information theoretical context, weight decay
actually minimizes entropy [Kamimura et al 1994a]. Entropy can also be minimized
directly by including an entropy penalty term in the objective function [Kamimura 1993,
Kamimura et al 1994b]. Minimization of entropy means that the information about
input patterns is minimized, thus improving generalization. For this approach entropy is
defined with respect to hidden unit activity. Schittenkopf, Deco and Brauer also propose
an entropy penalty term and show how it reduces complexity and avoids overfitting

[Schittenkopf et al 1997].

Yasui develops penalty terms to make minimal and joint use of hidden units by multiple
outputs [Yasui 1997]. Two penalty terms are added to the objective function to control
the evolution of hidden-to-output weights. One penalty causes weights leading into an
output unit to prevent one another from growing, while the other causes weights leaving

a hidden unit to support one another to grow.

While regularization models are generally easy to implement, the value of the constant
A in equation (5.3) may present problems. If A is too small, the penalty term will have
no effect. If A is too large, all weights might be driven to zero. Regularization therefore
requires a delicate balance between the normal error term and the penalty term. An-
other disadvantage of penalty terms is that they tend to create additional local minima
[Hanson et al 1989], increasing the possibility of converging to a bad local minimum.
Penalty terms also increase training time due to the added calculations at each weight
update. In a bid to reduce this complexity, Finnoff, Hergert and Zimmermann show
that the performance of penalty terms is greatly enhanced if they are introduced only

after overfitting is observed [Finnoff et al 1993].

e Network construction (growing): Network construction algorithms start train-
ing with a small network and incrementally add hidden units during training
when the network is trapped in a local minimum [Fritzke 1995, Hirose et al 1991,
Huang 1994, Hining 1993, Jutten et al 1995b, Kwok et al 1995, Moody et al 1996,
Wynne-Jones 1992]. A small network forms an approximate model of a subset of the
training set. Each new hidden unit is trained to reduce the current network error -

yielding a better approximation. Crucial to the success of construction algorithms is
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effective criteria to trigger when to add a new unit, when to stop the growing process,
where and how to connect the new unit to the existing architecture, and how to avoid
restarting training. If these issues are treated on an ad hoc basis, overfitting may occur

and training time may be increased.

e Network pruning: Neural network pruning algorithms start with an oversized network
and remove unnecessary network parameters, either during training or after convergence
to a local minimum. Network parameters that are considered for removal are individual
weights, hidden units and input units. The decision to prune a network parameter is
based on some measure of parameter relevance or significance. A relevance is computed
for each parameter and a pruning heuristic is used to decide when a parameter is
considered as being irrelevant or not. A large initial architecture allows the network to
converge reasonably quickly, with less sensitivity to local minima and the initial network
size. Larger networks have more functional flexibility, and is guaranteed to learn the
input-output mapping with the desired degree of accuracy. Due to the larger functional
flexibility, pruning weights and units from a larger network may give rise to a better fit

of the underlying function, hence better generalization [Moody 1994a].

A more elaborate discussion on pruning and references to relevant research are given in

section 5.1.1.

The objective of all architecture selection algorithms is to find the smallest architecture that
accurately fits the underlying function. In addition to improving generalization performance
and avoiding overfitting (as discussed earlier), smaller networks have the following advantages.
Once an optimized architecture has been found, the cost of forward calculations is significantly
reduced, since the cost of computation grows almost linearly with the number of weights.
From the generalization bounds overviewed earlier, the number of training patterns required to
achieve a certain generalization performance is a function of the network architecture. Smaller
networks therefore require less training patterns. Also, the knowledge embedded in smaller
networks is more easily described by a set of simpler rules. Viktor, Engelbrecht and Cloete
show that the number of rules extracted from smaller networks is less for pruned networks than
that extracted from larger networks [Viktor et al 1995]. They also show that rules extracted

from smaller networks contain only relevant clauses, and that the combinatorics of the rule
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extraction algorithm is significantly reduced. Furthermore, for smaller networks the function
of each hidden unit is more easily visualized. The complexity of decision boundary detection

algorithms is also reduced.

With reference to the bias/variance decomposition of the MSE function [Geman et al 1992],
smaller network architectures reduce the variance component of the MSE. NNs are generally
plagued by high variance due to the limited training set sizes. This variance is reduced by
introducing bias through minimization of the network architecture. Smaller networks are
biased because the hypothesis space is reduced, thus limiting the available functions that can
fit the data. The effects of architecture selection on the bias/variance trade-off have been

studied by Gedeon, Wong and Harris [Gedeon et al 1995].

This thesis concentrates on pruning as method of architecture selection, specifically pruning

based on sensitivity analysis.

The rest of this chapter is organized as follows. An overview of pruning approaches is presented
in section 5.1.1. Section 5.2 presents a general pruning algorithm and discusses important
pruning design issues, such as when to start pruning, and how to decide what to prune.
Section 5.3 develops a new sensitivity analysis pruning algorithm that uses output sensitivity
information to remove irrelevant parameters. This section also presents a new statistical
hypothesis test, based on variance analysis of sensitivity information, to determine which

parameters to prune. Results of the pruning algorithm are presented in section 5.4.

For the purposes of this chapter, a three layer NN architecture (input layer, one hidden layer,
output layer) is assumed. As illustrated in appendix E, section E.1.1, the algorithm can easily
be extended to include more hidden layers. No specific objective function and optimization
method are assumed, since output sensitivity analysis pruning is generally applicable to any
objective function and optimization method. It is assumed that activation functions are at
least once differentiable. For this chapter, sigmoidal activation functions are used. Extension

to other differentiable activation functions is straightforward.

This chapter follows the main theme of the thesis by exploring the use of sensitivity analy-
sis for NN pruning. The pruning algorithm also addresses the sub objectives of improving

generalization performance and decreasing complexity.
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5.1.1 Related Work

This section presents a brief overview of existing pruning techniques. The objective is to
present a flavor of the vast number of different approaches to determine the relevance of

parameters. For more detailed discussions, the reader is referred to the given references.

The importance of optimized NN architectures have been discussed in previous sections. Given
an arbitrary problem, it is not at all obvious what architecture is optimal. Initially, experts
relied on their intuition to guess the correct architecture. Needless to say that such intuitive
guesses were frequently wrong, requiring other architectures to be tried until an acceptable
one was found. This trial and error process is not effective, and may be very time consuming.
Also, guessing the size of a network might produce an architecture that fits the data, but
it may contain irrelevant units and weights. Instead, a brute-force pruning approach can be
followed, where each weight is set to zero and the change in error evaluated. If the resulting
error increase is too high, the weight’s value is restored, otherwise the weight is removed.
While this approach will produce a minimal network size, it is prohibitively expensive for

very large initial networks.

Several research efforts have targeted this architecture selection problem. The first results in
the quest to find a solution to the architecture optimization problem were the derivation of
theoretical bounds on the number of hidden units to solve a particular problem [Baum 1988,
Cosnard et al 1992, Hayashi 1993, Kamruzzaman et al 1992, Ludik 1995a, Ludik et al 1996,
Sakurai et al 1992a, Sakurai 1992b, Sartori et al 1991]. However, these results are based on
unrealistic assumptions about the network and the problem to be solved. Also, they usually
apply to classification problems only. While these bounds do improve our understanding of
the relationship between architecture and training set characteristics, they do not predict the

correct number of hidden units for a general class of problems.

Recent research concentrated on the development of more efficient pruning techniques to
solve the architecture selection problem. Several different approaches to pruning have been
developed. This chapter groups these approaches in the following general classes: intuitive
methods, evolutionary methods, information matrix methods, hypothesis testing methods

and sensitivity analysis methods.
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e Intuitive pruning techniques: Simple intuitive methods based on weight values and
unit activation values have been proposed by Hagiwara [Hagiwara 1993]. The goodness
factor G of unit 4 in layer I, G} = dop D (wt wi,; 0t)2, where the first sum is over all
patterns, and oé is the output of the unit, assumes that an important unit is one which
excites frequently and has large weights to other units. The consuming energy, Ezl =
Z Z w]Z z"'lol, additionally assumes that unit 7 excites the units in the next layer.
Both methods suffer from the flaw that when an unit’s output is more frequently 0 than
1, that unit might be elected as being unimportant, while this is not necessarily the case.
Magnitude based pruning assumes that small weights are irrelevant [Hagiwara 1993,
Lim et al 1994]. However, small weights may be of importance, especially compared

to very large weights which cause saturation in hidden and output units. Also, large

weights (in terms of their absolute value) may cancel each other out.

e Evolutionary pruning techniques: The use of genetic algorithms (GA) to prune
NNs provides a biological plausible approach to pruning [Kuscu et al 1994, Reed 1993,
Whitley et al 1990, White et al 1993]. Using GA terminology, the population consists
of several pruned versions of the original network, each needed to be trained. Differently
pruned networks are created by application of mutation, reproduction and cross-over
operators. These pruned networks “compete” for survival, being awarded for using fewer
parameters and for improving generalization. GA NN pruning is thus a time consuming

process.

e Information matrix pruning techniques: Several researchers have utilized approx-
imations to the Fisher information matrix to determine the optimal number of hid-
den units and weights. Based on the assumption that outputs are linearly activated,
and that least squares estimators satisfy asymptotic normality, Cottrell et al computes
the relevance of a weight as a function of the information matrix, approximated by

[Cottrell et al 1994]

P
1 Zaaw 8fNN) (5'4)

Weights with a low relevance are removed.

Hayashi [Hayashi 1993], Tamura, Tateishi, Matumoto and Akita [Tamura et al 1993],
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Xue, Hu and Tompkins [Xue et al 1990] and Fletcher, Katkovnik, Steffens and Engel-
brecht [Fletcher et al 1998] use Singular Value Decomposition (SVD) to analyze the
hidden unit activation covariance matrix to determine the optimal number of hidden
units. Based on the assumption that outputs are linearly activated, the rank of the
covariance matrix is the optimal number of hidden units (also see [Fujita 1992]). SVD
of this information matrix results in an eigenvalue and eigenvector decomposition where
low eigenvalues correspond to irrelevant hidden units. The rank is the number of non-
zero eigenvalues. Fletcher, Katkovnik, Steffens and Engelbrecht use the SVD of the con-
ditional Fisher information matrix, as given in equation (5.4), together with likelihood-
ratio tests to determine irrelevant hidden units[Fletcher et al 1998]. In this case the
conditional Fisher information matrix is restricted to weights between the hidden and
output layer only, whereas previous techniques are based on all network weights. Each

iteration of the pruning algorithm identifies exactly which hidden units to prune.

Principal Component Analysis (PCA) pruning techniques have been developed that use
the SVD of the Fisher information matrix to find the principle components (relevant pa-
rameters) [Levin et al 1994, Kamimura 1993, Schittenkopf et al 1997, Takahashi 1993].
These principle components are linear transformations of the original parameters, com-
puted from the eigenvectors obtained from a SVD of the information matrix. The result
of PCA is the orthogonal vectors on which variance in the data is maximally projected.
Non-principle components/parameters (parameters that do not account for data vari-
ance) are pruned. Pruning using PCA is thus achieved through projection of the original
w-dimensional space onto a w -dimensional linear subspace (wl < w) spanned by the
eigenvectors of the data’s correlation or covariance matrix corresponding to the largest

eigenvalues.

e Hypothesis testing techniques: Formal statistical hypothesis tests can be used to
test the statistical significance of a subset of weights, or a subset of hidden units. Steppe,
Bauer and Rogers [Steppe et al 1996] and Fletcher, Katkovnik, Steffens and Engelbrecht
[Fletcher et al 1998] use the likelihood-ratio test statistic to test the null hypothesis that
a subset of weights is zero. Weights associated with a hidden unit are tested to see if
they are statistically different from zero. If these weights are not statistically different

from zero, the corresponding hidden unit is pruned.
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Belue and Bauer propose a method that injects a noisy input parameter into the NN
model, and then use statistical tests to decide if the significances of the original NN
parameters are higher than that of the injected noisy parameter [Belue et al 1995]. Pa-

rameters with lower significances than the noisy parameter are pruned.

Similarly, Prechelt [Prechelt 1995] and Finnoff et al [Finnoff et al 1993] test the assump-
tion that a weight becomes zero during the training process. This approach is based
on the observation that the distribution of weight values is roughly normal. Weights

located in the left tail of this distribution are removed.

e Sensitivity analysis pruning techniques: The two main approaches to NN sensi-
tivity analysis have been introduced in chapter 2. Both sensitivity analysis with regard
to the objective function and sensitivity analysis with regard to the NN output function
resulted in the development of a number of pruning techniques. Possibly the most popu-
lar of these are OBD [Gorodkin et al 1993b, Le Cun 1990, Leung et al 1996, Reed 1993]
and its variants, OBS [Hassibi et al 1993, Hassibi et al 1994] and Optimal Cell Damage
(OCD) [Cibas et al 1994a, Cibas et al 1994b, Cibas et al 1996]. A parameter saliency
measure is computed for each parameter, indicating the influence small perturbations
to the parameter have on the approximation error. Parameters with a low saliency
are removed. These methods are based on the assumptions discussed in section 2.4.1,
and are time consuming due to the calculation of the Hessian matrix. Buntine and
Weigend [Buntine et al 1994] and Bishop [Bishop 1992] derived methods to simplify the
calculation of the Hessian matrix in a bid to reduce the complexity of these pruning
techniques. In OBD, OBS and OCD, sensitivity analysis is performed with regard
to the training error. Pedersen, Hanson and Larsen [Pedersen et al 1996] and Burras-
cano [Burrascano 1993] develop pruning techniques based on sensitivity analysis with
regard to the generalization error. Other objective function sensitivity analysis pruning
techniques have been developed by Mozer and Smolensky [Mozer et al 1989], Karnin
[Karnin 1990], and Moody and Utans [Moody et al 1995].

NN output sensitivity analysis pruning techniques have been developed that are

less complex than objective function sensitivity analysis, and that do not rely on
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simplifying assumptions. Zurada, Malinowski and Cloete introduced output sen-
sitivity analysis pruning of input units [Zurada et al 1994], further investigated by
Cloete and Engelbrecht [Cloete et al 1994c] and Engelbrecht, Cloete and Zurada
[Engelbrecht et al 1995b]. Engelbrecht and Cloete extended this approach to also prune
irrelevant hidden units [Engelbrecht et al 1996, Engelbrecht et al 1999¢]. This work,
and extensions thereof to include statistical pruning heuristics, is presented in this

chapter.

A similar approach to NN output sensitivity analysis was followed by Dorizzi et al
[Dorizzi et al 1996] and Czernichow [Czernichow 1996] to prune parameters of a Radial
Basis Function (RBF) NN. Takenaga et al uses output sensitivity analysis to reduce the

feature space for a pattern recognition problem [Takenaga et al 1991].

5.2 Neural Network Pruning

A too small NN architecture does not have enough free parameters to satisfactorily approx-
imate the true function - the network is said to underfit the data. A too large architecture
has too many free parameters which cause the training data to be overfitted, or memorized.
It is therefore important to optimize the NN architecture for a specific problem, by find-
ing a balance between the underfitting and overfitting effects. Pruning is one approach to
solve this problem. Training starts on a very large architecture, which is successively re-
duced through elimination of irrelevant network parameters. Section 5.1.1 reviewed several
approaches to network pruning. This section concentrates on pruning design issues, including
pruning heuristics, stopping criteria, how much to prune and how to repair the network after
pruning. These issues are discussed in section 5.2.2. First, a general pruning algorithm is
presented in section 5.2.1. This thesis concentrates on NN sensitivity analysis applications,
and therefore on sensitivity analysis pruning. Section 5.2.3 presents a short comparison of

the two main sensitivity analysis pruning approaches.
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5.2.1 General Pruning Algorithm

Neural network architecture reduction through pruning can be summarized by the following,

very general, algorithm:

1. Initialize the NN architecture and learning parameters
2. Repeat

(a) Train the NN until a pruning indicator is triggered

(b) Compute the approximate importance of each parameter considered for prun-
ing

(c) Apply a pruning heuristic

(d) Repair weights of the pruned network
until the architecture is satisfactory

3. Train the final pruned NN architecture

The algorithm above refers to concepts which need further explanation at this point. These
concepts are discussed in more detail in section 5.2.2. Step 2.(a) refers to a pruning indica-
tor. The pruning indicator addresses the important question of when to start pruning, i.e.
when have the network learned sufficiently to ensure the correct removal of only irrelevant
parameters? Also key to the efficiency of a pruning method is the calculation of the approx-
imate importance of parameters (i.e. input and hidden units, and weights). The estimated
importance of parameters is used to decide whether a parameter should be removed or not.
It is therefore essential that the method used to calculate parameter importance results in
accurate estimations of the true importance of parameters. A pruning heuristic, or pruning
decision, is applied to the estimated importance values to decide when a parameter is viewed

as being irrelevant or not. All irrelevant parameters are then removed.

After pruning, the network’s state has changed, and the network is no longer in the same
position in the search space. The network needs to be re-trained on the smaller architecture.

For this purpose a weights repair algorithm is applied to either reset weights to new random
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values, or to redistribute the values of the removed weights over the remaining weights. After
application of the weight repair algorithm, the pruned network is trained on the same data,
and the pruning process is restarted. When no more parameters can be pruned, the last step

is to train the final pruned network.

5.2.2 Pruning Design Issues

The design of a pruning algorithm should be attempted cautiously. Careful consideration
must be given to design issues to ensure that pruning does not unacceptably deteriorate
generalization performance, and does not incorrectly remove parameters. Such design issues

are discussed in this section.

One of the questions that needs to be addressed is when to start pruning. If pruning is invoked
prematurely, important parameters may be eliminated from the NN model. On the other
hand, if pruning is applied too late, overfitting may cause potentially irrelevant parameters to
learn noise, losing their irrelevance. Most pruning algorithms require the network to be well
trained. Pruning approaches based on objective function sensitivity analysis, for example
OBD, OBS and OCD [Le Cun 1990, Hassibi et al 1993, Cibas et al 1996], is very strict on
the requirement that the training process must reach a minimum of the objective function
before pruning starts. This requirement is due to the extremal approximation assumption as
discussed in section 2.4.1. The correctness of the output sensitivity analysis model, developed
in this thesis, does not rely on this assumption. However, to ensure efficiency, the learned
derivatives should accurately approximate the true derivatives of the underlying function.
For this purpose the network should be in a local minimum. A validation set can be used to
indicate when a local minimum is reached, and to start pruning before the network overfits.
As soon as the validation error deteriorates, training stops and the pruning algorithm is
executed. Non-convergent pruning algorithms have been developed, which can be applied
without requiring that the network should have converged to a local minimum. For example,
Finnoff, Hergert and Zimmermann propose a statistical weight pruning algorithm that can
be used to prune weights at any time during training [Finnoff et al 1993]. Prechelt developed
a similar approach to weight pruning [Prechelt 1995].
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The method used to calculate the approximate importance of parameters is very impor-
tant to the success of any pruning algorithm. Initial approaches to pruning use heuris-
tics to decide on the importance of parameters. For example, magnitude based pruning
of weights assumes that small weights are unimportant. This is not always true. In cases
where units saturate, the large weights that cause the saturation lead to constant outputs
of the units and are therefore rather unimportant. More accurate approximations to pa-
rameter importance are based on the statistical relationships among parameters. For exam-
ple, information approaches base parameter importance on parameter covariance matrices
which statistically convey important information on the principle components of a model
[Cottrell et al 1994, Fletcher et al 1998, Levin et al 1994, Xue et al 1990]. Sensitivity analy-
sis approaches use the NN’s learned knowledge to accurately approximate parameter impor-
tance. OBD, OBS and OCD define a saliency measure based on the sensitivity of the network
error to parameter perturbations [Le Cun 1990, Hassibi et al 1993, Cibas et al 1996], while
output sensitivity analysis pruning computes parameter significance as the sensitivity of the
NN output function to parameter perturbations [Cloete et al 1994c, Engelbrecht et al 1995b,
Engelbrecht et al 1996, Zurada et al 1994, Zurada et al 1997]. Such theoretically justified ap-

proaches should be preferred as measures of parameter importance.

A pruning algorithm applies a heuristic or rule to decide whether a parameter should be
eliminated or not. Based on the parameter importance values, the heuristic first implements
a mechanism to suggest candidate parameters for pruning, and then implements a test to
determine if those parameters can in fact be pruned. Overly optimistic heuristics may cause
too many parameters to be pruned, while pessimistic heuristics may prune too few - if any.
The simplest heuristic is to select the least important parameter and to remove it, as is done in
OBD [Le Cun 1990], skeletonization [Mozer et al 1989], and the pruning algorithm proposed
by Steppe, Bauer and Rogers [Steppe et al 1996]. If network performance is degraded too
much, the parameter is restored. Fletcher et al uses likelihood-ratio tests to find the number
of hidden units that can be pruned during one iteration of the pruning algorithm, and to

identify exactly which units to prune [Fletcher et al 1998].

Heuristics have been developed which orders the parameter importance values, and from this

ordered list try to find a gap which indicates a division into relevant and irrelevant parameters.
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All parameters below the gap are then removed in one step. OCD orders the input parameter
saliencies (; in decreasing order (;; > (;, > --- > (;y, and finds the gap position n such
that Y ;" ¢, > quil G, [Cibas et al 1994b]. All parameters from position n + 1 to N are
then removed. The efficiency of this approach depends on the value of ¢, which is definitely
problem dependent. The most appropriate value of g therefore needs to be calculated for each

different problem using cross-validation, which can be time-consuming.

Zurada, Malinowski and Cloete define a gap measure as g;,, = ;)“” , where input parameter
tm+1

significance values are ordered such that ® > ®,  [Zurada et al 1994, Zurada et al 1997].

—
The largest gap gmaz = max;, {gi,, } is found, and me,; = m such that g;,, = gmaez- Then,
if the pruning condition Cgmey > max;,, £, . {9i,,} is satisfied, all input parameters from
position i, 1 are pruned. This heuristic also includes a problem dependent constant C' which
needs to be determined through cross-validation. It can be shown that this heuristic does
not prune irrelevant input parameters for all situations, even when there is a very clear large
gap between relevant and irrelevant parameters. If we have two inputs, with one totally
insignificant, a large gap will occur between the significances of these two inputs. No second
largest gap can be found to satisfy the pruning condition, and the redundant input will
not be pruned. Even with three inputs, of which one is irrelevant, no pruning will occur.
The largest gap, gmaz, 1S then located between the second and third ordered input, while
max;,, i, .19, } Will not satisfy the pruning condition and the redundant input is retained.
Another scenario where this heuristic fails is if we have I inputs with a very large gap, gmaz,

between say ®; and ® and a second largest gap g;, is found with s > m + 1, but with

Tm+41)
COmaz # Gi,- Then, no inputs will be pruned, where the gap ¢,,., may, however, be large

enough to clearly suggest pruning everything from position m + 1.

As an alternative, Engelbrecht, Cloete and Zurada [Engelbrecht et al 1995b] and Engelbrecht
and Cloete [Engelbrecht et al 1996] use the rule of thumb that when ®; ., is a factor C less

than ®; . then all parameters from position m + 1 are pruned. Again, the value of C is

Tm >
problem dependent.

Finnoff, Hergert and Zimmermann [Finnoff et al 1993] and Prechelt [Prechelt 1995] use hy-
pothesis testing to find those weights that satisfy the null hypothesis that the expected value

of weight changes is equal to zero [Finnoff et al 1993]. They define {,(lp ) = wp, + Aw,(Lp ), for
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each pattern p, and a test variable £} for each weight wy,

P b 1 7]
VI P - E,)2

where &, denotes the average weight change over all patterns. Setting as null hypothesis that

(5.5)

the expected value of f,(lp ) is zero, amounts to testing the significance of the deviation of weight

wy, from zero using the test variable L.

The heuristics reviewed above does not test the change in performance of the network after
pruning to determine whether the pruning does not unacceptably degrade performance. If
performance deteriorates too much, the pruned parameters should be restored. The sim-
plest way to test whether the pruned network can be accepted, is to retrain the network
and to evaluate the generalization of the pruned network with that of the original net-
work. If generalization performance of the pruned network is better than, or at least com-
parable to the unpruned network, the pruned network can be accepted. Statistical tests
can be be used to test whether a pruned architecture can be accepted or not. Fletcher,
Katkovnik, Steffens and Engelbrecht [Fletcher et al 1998] and Steppe, Bauers and Rogers
[Steppe et al 1996] use the likelihood-ratio test statistic to accept or reject a pruned network.
Cibas, Soulié, Gallinari and Raudys use an F-test of the null hypothesis that the parame-
ters selected for pruning are in fact unimportant [Cibas et al 1996]. Alternatively, the Net-
work Information Criterion (NIC), derived from Akaike’s Information Criterion (AIC), can be
used as model selection criterion [Murata et al 1991, Murata et al 1994a, Murata et al 1994b].
Given a pruned network Fj,yneq and the corresponding unpruned network Fnpruneds if
NIC(Fpruned) < NIC(Funpruned), the generalization performance of Fpryneq is expected to
be better than that of F,,prunes- The pruned network can therefore be accepted. In the same
way Moody’s Generalized Prediction Error (GPE) can be used to compute the expected gen-
eralization error of a pruned model [Moody 1992, Moody 1994a, Moody et al 1996]. These
models require some knowledge about the distribution of the target values, since an estima-
tion of the noise covariance matriz of the target values is needed. Such information is not
always available. Also, these approaches are computationally expensive since they require the

inversion of the Hessian of the objective function to compute the influence matriz.

When inputs, hidden units or weights are pruned from a NN, that NN no longer represents the
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same function as before pruning. After pruning, the remaining weights need to be repaired
to reflect the structural changes. After repair of the weights, the smaller NN is retrained -
if necessary. The simplest method to do this is to simply assign new random values to the
remaining weights. This will cause the network to move out of its current local minimum -
with no guarantee that the network will converge during the retraining step. Alternatively, the
pruned weight values can be redistributed over the remaining weights, keeping the network in
its current minimum. Better local minima may exist for the pruned network, and retraining
after weight redistribution may not necessarily mean that the network will jump out of the
current minimum and move towards the better solution. Furthermore, weight redistribution
as proposed by Hassibi and Stork is complicated and time consuming due to the calculation of
the inverse Hessian matrix [Hassibi et al 1993]. Simpler weight redistribution methods have

been developed [Fukumizu 1996, Jasié¢ et al 1995, Pelillo et al 1993, Sietsma et al 1991].

Pruning should stop before too many parameters are removed to ensure that the underlying
function can still be fitted accurately by the reduced model. The stopping decision should form
part of the pruning heuristic. When parameters are identified for elimination, the performance
of the reduced model should first be evaluated. If performance is unacceptably degraded, the
parameters are not pruned and the pruning algorithm terminates. The performance of the

reduced model is typically the error on a test set, i.e. the generalization.

Another issue is the order of pruning the different NN parameters. This chapter endorses the
strategy proposed by Moody and Utans [Moody et al 1995]. The hidden layer is pruned first
and then the input layer. When no more hidden or input units can be removed, weights are
pruned. The basic idea of this pruning ordering is to start with those parameters that will
cause the largest reduction in the number of free parameters. Pruning of one hidden unit

causes the elimination of more weights than pruning one input unit.

5.2.3 Sensitivity Analysis Pruning

Neural network sensitivity analysis has been introduced in section 2.4, discussing the two
main approaches to sensitivity analysis: with regard to the objective function and with regard

to the NN output function - resulting in the development of two sensitivity analysis pruning



CHAPTER 5. ARCHITECTURE SELECTION USING SENSITIVITY ANALYSIS 159

approaches. Equation (2.13) derives a general relationship between the two sensitivity analysis
approaches, under the assumption of one output unit. This relationship shows that the two
approaches are conceptually the same. Using equation (2.13), the saliency measure of OBD
(from equation (2.8)) can be written as

186, 1

do
N 5o _§in¥ (5.6)

So 90

Therefore, under the assumptions listed in section 2.4.1, and under the assumption of one
output networks, OBD and output sensitivity analysis are functionally the same, differing by
a scaling factor of %92. The two pruning algorithms will remove the same parameters, since
the parameter ordering according to significance values is the same. A similar relationship

can be derived for more than one output unit as illustrated in equation (2.14).

Output sensitivity analysis has the advantages that it is not based on assumptions to simplify
complexity, and that it is computationally less complex than objective function sensitivity

analysis. The next section presents a pruning method based on output sensitivity analysis.

5.3 Pruning using Sensitivity Analysis wrt NN Output Func-

tion

This section presents the output sensitivity analysis pruning model for the removal of irrel-
evant parameters, including input units, hidden units and individual weights. The pruning
algorithm computes the significance of parameters as a function of the first order derivatives
of the NN outputs with respect to the parameters to be pruned. The parameter significance
values measure the influence small perturbations to the parameters have on the outcome of
the network. If a parameter has a low significance, it means that small changes to the value

of that parameter causes insignificant changes to the network output.

The NN output sensitivity analysis algorithm is derived from a first order Taylor expansion

of the output unit o, around the parameter 6;:

- af,
fok(ela"'aei+A9i,"'791) ~ fok(0)+A91 8f9k
7

(5.7)

From equation (5.7), the change in NN output due to the perturbation A#; is approximated



CHAPTER 5. ARCHITECTURE SELECTION USING SENSITIVITY ANALYSIS 160

by

- af,
Jor (01,---,0; + 80;,---,01) — fo,(0) = AY; 8f€k
7

(5.8)

The first order derivative aggf can therefore be used as a measure of the change in the output

due to perturbations of 6;.

This section presents the NN output function sensitivity analysis algorithm for the pruning
of input units, hidden units and individual weights. In addition to serving as a pruning tool,
the model can be used to determine the importance of input parameters, that is, for causal
inferencing. The work presented in this section has been published in [Cloete et al 1994c,
Engelbrecht et al 1995b, Engelbrecht et al 1996, Engelbrecht et al 1999¢], and applied to re-
duce the complexity of rule extraction algorithms [Viktor et al 1995, Viktor et al 1998a,
Viktor 1998b].

The presentation of the output sensitivity analysis model is outlined as follows. Section 5.3.1
discusses the assumptions of the model. T'wo approaches to determine the relevance of pa-
rameters are developed. The first approach computes the significance of each parameter as
a norm defined over the entire training set. These norms are discussed in section 5.3.2. The
second approach computes a statistical test variable, based on variance analysis, for each pa-
rameter which expresses the variance in pattern sensitivities for that parameter, as presented
in section 5.3.3. Pruning heuristics based on these two measures of relevance are explained
in section 5.3.4. Complete pruning algorithms for the parameter significance and statistical

test variable approach are given in section 5.3.5, and design issues are discussed.

5.3.1 Assumptions

NN output sensitivity analysis is not based on any assumptions to reduce the complexity of
the model - which is the case for objective function sensitivity analysis. While the model
does assume the network to be well trained, this assumption is not crucial to the theoretical
validity of the model. However, output sensitivity analysis does require the derivatives of
the underlying function to be well approximated. Hence the assumption that the network

converged to a local minimum.

Output sensitivity analysis assumes activation functions that are at least once differentiable.
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For this presentation sigmoidal activation functions are assumed. No assumptions are made
with regard to the number of layers in the network. Although this section presents the model
using a three layer architecture, it can easily be extended to any number of layers as explained
in appendix E.1.1. The model also makes no assumptions with regard to the objective function
or optimization method. Output sensitivity analysis is totally independent of the objective
function and optimization method, and therefore independent of any regularization terms

included in the objective function.

5.3.2 Parameter Significance

The first approach to determine the relevance of parameters for the output sensitivity analysis
model rests on the concept of parameter significance. A parameter with low significance has

little, or no influence on any of the outputs of the network and can therefore be removed.

Definition 5.1 Parameter Significance: Define the significance of a parameter 0;, which
can be an input unit, hidden unit or weight, as the sensitivity of the NN output vector to small

perturbations in that parameter. Let @y, denote the significance of parameter 0;. Then,
@9, = 115, (5.9)

where S, is the output sensitivity vector defined over the entire training set, and || o || is any

suitable norm.

This study uses the maximum-norm to define parameter significance,

(I)& = H‘§0||00 = k:I?E_lfiK{Soe,ki} (5'10)

where S,9 refers to the sensitivity matrix of the output vector ¢ with respect to the parameter
vector 5, and individual elements Syg y; refers to the sensitivity of output o; to perturbations

in parameter 6; over all patterns.

Different norms can be used to compute the output sensitivity matrix S,g, €.g. the sum-norm,
FEuclidean-norm or the maximum-norm. Since each pattern results in a different sensitivity

matrix, whatever norm is used, the norm has to be applied over the entire training set to
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reflect the aggregated effect of all patterns. This study uses the Euclidean-norm, where for
each element Sy 1; of the sensitivity matrix,

S IsE e

Soﬂ,lci = ||Soe||2 = P

(5.11)

where S((]g?ki refers to the sensitivity of output or to changes in parameter 6; for a single

pattern p.

)

The formula to calculate S((]g w; depends on the type of parameter and activation function.
For input units, from (E.6),
J
St(fz)?ki =D wki £ vjs (5.12)
j=1

which can be written in matrix notation as
s® = o® wy®'y (5.13)

where W (K x J) and V (J x I) are respectively the output and hidden layer weight matrices,
and O®) (K x K) and y® (J x J) are defined as

om - diag(ogp) ,---,oip) ,...,0%) ) (5.14)
Y(p) :dzag(y%p) ’...’y](,p) ,...,ygp) ) (515)

For hidden layer pruning, from (E.7),

or in matrix notation
s®) = oW w (5.17)

Considering the pruning of weights, from (E.8) and (E.9),

SE = P (5.18)

ng;)i _ fo(f)'wk,-féf)'z@ (5.19)
or in matrix notation

s = oW'y® (5.20)

s — o wy® z® (5.21)
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where
Y(p) = dza’g(ygp)”y‘gp)”y'(]p)) (522)
Z®) = diag(#P) .- 2P .. 2P (5.23)

Full derivations of these sensitivity equations are given in appendix E.

To allow for accurate results it is required that the range of the output vector and that of the
parameter vector be the same. If this is not the case, scaling of the sensitivity matrix Sy is

required as follows:

(maszl’...,P{ogp)} - minpzl,___’P{gl(P)})

(maXp:L...’P{O](Cp)} — minpzl,...’P{Ol(Cp)})

So@,kz' = Soe,ki (524.)

5.3.3 Statistical Test Variable

A second approach to determine the relevance of parameters, based on parameter sensitivity
information, is developed in this section (this work is published in [Engelbrecht et al 1999¢]).
A variance nullity measure is computed for each parameter, based on ideas borrowed from the
non-convergent tests of Finnoff, Hergert and Zimmermann [Finnoff et al 1993]. The basic idea
of the variance nullity measure is to test whether the variance in parameter sensitivity for the
different patterns is significantly different from zero. If the variance in parameter sensitivities
is not significantly different from zero, it indicates that the corresponding parameter has
little or no effect on the output of the NN over all patterns considered. A hypothesis testing
step, described in section 5.3.4, uses these variance nullity measures to statistically test if a

parameter should be pruned, using the y? distribution.

Definition 5.2 Parameter Variance Nullity: Define the statistical nullity in the param-

eter sensitivity variance of a NN parameter 6; over patterns p=1,---, P as
P—-1)2
Yo, = # (5.25)
90

where agi is the variance of the sensitivity of the network output to perturbations in param-
eter 0;, and of is a value close to zero (the characteristics of this value are exzplained in

section 5.3.4).
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The variance in parameter sensitivity, agi, is computed as

, TP R,

where K o)
k=1 ook
Néf) _ = 0b,ki (5.27)
and Ny, is the average parameter sensitivity
P (P
_ Ny
R, = L”‘; b (5.28)

In equation (5.27), Ngf ) is the average sensitivity of the NN output to perturbations in param-
eter 0; for pattern p, and S(()g)ki is the sensitivity of output oy to perturbations in parameter
0; for pattern p. If 6; is an input parameter, equation (E.6) is used to calculate S(()g?ki, if it
is a hidden unit equation (E.7) is used instead, equation (E.8) is used for hidden to output

layer weights, and equation (E.9) is used for input to hidden layer weights.

The analysis of variance approach is followed here instead of an analysis of means as is done
by Finnoff et al [Finnoff et al 1993]. In this study, an analysis of means is not appropriate
since large negative and positive sensitivities may cancel each other, or produce a sum close
to zero, indicating that the parameter is insignificant - which is not true. Using the variance
nullity measure defined in definition 5.2, statistical theory prescribes the use of the x?(P — 1)
distribution to determine if a parameter can be pruned [Steyn et al 1995]. The next section

illustrates how the variance nullity measure is used in hypothesis testing.

5.3.4 Pruning Heuristics

Two pruning heuristics are proposed. The first is a rule of thumb based on the parame-
ter significance values calculated from equation (5.10), and the second a hypothesis testing

procedure based on the statistical test variable calculated from equation (5.25).

The initial implemented pruning heuristic first orders the significance values in decreasing
order [Cloete et al 1994c, Engelbrecht et al 1995b, Engelbrecht et al 1996, Viktor et al 1995].
It then finds a large enough gap between consecutive significance values, pruning all param-

eters following the gap - if such a gap could be found. A large enough gap is said to exist



CHAPTER 5. ARCHITECTURE SELECTION USING SENSITIVITY ANALYSIS 165

whenever the significance ®g,,., is a factor C less than ®4,,. All the parameters from po-
sition m + 1 are then removed. Unfortunately, the choice of C' is problem dependent, and
its optimal value should be found through cross-validation which immediately increases the

time-complexity of the pruning algorithm.

While this rule of thumb appeared to work well for the simulations in [Cloete et al 1994c,
Engelbrecht et al 1995b, Engelbrecht et al 1996, Viktor et al 1995], more robust and efficient
problem independent heuristics are needed. For this purpose a new statistical pruning heuris-

tic is proposed next.

The statistical pruning heuristic is based on proving or disproving the null hypothesis that the
variance in parameter sensitivity is approximately zero. For this purpose, the null hypothesis
that the variance in parameter sensitivity is approximately zero is tested, where the null
hypothesis

Ho: op =o0f (5.29)

is defined for each parameter ;. Unfortunately, from equation (5.25), o3 # 0, and we cannot
hypothesize that the variance in parameter sensitivity over all patterns is exactly zero, i.e.

O'gi = 0. Instead, a small value close to zero is chosen for 0(2), and the alternative hypothesis,
Hi: o5 <of (5.30)

is tested. Using the fact that under the null hypothesis the variance nullity measure has a
x%(P — 1) distribution in the case of P patterns [Steyn et al 1995], the critical value Y, is

obtained from y? distribution tables,
T, = X?};l—a (531)

where v = P — 1 is the number of degrees of freedom, and « is the level of significance. A
significance level o = 0.01, for example, means that we are satisfied with incorrectly rejecting

the hypothesis once out of 100 times.

Using the critical value defined in equation (5.31), if Ty, < T, the alternative hypothesis H;

is accepted and parameter 6; is pruned.

The value of o2 is crucial to the success of this pruning heuristic. If o is too small, no

parameters will be pruned. On the other hand, if 02 is too large, important parameters will
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be pruned. The algorithm presented in section 5.3.5 therefore starts with a small value of o7,
and increases the value if no parameters can be pruned under the smaller value of o2. After
each pruning step, the performance of the pruned network is first tested to see if performance
is not degraded too much. If the deterioration in performance is unacceptable, the original

network is restored, and pruning stops.

To reduce computation time during the hypothesis testing phase, the variance nullity measures
Ty, are arranged in increasing order. Hypothesis tests start on the smallest Ty, value and

continue until no more parameters can be identified for pruning.

5.3.5 Pruning Algorithm

This section presents a complete output sensitivity analysis pruning algorithm for each of the

pruning heuristics. Design issues are then briefly discussed.

The first algorithm is for the original gap method based on parameter significance values:
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1. Initialize the NN architecture and learning parameters. Initialize the gap constant

C = 0.5 (suggested value only).
2. Repeat

(a) Train the NN until a pruning indicator is triggered
(b) for each 6;
i. foreachp=1,---, P
calculate pattern sensitivity matrices S, ; using equations (5.12), (5.16),
(5.18) or (5.19) depending on the parameter type
ii. Calculate the Euclidean norm Spg ;i = ||Sos,ki||2 using equation (5.11)

iii. Calculate the parameter significance ®g, = ||Syg||c0 using equation (5.10)
(c) Apply the pruning heuristic:
i. order @y, in increasing order such that (I)9¢m+1 <y, ,
m=1,---,1
ii. find a gap such that &y, > C<I>9im+1

iii. prune parameters from position m + 1

until no gap is found or the reduced network is not accepted due to an unacceptable

deterioration in generalization performance

3. Train the final pruned NN architecture

In step 2.(b).(i) pruning is started with the hidden units. When no more hidden units can
be pruned, the input layer is pruned. It is proposed that weights are pruned after pruning of

the hidden and output layers.

Next, an algorithm for the statistical pruning heuristic is given:
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1. Initialize the NN architecture and learning parameters

2. repeat

(a) train the NN until a pruning indicator is triggered

(b) let o2 = 0.0001

(c) for each 6;
i. for each p=1,---, P, calculate Ng’;) using equation (5.27)
ii. calculate the average Ry, using equation (5.28)

iii. calculate the variance in parameter sensitivity using o2 from equation

9;
(5.26)
iv. calculate the test variable Yy, using equation (5.25)
(d) apply the pruning heuristic
i. arrange Yy, in increasing order

ii. find Y. using equation (5.31)

iii. for each 6;, if Ty, < Y., then prune §;

iv. if Ty, > T, for all 6;, let 0(2) = 0(2) x 10

until no 6; is pruned, or the reduced network is not accepted due to an unacceptable

deterioration in generalization performance

3. Train the final pruned NN architecture

The variance nullity algorithm starts pruning the hidden layer first, then the input layer.
After pruning of the hidden and input layers, it is proposed that irrelevant weights are pruned.
Calculation of the variance nullity measures can be done on the training, validation or test
sets. For the experimental results reported in section 5.4.2, a data set of maximum 100
patterns (due to limitations of the available x? tables) was created to calculate variance

nullity measures. The patterns of this data set, referred to as the nullity set, were randomly

selected from the original available data.

During training, the error on a validation set is monitored to detect when overfitting starts,
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at which point pruning is initiated. When a network is pruned, the pruning model starts
retraining of the reduced model on new initial random weights. The values of pruned weights
are not redistributed over the remaining weights. The pruning stopping criterion is encap-
sulated in the pruning heuristic. If no more parameters can be identified for pruning, or if
a reduced model is not accepted, the pruning process terminates. A pruned architecture is

accepted if generalization performance is not unacceptably deteriorated.

5.4 Experimental Results

This section illustrates the application of the output sensitivity analysis pruning algorithms on
classification and function approximation problems. Since successful results of the parameter
significance pruning heuristic presented in section 5.4.1 have already been published in detail
[Cloete et al 1994c, Engelbrecht et al 1995b, Engelbrecht et al 1996, Viktor et al 1995], some
of these results are simply repeated in section 5.4.1. New results using the statistical variance
nullity measure and hypothesis testing are presented in section 5.4.2 to illustrate the efficacy
of this new pruning heuristic. Section 5.2.3 presented a mathematical model to prune input
units, hidden units and individual weights. The results reported in this section are for input
and hidden unit pruning only. Empirical studies into weight pruning are proposed for future

work.

5.4.1 Parameter Significance: Pruning Results

Results of the application of the parameter significance pruning heuristic to three problems
are reported in this section. The XOR problem and the time series TS2 defined in equation
(4.42) are used to illustrate pruning of the input layer. Hidden unit pruning is illustrated on
six parity problems ranging from 2 dimensions to 7 dimensions. Each experiment is described
separately next. For these experiments it was assumed that when the significance of one
parameter is half of that of the next parameter, a large enough gap is existed justify pruning

of the lower significant parameters. The gap constant was therefore C' = 0.5.

A 3-2-1 architecture was used for the XOR problem with one of the input units irrelevant
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[Cloete et al 1994c]. Three simulations were executed, where each simulation differed in the
position of the irrelevant input unit as the first, second or third input unit. The training
set consisted of only 4 patterns, where the irrelevant input has small random values. These
values were chosen as small deviations from 0, which is one of the actual input values of the
XOR problem. The objective is to identify the irrelevant parameter based on the parameter
significance values as calculated from equation (5.9). Training stopped when a 100% correct
classification on the training set was achieved. Figure 5.1 illustrates the evolution of the
input parameter significances during training. These parameter significance profiles show
that for all three experiments a definite distinction was made between input units relevant
for the classification problem and the one irrelevant input. For a 0.5 gap constant, the gap
between the sensitivities of the relevant and irrelevant inputs was large enough to suggest
that the irrelevant input unit bore little significance to the classification, and could therefore

be pruned.

Next, the parameter significance pruning heuristic was applied to time series TS2 defined in
equation (4.42) [Cloete et al 1994c]. The definition of this time series shows that only 3 input
units are relevant, i.e. 25,27 and z19. The parameter significance profiles for the 10 input
units are illustrated in figure 5.2. This figure shows a distinct grouping of the seven irrelevant
input units with significance values in the range [0.07,0.23], and the relevant input units zs, 27
and z1p with higher significances in the range [0.59,1.12]. A large enough gap exists between

the two groups of input units which allows pruning of the seven irrelevant inputs.

The last set of experiments in this section is used to illustrate the applicability of the parameter
significance pruning heuristic to the pruning of hidden units. The pruning heuristic was
applied to six N-bit parity problems, with N = 2,3,---,7. The reason for selecting parity
problems to illustrate hidden unit pruning is to compare the results of the pruning algorithm
with that published by Rumelhart and McClelland [Rumelhart et al 1986]. It is well-known
from [Rumelhart et al 1986] that only N hidden units are necessary and sufficient to learn
the N-bit parity problem. For all the simulations training stopped when all the examples
in the training set were classified correctly. Training sets consisted of 224 patterns, created

randomly. An N-10-1 architecture was used for each simulation.

Figure 5.3 depicts the significance profiles for the hidden units for each simulation. For each
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Significance profiles for the XOR problem
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problem a large gap formed between relevant and irrelevant hidden units. At the time of
convergence, a large enough gap existed between the group of relevant units and the group
of irrelevant units to eliminate 10 — N hidden units in the case of N-parity. For example, 6

hidden units were pruned for the 4-bit parity problem (refer to figure 5.3(c)).

The results illustrated by figure 5.3 agree with the conclusion by Rumelhart and McClelland
that an N-bit parity problem requires at least N units to be solved [Rumelhart et al 1986].

Although the experiments reported in this section showed parameter significance to be an
accurate descriptor of the actual significance of parameters, the gap pruning heuristic is
problematic. For these experiments a value of C = 0.5 for the gap constant worked quite
well, but may be insufficient for other problems. Therefore requiring an optimal value to
be computed for each new problem using methods such as cross-validation. For this reason,
a statistically based method was developed to eliminate the problem of parameter pruning.

Results of this statistical pruning heuristic are reported in the next section.

5.4.2 Parameter Variance Nullity: Pruning Results

In this section the pruning heuristic based on the parameter variance nullity measure (defined
in section 5.3.3) and hypothesis testing (described in section 5.3.4) is applied to problems for
which the optimal architecture is known, either from the definition of the problem, or previous

published results. The pruning algorithm is also applied to real-world problems for which the
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optimal architecture is unknown. In such cases, the generalization error is used as indication
of whether a pruned network can be accepted or not. Table 5.1 summarizes the problems

used to illustrate the correctness of this pruning algorithm.

The results presented in this section show that pruning is an iterative process: most of the
problems investigated required more than one pruning step to optimize the architecture. For
each problem a table is given to summarize the outcome of each pruning step. These tables
contain for each pruning step the current architecture, the training and generalization (test)
errors at the point where overfitting starts, the value of 02 and the critical value Y. for a
significance of a = 0.01, the number of patterns in the nullity set used for pruning purposes
(i.e. the number of free parameters), and a reference to the figure that illustrates which
parameters were pruned. The error on the test set serves as an indication of the performance

of the pruned network compared to the oversized network.
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To Initial | Optimized | Optimality
Problem Defined in Prune NN NN Reference
Function F1 | equation (4.38) | hidden units | 1-5-1 1-2-1 figure 4.11(a)
Function F2 | equation (4.39) | hidden units | 1-10-1 | 1-5-1 figure 4.11(b)
Artificial equation (3.5) | hidden units | 2-10-1 | 2-3-1 figure 3.1
Classification equation (3.5)
Four Class equation (3.6) | hidden units | 2-10-4 | 1-3-4 figure 3.8
Artificial input units equation (3.6)
Classification
iTis section 4.3.5 hidden units | 4-10-3 | 2-2-3 UCI repository

input units [UCT]
wine section 4.3.5 hidden units | 13-10-3 | 6-3-3 -

input units
hepatitis section 4.3.5 hidden units | 19-25-1 | 4-4-1 —

input units
diabetes section 4.3.5 hidden units | 8-40-1 | 6-8-1 -

input units
breast cancer | section 4.3.5 hidden units | 9-10-1 | 3-1-1 -

input units

Table 5.1: Problems used to test the statistical pruning heuristic

For one dimensional function approximation problems experience has shown that the number
of turning points in the target function, plus one, is sufficient to learn that function (if sigmoid
activation functions are used). An activation function is fitted for each inflection point. The
minimum number of hidden units for functions F1 and F2 are therefore respectively 2 and
5 (refer to figures 4.11(a) and 4.11(b)). The pruning results for function F1 are summarized
in table 5.2, while table 5.3 contains the pruning results of function F2. These results illus-
trate that the statistical pruning heuristic correctly removed unnecessary hidden units. In
figures 5.4 and 5.5, which illustrate the variance nullity of each hidden unit, only parameters
with variance nullity smaller than the critical value (the dotted line) were removed. For func-
tion F1 only one pruning step was needed, while two pruning steps were needed for function
F2. Note that the generalization error of the final architecture is very similar to that of the

original unpruned network.
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Current MSE Pruned
Pruning | Archi- Training | Test Patterns Para-
Step tecture | Set Set Used a3 | T, meters
1 1-5-1 0.040315 | 0.036176 | 80 0.1 | 53.54 | 3 hiddens
figure 5.4(a)
2 1-2-1 0.040240 | 0.036191 | 80 1.0 | 53.54 | pruning stops
figure 5.4(b)
Table 5.2: Pruning results for function F1 using hypothesis testing
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(a) Pruning Step 1 (b) Pruning Step 2
Figure 5.4: Hidden unit variance nullity for function F1
Current MSE Pruned
Pruning | Archi- Training | Test Patterns Para-
Step tecture | Set Set Used o3 | YT, meters
1 1-10-1 0.021542 | 0.022668 | 100 0.1 | 70.065 | 4 hiddens
figure 5.5(a)
2 1-6-1 0.025451 | 0.027519 | 100 0.1 | 70.065 | 1 hidden
figure 5.5(b)
3 1-5-1 0.027835 | 0.029995 | 100 0.1 | 70.065 | pruning stops
figure 5.5(c)

Table 5.3: Pruning results for function F2 using hypothesis testing
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Current Accuracy Pruned

Pruning | Archi- Training | Test | Patterns Para-

Step tecture | Set Set | Used o3 | Y. meters

1 2-10-1 95.5% 95% | 100 0.01 | 70.065 | 5 hiddens
figure 5.6(a)

2 2-5-1 96.2% 95% | 100 0.01 | 70.065 | 2 hiddens
figure 5.6(b)

3 2-3-1 96% 95% | 100 1.0 | 70.065 | pruning stops
figure 5.6(c)

Table 5.4: Pruning results for artificial classification problem (3.5) using hypothesis testing

The next problems are classification tasks. Firstly, the artificial classification problem defined
in equation (3.5) is used to further illustrate hidden unit pruning. From the definition of the
problem in equation (3.5) and the illustration in figure 3.1, three hidden units are sufficient
for this problem. The pruning results for this artificial problem are summarized in table 5.4.
Two pruning steps were needed to find the optimal architecture. The last application of the
pruning algorithm, with o3 = 1.0 suggested pruning of the remaining three hidden units. Since
performance then greatly deteriorated, the pruning process was stopped and the current 2-3-1
architecture was accepted. The generalization performance of the accepted pruned network

was the same as the original network.

The four-class artificial problem defined in equation (3.6) is used next to illustrate pruning of
both hidden and input units. Equation (3.6) shows the second input unit to have no influence
on the classification, and figure 3.8 shows that only 3 hidden units are required to separate
the four classes. Only two pruning steps were needed, where the required number of hidden
units was obtained after step one, and the irrelevant input unit was removed during step 2.
Table 5.5 illustrates the successful pruning results for this problem. Note that the hidden

layer was pruned first, and then the input layer when no more hidden units could be pruned.

The last problem for which a detailed illustration of pruning is given is the iris problem used

in section 4.3.5. From the statistical results given by the UCI repository, the first two input
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Figure 5.6: Hidden unit variance nullity for artificial classification problem (3.5)
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Figure 5.7: Parameter variance nullity for four-class artificial classification problem (3.6)
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Current Accuracy Pruned
Pruning | Archi- Training | Test | Patterns Para-
Step tecture | Set Set | Used o3 | Y. meters
1 2-10-4 95.3% 93% | 100 0.01 | 70.065 | 7 hiddens

figure 5.7(a)
2 2-3-4 95.5% 93% | 100 0.01 | 70.065 | hidden pruning

stops

figure 5.7(b)

input unit 2o

figure 5.7(c)
3 1-3-4 94.7% 93% | 100 1.0 | 70.065 | pruning stops

figure 5.7(d)

Table 5.5: Pruning results for four-classs artificial classification problem (3.6) using hypothesis

testing
Current Accuracy Pruned

Pruning | Archi- Training | Test | Patterns Para-

Step tecture | Set Set | Used o8 | Y. meters

1 4-10-3 97.1% 97.7% | 45 0.1 | 26.54 | 8 hiddens
figure 5.8(a)

2 4-2-3 96.2% 97.7% | 45 0.1 | 26.54 | hidden pruning
stops
figure 5.8(b)
input units 21, 29
figure 5.8(c)

3 2-2-3 96.2% 97.7% | 45 0.1 | 26.54 | pruning stops
figure 5.8(d)

Table 5.6: Pruning results for the iris classification problem using hypothesis testing

units, which correspond to the parameters sepal length and sepal width, can be removed since

they have a low class correlation . In addition to pruning of these two irrelevant input units,

table 5.6 also illustrates that two hidden units were sufficient for the iris problem. The pruned

network for this problem also retained the generalization performance of the original network.

Table 5.7 summarizes for other real-world classification problems the reduced architectures,

obtained after application of the hypothesis test pruning heuristic. A detailed illustration of

each step is not given, only the original and final architectures, and the percentage correctly

'Refer to the UCT machine learning repository at http://www.ics.uci.edu/ “mlearn/MLRepository.html
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Figure 5.8: Parameter variance nullity for the iris problem
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Original Network Reduced Network Pruning
Problem NN Er Ea NN | &r Ea Steps
wine 13-10-1 | 100% | 98% 6-3-3 | 96.1% | 95.9% | 4
hepatitis 19-25-1 | 94.3% | 80% 4-4-2 | 78.9% | 83.3% | 7
diabetes 8-40-1 | 2% 68% 6-8-2 | 70.5% | 69.1% | 3
breast cancer | 9-10-1 | 96.4% | 98.1% | 3-1-2 | 96.2% | 97.8% | 7

Table 5.7: Pruning results on real-world classification problems using hypothesis testing

classified patterns for these architectures for the training and test sets. The number of pruning
steps to reach these optimal architectures is also given. The percentage correctly classified
patterns on the training and test sets give an indication of the correctness of the pruning
algorithm: the classification accuracies of the original and pruned networks were very similar,

indicating that the pruned architectures can be accepted.

5.5 Conclusions

This chapter presented an approach to the pruning of multilayer feedforward NNs using output
sensitivity analysis with respect to the parameters to be pruned. Two methods were proposed
to quantify the relevance of network parameters, and a pruning heuristic was developed for

each measure of parameter relevance:

e The parameter significance method computes the relevance of a parameter as the
squared average of the sensitivity of the output to changes in that parameter over all
patterns in the training set. The pruning heuristic orders the parameter significances
and finds a large enough gap between consecutive parameters to prune lower significant
parameters. The success of this approach depends on a gap constant which is problem

dependent.

e The statistical variance nullity method quantifies the importance of a parameter as the
variance in the parameter sensitivity over a set of patterns. The pruning heuristic is

based on formal hypothesis tests, using a strict significance level of a = 0.01.
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Results for both approaches illustrated the success of the pruning algorithms in removing
irrelevant input and hidden units. Correctness of the pruning results was illustrated by using
problems for which the minimal number of input and hidden units were known, and by

evaluating the accuracy of the pruned architectures with that of the original architectures.

It is proposed that future research beyond this thesis includes

e empirical studies of the presented pruning methods to prune weights;

e the inclusion of an F-test statistic to statistically test if the performance of the pruned
architecture is significantly less than that of the original architecture, instead of using

the rule of thumb “stop pruning when generalization deteriorates too much”;

e empirical studies to investigate application of the pruning methods to different multi-

layer NN types, using activation functions other than sigmoid functions; and

e 3 comparative study of different pruning techniques, including pruning based on NN

output sensitivity analysis.

The pruning algorithms presented in this section addressed the thesis sub objectives by re-
ducing the complexity of the NN model, thereby reducing the number of free parameters.
Consequently, the effects of overfitting is reduced. The pruning algorithm also reduces the
complexity of NN rule extraction algorithms, and enables the extraction of more accurate

rules with no redundant input parameters [Viktor et al 1995, Viktor 1998b].
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Conclusion

“..on the other hand,

we cannot ignore efficiency’

- J Bentley

This thesis proposed NN output sensitivity analysis as an approach to learn more about the
inner working of feedforward NNs, and the data being modeled. New sensitivity analysis
techniques were developed to probe the knowledge embedded in the weights, and to use this
knowledge within specialized algorithms to improve generalization performance, to reduce

learning and model complexity, and to improve convergence characteristics.

The main contributions of this study were

e 3 comparison of objective function and output sensitivity analysis;

e 3 sensitivity analysis approach to the visualization of decision boundaries;

a selective learning algorithm for classification problems;
e an incremental learning algorithm for function approximation problems;

e a pruning algorithm which includes a pruning heuristic based on variance analysis and

hypothesis testing; and

a self-scaling learning algorithm which dynamically adapts sigmoid activation functions.

185
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NN output function sensitivity analysis was presented as an approach to compute the sen-
sitivity of output units to small perturbations in network parameters, which include input
units, hidden units and weights. A general mathematical model was developed for output
sensitivity analysis from a first order Taylor expansion of the NN output with respect to NN
parameters. This model was compared with objective function sensitivity analysis. It was
shown that these two approaches to sensitivity analysis are conceptually the same, and will
result in the same order of parameter significances. However, output sensitivity analysis is
less complex than objective function sensitivity analysis, which requires the calculation of
the Hessian matrix. Most of the information needed by output sensitivity analysis is already
available from the learning equations. The output sensitivity analysis approach presented in
this thesis does not rely on simplifying assumptions as is the case with objective function
sensitivity analysis. Complete sensitivity analysis equations for standard feedforward and
product unit NNs were derived. It was also shown that the output sensitivity analysis ap-
proach is applicable to different multilayer NN types, including feedforward, product unit and
functional link NNs. Experimental results showed that the analytical equations for standard
feedforward NNs accurately approximate the true first order derivatives of the function being

modeled.

Algorithms were developed to visualize and analyze decision boundaries formed in the input
space. For this purpose two types of decision boundaries were defined, viewed from one
dimension only. These definitions were used to develop algorithms to visually inspect the
position of decision boundaries, using output sensitivity information with respect to input

perturbations. It was shown how these visualization algorithms can be used to

e identify irrelevant input parameters: No boundaries are formed for irrelevant
parameters, which will be indicated by sensitivity values of approximately zero over the

entire input space.

e analyze the functioning of hidden units: Hidden units that implement no boundary
can be detected, as well as hidden units that duplicate the function of other hidden
units, i.e. units that implements the same boundary. Also, it can be determined which

boundary is implemented by which hidden unit(s).
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e assign a measure of informativeness to patterns: Patterns that lie close to de-
cision boundaries have very high sensitivity values, and convey the most information

about the position of boundaries.

¢ aid in the extraction of accurate symbolic rules from trained NNs: The visual-
ized boundaries can be used as threshold values for continuous valued input parameters
in rule clauses [Engelbrecht et al 1999a, Viktor et al 1995, Viktor 1998b]. It was not
the objective of this thesis to explore this application further. The reader is, however,

referred to [Viktor 1998b] where this application is explored in detail.

The decision boundary visualization and detection algorithms addressed the sub objectives
of this thesis by providing a mechanism through which we gain a better understanding of the
functioning of multilayer feedforward NNs and greater comprehensibility of the numerically

encoded knowledge for classification problems.

Two new active learning algorithms were developed:

e A selective learning algorithm for classification problems, where the training set is
pruned by removing uninformative patterns during training. Training is done on the
most informative patterns, which are those patterns that lie closest to decision bound-
aries. For this purpose, the sensitivity analysis decision boundary detection algorithm

was used to locate all patterns near boundaries.

e An incremental learning algorithm, where patterns are incrementally selected from
a candidate set of patterns and added to the actual training set. The training set
therefore incrementally grows with the most informative patterns being added to it.
The most informative patterns are those that cause the largest change in NN output,

and therefore the largest weight changes.

For the purposes of these active learning algorithms, the concept of pattern informativeness
was defined as the influence small perturbations in any of the input values of that pattern

have on the NN output.

Both the selective learning and incremental learning algorithms resulted in a substantial saving

in computational cost during training. In general, these two approaches resulted in improved
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convergence properties, and had less overfitting than normal fixed set learning (FSL). The
selective learning algorithm illustrated similar generalization performances compared to FSL,
while the incremental learning algorithm showed substantially improved generalization for

most of the problems investigated.

A sensitivity analysis tool was developed to prune feedforward NN architectures. Theoretical
models were developed to prune input units, hidden units and weights. Experimental results
illustrated the application of the sensitivity analysis pruning algorithm to the pruning of in-
put and hidden units. The thesis defined two mechanisms to determine the relevance of NN
parameters, which resulted in the development of two pruning heuristics. The first approach
calculates the significance of parameters as a norm over the sensitivity of output units to per-
turbations in that parameters, over the entire training set. A pruning heuristic was proposed
that orders the parameter significance values and finds a large enough gap between consecu-
tive parameters to allow pruning of low significance parameters. This heuristic introduced a

problem dependent gap constant for which an optimal value needs to be determined.

For this reason a new statistical measure based on variance analysis was defined to express
the importance of parameters. The parameter variance nullity measure quantifies the vari-
ance in output sensitivity due to parameter perturbations over a given set of patterns. The
pruning heuristic consists of formal hypothesis tests to determine if the variance in output
sensitivity with respect to a network parameter is significantly different from zero. If not,
the parameter is pruned. This new measure of parameter importance and pruning heuristic
provide a statistically justified mechanism to prune irrelevant parameters, with no problem

dependent parameters for which optimal values need to be determined.

The pruning algorithms developed in this thesis addresses the generalization and complexity
sub objectives of the thesis. Through removal of excess parameters, overfitting is avoided,
and the complexity of the NN model is reduced. Also, pruning of NN architectures has been
shown to improve the accuracy of rules extracted from trained networks, and to reduce the

complexity of rule extraction algorithms [Viktor et al 1995, Viktor 1998b].
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6.1 Future Work

The sensitivity analysis techniques presented in this thesis were developed for feedforward
NN using sigmoid activation functions. It is proposed that future research include empirical
investigations into the applicability of these sensitivity analysis techniques to other NN types,
including recurrent, product unit and functional link NNs, using differentiable activation

functions other than sigmoid functions.

With reference to the individual sensitivity analysis techniques developed in this thesis, future

research could include

e an extension of the selective learning algorithm to allow for dynamic values of the subset

selection constant;

e a study of the performance of the incremental learning algorithm under different subset

sizes;

e an empirical investigation into the effect of outliers on both the selective and incremental

learning algorithms;

e an investigation into the applicability of the incremental learning algorithm to classifi-

cation problems;
e application of the pruning algorithm to the removal of irrelevant weights; and

e extending the pruning heuristic to include an F-test to statistically determine if a pruned

NN architecture can be accepted.

e application of the developed sensitivity analysis tools to other NN types, e.g. recurrent,

functional link, and product unit NNs.

The empirical results of this thesis showed output sensitivity analysis to be an efficient ap-
proach to improve the performance of multilayer feedforward NNs. A key advantage of the
NN output sensitivity analysis approach is that no simplifying assumptions are made, and
that the approach is simple to use and by no means computationally complex. Most of the

information needed is already available from learning equations. The approach is very flexible
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being independent of the objective function and optimization method, and it is applicable to

any differentiable, monotonic increasing function.

“By perseverance the snails reached the ark.”

-Charles Haddon Spurgeon
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Appendix A

Symbols and Notation

The notation and symbols used in this thesis assume a three layer neural network (NN)
architecture with one input layer, one hidden layer, and one output layer. This appendix

summarizes the symbols used throughout this thesis with reference to the three layer archi-

tecture depicted by figure A.1

Bias unit Bias unit

Figure A.1: Ilustration of three layer NN architecture
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The symbols are listed alphabetically.

Symbol

Interpretation

significance of parameter 6;

informativeness of pattern p

informativeness of pattern p using maximum norm

average pattern informativeness using maximum norm
selective learning pattern selection rule

distribution of input space

variance nullity measure for parameter 6;

critical variance nullity value obtained from distribution tables
absolute average sensitivity of parameter 8; over all outputs for pattern p
average sensitivity of parameter 6; over all patterns
momentum in learning context

level of significance when used with x? distribution

learning rate

range coefficient for v learning algorithm

steepness of sigmoid activation function

regularization parameter in case of penalty objective functions
Robel’s generalization factor

pi =iy vjiIn 2l

¢j = Yzt vjiLi

standard deviation

variance

variance in parameter sensitivity of parameter 6;

zero variance, a value close to zero

denotes noise

any NN parameter

a small perturbation of 0

denotes a subset selection interval

denotes an epoch
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Symbol

Interpretation

incremental learning operator

selective learning operator

denotes a computational cost as number of calculations

error on test set / generalization error
training error

validation error

average validation error

NN output function

denotes hypothesis space

the null hypothesis

the alternative hypothesis

a performance measure

subset size function

number of pattern presentations during learning
pruning gap constant

set of candidate training patterns

test set / generalization set

subset at s subset selection interval
actual training set

validation set

total number of input units

total number of hidden units

total number of output units

normal distribution with mean a and variance b
number of candidate training patterns
number of test / generalization patterns

number of patterns in subset Dg,

215



APPENDIX A. SYMBOLS AND NOTATION 216

Symbol

oz

08,k

Sob,ki

nety,
nety;

Ok

Interpretation

number of patterns in actual training set

number of validation patterns

total number of subset selection intervals

output sensitivity vector for pattern p

output sensitivity vector as a norm over training set

output-input sensitivity matrix for pattern p

sensitivity of output unit o for pattern p

the sensitivity of output oy to perturbations in parameter 6; for pattern p
the sensitivity of output o; to perturbations in parameter ; as a norm
over all training patterns

the sensitivity of output o;, to perturbations in weight v;; for pattern p
the sensitivity of output o;, to perturbations in weight wy; for pattern p
the sensitivity of output oy to perturbations in hidden unit y; for pattern p
the sensitivity of output oy to perturbations in input z; for pattern p
uniform distribution of values [—a, a]

activation function of k'

output unit

derivative of activation function of k** output unit
activation function of j** hidden unit

derivative of activation function of j** hidden unit
index for input units when used with z

general parameter index when used with 6

index for hidden units

index for output units

netto input to k" output unit

netto input to 5** hidden unit

the k' output unit
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Symbol Interpretation

p pattern index

S subset interval index

tx target value for k** output unit

Ui direct weight between output oy and input z;
Vji weight between hidden y; and input z;

W weight between output o and hidden y;

Yj the j*" hidden unit

2 the i** input unit



Appendix B

Definitions

This appendix summarizes definitions of key terms used in this thesis. The terms are defined

in alphabetical order.

Active Learning: Active learning is any form of learning in which the learning algorithm
has some deterministic control during training over what part of the input space it

receives information (page 60).

Active Learning Operator: An active learning operator is a mechanism/algorithm used

to dynamically select patterns during training from a candidate training set (page 67).

Architecture Selection: Architecture selection is the process of selecting a suitable
NN architecture through regularization, pruning or growing (network construction)

(page 143).

Axis-parallel Decision Boundary: Under the assumption that a NN implements
a nonlinear differentiable function, and that monotonic increasing activation func-
tions are used in the hidden and output layers, if there exists an input parameter

(p) (p)

value z;’ and a small perturbation Az; of z;

fok(z§p) ---,z(p), e ’ng)) # fok(zy)), e ,z,gp) + Az, ,zy’)), then an axis-parallel de-

’ i

such that, for any output unit oy,

cision boundary is located in the range [zgp ) , zi(p ) 4 Az;] of input parameter z; (page 38).

218
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Non-axis-parallel Decision Boundary: Under the assumption that a NN implements a
nonlinear differentiable function, and that monotonic increasing activation functions are
used in the hidden and output layers, if there exist two input parameter values zz(f ) and
zg’ ) with zz(f ) < zz(f ) such that for zgp ) € [zz(f ), zz(f )], a small perturbation Az; of zZ(P ) and
any output unit o, fok(z(p), e ,z(p),---,zgp)) # fok(zy)),---,zgp) +Azi,---,z§p)), then

()

a non-axis-parallel decision boundary spans over the range [z-(p ) &, | of input parameter

11 %

z; (page 38).

Decision Boundary: A decision boundary is a region in input space of maximum ambiguity

in classification. A decision boundary forms a separation between two different classes

(page 33).
Dynamic Learning: Refer to the definition of active learning.

Fixed Set Learning: In fixed set learning, the NN learner passively receives a fixed set of

information to learn (page 59).

Generalization Factor: The generalization factor as defined by Robel is the ratio of the

validation set error versus the training set error, used as measure of overfitting (page 64).

Model Selection: Model selection is the process of designing an optimal NN architec-

ture and the optimal selection of training patterns from a pool of candidate patterns

(page 54).

Incremental Learning: Incremental learning is an active learning algorithm where the
training set is incrementally grown from a candidate set, by dynamically selecting and

removing patterns from the candidate set and adding them to the training set (page 57).

Objective Function Sensitivity Analysis: A study of the influence that small parameter
perturbations have on the function being optimized (usually the sum squared error)
by means of the derivatives of the objective function with respect to the perturbed

parameters is referred to as objective function sensitivity analysis (page 17).

Output Sensitivity Analysis: A study of the influence that small parameter perturbations

have on the NN output function being approximated by means of the derivatives of the
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NN output function with respect to the perturbed parameters is referred to as output

sensitivity analysis (page 20).

Mean Squared Error: In the context of neural networks, the mean squared error (MSE)

(p)

is defined as the mean of the squared sum of the error between target values ¢;;” and

the actual NN output values ogf ).

S TR — o)

MSE =
PK

where P is the total number of patterns and K is the number of output units (page 25).

Parameter Significance: Define the significance of a NN parameter 6;, which can be an
input unit, hidden unit or weight, as the sensitivity of the NN output vector to small

perturbations in that parameter (page 161).

Parameter Variance Nullity: Define the statistical nullity in the parameter sensitivity

variance of a NN parameter 8; over patterns p=1,---, P as
(P-1)0}
Ty, = 2
90

where agi is the variance of the sensitivity of the network output to perturbations in

parameter 6;, and o3 is a value close to zero (page 163).

Pattern Informativeness: The informativeness of a pattern is defined as the sensitivity
of the NN output vector to small perturbations in the input vector. Pattern informa-
tiveness quantifies the amount of information a pattern has about the problem being

learned (page 74).

Perturbation Analysis: Perturbation analysis is the study of the influence that small
perturbations A@ of system parameters 6 has on a performance function P. The change

in performance due to perturbations is described by the Taylor series (page 14)

Af_ AO?
Selective Learning: Selective learning is an active learning algorithm for classification
problems which starts training on the entire candidate set and removes patterns that

become uninformative during training (page 57).
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Sensitivity Analysis: Sensitivity analysis is the study of the influence that small parameter
perturbations have on the result of a performance function P through calculation of

the derivatives of the performance function with respect to the perturbed parameters

(page 14).

Sensitivity Analysis Incremental Learning: Sensitivity analysis incremental learning
is an approach to active learning where pattern informativeness is used as measure to
select patterns from a candidate training set that convey the most information on the
function being approximated. The most informative patterns are removed from the

candidate training set and added to the current training subset (page 109).

Sensitivity Analysis Selective Learning: Sensitivity analysis selective learning is an
approach to active learning where pattern informativeness is used as measure to select
patterns for learning which are located close to decision boundaries. Selective learning

prunes uninformative information from the training set (page 76).

Training Strategy: A training strategy is viewed as preprocessing of the training set
to determine an order according to which patterns will be presented to the network,

without using the knowledge of the learner (page 60).



Appendix C

Automatic Scaling using v Learning

This appendix is a reproduction of a paper published in the proceedings of the Interna-
tional Workshop on Artificial Neural Networks, 1995 [Engelbrecht et al 1995a). The research
presented is a study of the effects of the scaling of output values on training time and gener-

alization, and the development of an automatic scaling algorithm.

C.1 Abstract

Standard error back-propagation requires output data that is scaled to lie within the active
area of the activation function. We show that normalizing data to conform to this requirement
is not only a time-consuming process, but can also introduce inaccuracies in modeling of the
data. In this paper we propose the gamma learning rule for feedforward neural networks
which eliminates the need to scale output data before training. We show that the utilization
of “self-scaling” units results in faster convergence and more accurate results compared to the

rescaled results of standard back-propagation.

C.2 Introduction

Many artificial neural networks trained with the popular error back propagating training

algorithm, also called the delta rule, contain units having the well-known sigmoid activation
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function where A is a positive constant [Zurada 1992al:

fOvy) = — (1)

Clte M
A problem with this squashing function is that its output is always in the range [0, 1], thus
requiring scaling of the desired output before training to fit into this range. In addition to
scaling of the output data, the input data is normally scaled to lie within the active area of
the sigmoid activation function (e.g. to the range [—+/3,v/3]). In this paper we investigate

the effects that scaling of the output data has on the learning process.

In practice, the data set presented to a neural network often contains values which lie outside
the active range of the sigmoid activation function. If the delta learning rule with sigmoid
activation functions is used to learn the data set, the data must be pre-processed before
training. During pre-processing, the data is compressed to fit into the active range of the
sigmoid function. This scaled data set is then used for training purposes. To interpret the
results obtained from the neural network, the outputs must be rescaled to the original range.
From the user’s viewpoint the accuracy obtained by the neural network refers to this rescaled
data set. We show that the scaling of outputs into a smaller range than the original unscaled

range leads to longer training times to reach a specified accuracy on the rescaled data.

In this paper we extend the delta rule to the so-called gamma learning rule which adjusts
the output range of the sigmoid activation function during learning. Thus, the gamma rule
is effectively performing automatic scaling — a property applicable to almost all applications.
Recently, Zurada proposed the lambda learning rule where the constant A in (C.1) is treated
as a variable and also adapted during training [Zurada 1992a). Thimm et ol has shown
that there exists a relationship between the gain A and learning rate 7, as well as initial
weights [Thimm et al 1996]. The same reduced training times achieved by lambda learning
can be obtained through appropriate scaling of the learning rate. In our research we develop
gamma learning as a mechanism to automatically scale the range of the sigmoid activation
functions, with the purpose to investigate the effect of scaling on training time and error.
A similar relationship between gamma values and learning rate does not exist. We denote
the combination of lambda and gamma learning as the lambda-gamma learning rule, which

is more general than the delta rule.



APPENDIX C. AUTOMATIC SCALING USING v LEARNING 224

The gamma rule is reminiscent of biological neurons which are able to adjust to signals of
various natures through transmitter depletion and contrast enhancement. For instance, cells
in the auditory system exhibit “stimulus selectivity” [Morgan et al 1991], becoming attuned

to a characteristic frequency.

In the next section we investigate the effects of scaling of the output data, and show the
advantages of self-scaling output units. The lambda-gamma, rule is derived for a single neuron
in section C.4, and extended to single layer learning in section C.5. Section C.6 generalizes
the rule for hidden layer learning. A complete general learning algorithm is presented in

section C.7, and experimental results are reported in section C.8.

C.3 Effects of scaling

For the purpose of this exposition assume an output layer which consists of one neuron!.
Without loss of generality, assume that the desired output data is scaled into the range [0, 1]
using linear scaling:

ts = c1ty + Co (02)

where t, is the original unscaled desired output data (i.e. raw data), and ¢, is the correspond-
ing scaled desired output data to be used for training. To scale data to the range [0, 1] the

scaling factors ¢; and co are the following:

1 —miny_y_p{t}
Cy =

c1 =
max,_1__p{tP} - minp_l,...,P{t&f’z} |
C.3

maxp_1._p{tP} — miny_1 _p{t}

with P the total number of patterns. Then, from (C.2) the rescaled desired output ¢, is
tr = —ts — — (C.4)

Let os denote the actual output of output neuron o. Then, similarly to (C.4), o, is the
actual output rescaled to the original output range. Assume it is possible to learn original
unscaled data, and let o, denote the actual unscaled output of neuron o. Since the values of
desired output data are not changed during training, it is clear that ¢, = ¢,, and under ideal

conditions we will also have that o, = o,. However, this will require perfect learning with

!The derivations in this section can easily be extrapolated to an output layer with more than one neuron.
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zero error which is in practice not realizable. Let M SEs; and M SE, respectively denote the

mean square error for the scaled and rescaled data over the entire training set. Then,

P

MSE, = Y (t&) —o®)?/P (C.5)
p=1
P

MSE, = Y () —olP)?/p (C.6)
p=1

By substitution of equation (C.4) in (C.6) we obtain

P
1 c 1 c
— S _ 2y 2 ) 2\i2 p ()2
MSE, pEZI[(CltS 01) (C oy )?/P =(—)"MSE; (C.7)

Equation (C.7) illustrates a clear relation between the scaled and rescaled error. If
ler| <1 (c1 #£0) (C.8)

then (C.7) indicates that the rescaled error is a factor of (é)2 larger than the scaled error,
where condition (C.8) corresponds to the compression of data into a smaller range than the

original range.

For the following, assume it is possible to learn the original unscaled data. Let M SE, denote
the mean square error for the unscaled data. The relationship illustrated above indicates that
in order to obtain a rescaled accuracy M SE, which is equal to M SE,,, the network must be
trained longer until

MSE;s = (¢c1)?MSE, (C.9)

On the other hand, if
ler| > 1 (C.10)

we have from (C.7) that the rescaled error is a factor of (é)2 smaller than the scaled error.
This corresponds to our claim that training on data which is expanded over a wider range
will lead to faster convergence, since a scaling factor ¢; which conforms to condition (C.10)

represents the scaling of data to a larger range than the original unscaled range.

From this investigation into the effects of scaling we conclude that it is preferable to use
“self-scaling” output units and to learn original unscaled data when the range is greater than

[0,1]. This will significantly decrease the number of training cycles compared to learning
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Y
y f (v, A, net)
2
=0
Y /
-1

Figure C.1: Lambda-gamma learning for a single neuron

scaled data, especially when |ci| is very small. Currently only linear self-scaling output units
are available. In the next sections we propose the use of sigmoid self-scaling output units
where the output range of the sigmoid activation function is dynamically adapted to span
the original output range. The online adjustment of the output range enables the learning of

unscaled data.

C.4 Lambda-gamma single neuron learning

The customary sigmoid function (C.1) for a single neuron is modified to include a range

coefficient v and a steepness coefficient X, to give:

v

where the activation value is net = @'y, the augmented input vector is % = [y1 y2 ... Y1 —
1]* and the weight vector is @ = [w; wy ... wy]’. In the classical delta rule the neuron

therefore learns in (n — 1)-dimensional non-augmented weight space in which n weights are
adjustable. The lambda and gamma learning rules expand the learning space to (n + 1)
dimensions, while the lambda-gamma learning rule expands it to (n + 2) dimensions. In
addition to weight learning, both the steepness A and the range v undergo adjustments in the
negative gradient direction. Referring to Figure C.1 and using the customary expression for

error between the desired value ¢ and the actual output of the neuron o,

o1 .
E(77 Aa ’U)) = E[t - 0(’77 Aa ’U))]2
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where
o(y, \, W) = f(v, A, net(, 7))

we obtain the following weight adjustments for single neuron learning:

OF OE Oo Onet A
Aw; = _77187]- = —771% dnet ow; m(t— 0);0(7 — 0)y; (C.12)
OFE OF 0o 1
Al = TRy T TR an n2(t — 0);0(7 — o)net (C.13)
OF OFE 0o 1
Ay = —7738— = —7133—6— =n3(t —o0)-o (C.14)
Y 00y v

where 71,72 and 73 are positive learning constants usually selected as arbitrarily small values.
Inspection of expression (C.12) coincides with the delta learning rule [Zurada 1992b] when
A = v =1, and the lambda learning rule [Zurada 1992a] when v = 1. Expression (C.13)
similarly reduces to the lambda rule when v = 1. The extension to the lambda-gamma
learning rule where a neuron’s activation value can be “self-scaling” to the desired range is

represented by expression (C.14).

The next section illustrates single layer learning for the lambda-gamma learning rule.

C.5 Single layer learning

Assume that the neurons in the output layer ¢ undergo training. In addition to a net input
and activation value, each neuron o, (k = 1,..., K) has a range coefficient -, and a steepness
coefficient )\, . The range and steepness coefficients are trained along with the weights wy;
for all hidden neurons y; (j = 1,...,J) shown as the rightmost two layers in Figure A.1. The
usual definitions for error and error signal terms are used:
1 K
E = =) [tk — 0k(Yogs Aoy neto, )] (C.15)

2
k=1

OFE Ao
= = ——"(tk — 0k )0k (Yo, — Ok) (C.16)
Onet,, Yor

]

where d and & are respectively the desired output and the actual output vectors, and gg

and gy are respectively the error signal term vectors for the output and hidden layers. The
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adjustments to the learning variables are given below:

OF
Awkj = _ka- =
J
OF
A’\Ok -T2 5N =
Of
OF
Ay, =~y — =~

Ok

where

O = f(’)’ok, )‘ok ) netok ('U_jk, :(7)) a.nd net ’U)k,

OE Ooy (9neto,c

—m dog, Onet,, Owy; 0o Y
OE Oop 5 neto,
B0k Oho, PO TN,
OF 80k 1

N3 a— = n3(ty — o) —o0
0oy, 0o, Yo

Z Wkj5Yj
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(C.17)

(C.18)

(C.19)

Hidden layer learning for the lambda-gamma learning rule is described in the next section.

C.6 Hidden layer learning

To train the neurons y; (j =1,...

,J) in the hidden layer, the weights v;; (i =1,...

,I), the

steepness coefficient A,; and the range coefficient y,; must be adjusted during each iteration

of the learning algorithm, using respectively

Avj; = —m

AN

OE
a’l)ji
OE

Yj 2 Wy]

OF

Avyy; = —M35—

Using the error (C.15) and error signal

OF

Yi Bnetyj

we obtain

OF

Oy,

term

'Yy] 5)Y; Z doj, Wk
’Yy

oF 6netyj

ovj;

OE
Oy,

OE _ OE dy; _

87yj B 0y; afyyj

%
anet 0vj; Yi

OFE 8y]— nety;
Yj )‘yj

003 O,

K
1

—f(')’yj s Ay Nety; ) Z doj, Wi
Vy; k=1

(C.20)
(C.21)

(C.22)

(C.23)

(C.24)

(C.25)

(C.26)
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where we have from (C.15)

K

oF

B0 :E oy, Wk (C.27)
Yi k=

Substitution of equations (C.24), (C.25) and (C.26) into equations (C.20), (C.21) and (C.22)

respectively yields the following adjustments for the hidden layer neurons:

Avji = —midy;zi
nety
Ady; = —Mady, Ay,
J
1 K
A'ij = —7737—]"(’)/%. , )\yj , netyj) Z (5okwk]‘
Yi k=1

where
I
Yj = f(fyyj, Ay; > nety, (Uj,7)) and nety, (U5,7) = Zvﬁzi
=1

with do, and d,, respectively the error signal term of the k-th output neuron and the j-th
hidden neuron by equations (C.16) and (C.23). As mentioned previously, the adjustments
reduce to that of the delta rule when A and  are constants equal to 1, the lambda rule
when v is equal to 1 and the gamma rule when )\ is equal to 1. For training, the complete
back-propagation algorithm in [Zurada 1992a] is updated to reflect the changes given above.

The updated algorithm is presented in the next section.

C.7 Complete lambda-gamma learning algorithm

The algorithm presented in [Zurada 1992a] is modified below to reflect the lambda-gamma
learning rule which is more general than the delta and lambda learning rules. Changes

correspond to the adjustments to weights, steepness and range coefficients.

Begin: Given P training pairs of vectors of inputs and desired outputs
{(Zl,cil),(Zg,(iz),...,(é'p,ci;,)} where 7 is (I x 1), d; is (K x1) and ¢ = 1,...,P; ¢
is (J x1)and dis (K x 1).

Step 1: Choose the values of the learning rates 11,71y and 73 according to the learning

rule:
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Delta learning rule m>0,1n=0 n=0
Lambda learning rule m>0,12>0, n=0
Gamma learning rule m>0,1n=0n>0

Lambda-gamma learning rule 7; >0, 72 >0, n3 >0
Choose an acceptable training error E,.;. Weights W (K x J) and V' (J x I) are
initialized to small random values. Initialize the number of cycles ¢ and the training
pairs counter p to ¢ = 1, p = 1. Let E = 0 and initialize the steepness and range

coefficients

Ay,

J

=y, =1 Vj=1...,J and X =7,=1 Vk=1,....K

Step 2: Start training. Input is presented and the layers’ outputs are computed using

f(v, A, net) as in equation (C.11):
7=17Z, t=1, and y;=f(w,, N, 72 Vi=1,...,J
where ¥}, a column vector, is the j-th row of V" and
0k = f(Yop, Mo, Wey) VE=1,...,K
where W, a column vector, is the k-th row of W.
Step 3: The error value is computed:

1
E:E+§(tk—ok)2 Vk=1,...,K

Step 4: The error signal vectors 4, (K x 1) and S'y (J x 1) of both the output and hidden

layers are computed

A

o = ——2(ty, —op)ok (Yo, —0k) VE=1,....,K
,YOk
Ay, K

by; = ~yilvy; —y3) Y Sogwrg Vi=1,....0
Vyi k=1

Step 5: Output layer weights and gains are adjusted:

net 1
Wkj = Wgj + Uléokyj >\0k = )‘Ok + 7725% A - Yor = Yor, T 13 (tk - Ok) Ok
Ok

Ok

forallk=1,...,Kand j=1,...,J.
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Step 6: Hidden layer weights and gains are adjusted:

K

1 1
Vji = Uji+7]1(5yj 2 ij = ij +7]2)\_6yj netyj Yy; = Vy; +n37_f(7yj7 ij’netyj) § 6Okwkj
Yj Yj k=1

forallj=1,...,Jandi=1,...,1I.
Step 7: If p < P then let p=p+ 1 and go to Step 2; otherwise go to Step 8.

Step 8: One training cycle is completed. If £ < E,,,; then terminate the training session.
Output the cycle counter ¢ and error E; otherwise let £ =0, p=1, ¢ = ¢+ 1 and

initiate a new training cycle by going to Step 2.

C.8 Experimental results

We have used a simple function approximation experiment to substantiate our claims to
the effects of scaling. A 1-10-1 network architecture was used to approximate the function
f(z) = |z|- For the experiments described below, we have used the lambda-gamma learning
algorithm to train on original unscaled data, and the delta learning algorithm to train on
the scaled data. For illustration purposes, Figure C.2 also shows the learning profile on the
rescaled output data. The mean square error M SE, on the rescaled output data is calculated
form equations (C.4) and (C.6) after each epoch. Both experiments use the same initial
weights, which are initialized as random values in the range [ﬁ, ﬁ]

e Experiment 1: For this experiment we have z € [0.4,0.6], and ¢ € [0.4,0.6]. The
desired outputs ¢ are linearly scaled to [0, 1] using (C.2). From (C.3) we have |ci| = 5,
which illustrates the effect when output data is scaled to a larger range than the original.
Figure C.2(a) shows that the mean square error for the rescaled data is smaller than the
mean square error of the scaled data for each epoch when |c;| > 1. For example, from
Figure C.2(a) we see that a required error of 0.0005 on the scaled data has already been

reached at epoch 55 on the rescaled data compared to epoch 150 on the scaled data.

¢ Experiment 2: For this experiment we have z € [—5,5] and ¢ € [0,5]. The desired
outputs ¢ are linearly scaled to [0,1] using (C.2). Then, from (C.3) we have |c;| = 1

which corresponds to the compression of data. From Figure C.2(b) we observe that an
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Figure C.2: Learning profiles for unscaled, scaled and rescaled data.

Experiment 1 Experiment 2
Epoch | MSE, | MSE, |(£)*MSE;, | MSE, | MSE, | (&)*MSE,
5 0.043914 [ 0.001757 | 0.0017566 || 0.037712 | 0.94279 [ 0.9428
50 0.013873 | 0.000555 | 0.0005549 | 0.001315 | 0.03288 | 0.032875
100 0.001086 | 0.00043 | 0.00004344 | 0.001039 | 0.025983 | 0.025975
150 0.000489 | 0.00002 | 0.00001956 | 0.000766 | 0.01915 | 0.01915
200 0.000455 | 0.000018 | 0.0000182 || 0.000542 | 0.013551 | 0.01355

Table C.1: Comparison of MSEs with MSE,.

232

error of 0.02, which is reached at epoch 20 using lambda-gamma learning on unscaled

data, is reached at epoch 140 on the rescaled data. Longer training is therefore required

on scaled data to obtain a specified error equivalent on the original data.

Figure C.2 also shows the learning profile for the lambda-gamma rule on unscaled data.

Table C.1 shows that condition (C.7) holds for arbitrarily selected epochs: for any given

epoch, the error M SE, on the rescaled data is a factor of (é)2 larger than the error M SFE;

1

on the scaled data when |c;| < 1, and a factor (;

)2 smaller when |c1| > 1.
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The results presented in this section confirm our conclusion that training on output data that
is scaled into a smaller range causes longer training times to reach a required accuracy on the
rescaled output data (training accuracy is normally specified in terms of the rescaled data).
The problem escalates as |c;| becomes very small. With the lambda-gamma learning rule,

the same accuracy is obtained in less training cycles.

C.9 Conclusions

We have derived a relationship between the mean square errors for scaled and rescaled data
when output data is linearly scaled. This relationship has indicated that the compression
of data causes longer training times compared to training on the unscaled data. We have
presented the lambda-gamma learning algorithm which utilizes self-scaling sigmoid output

units.

In order to perform scaling, the maximum and minimum ranges of the input and output must
be known. For incremental learning systems this is difficult to obtain, since all training pairs
are not available before training. Upper and lower bounds need to be determined beforehand.
Gamma learning eliminates this problem since the output range of the sigmoid activation
function is dynamically adjusted during training. The lambda-gamma learning rule further
seems to eliminate the need for internal rescaling within the units as reported by Rigler, Irvine

and Vogl [Rigler et al 1991].



Appendix D

Gradient Descent Learning

Equations

Complete learning equations for the feedforward NN type used in this thesis are derived in
this appendix. The derivations presented are for gradient descent optimization, using on-line
learning. The notations and symbols listed in appendix A are used throughout this appendix,
assuming a three layer NN architecture (one input, one hidden and one output layer, with a

bias unit in the input and hidden layers) with sigmoid activation functions.

D.1 Feedforward Neural Network

The MSE objective function, and sigmoid activation functions in both the hidden and output

layers are assumed.

Objective function:

2521 E®)

E
P

(D.1)

where P is the total number of patterns in the training set, and E®) is the error of pattern

p, defined as
1 K_ t(p) _ 0(p)
(@ZEELN%_ i) (D.2)

where K is the number of output units, t,(cp ) and ol(cp ) are respectively the target and actual

E

234
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output values of the k-th output unit.

The rest of the derivations refer to individual patterns. The pattern superscript (p) is therefore

omitted for notational convenience.

The output of the k-th output unit is
1

o = fo,(neto,) = = (D.3)
where
J+1
nety, = Z WY (D.4)
j=1

J is the number of hidden units; the (J + 1)** unit represents the bias to each output unit;
wg; is the weight between the j-th hidden and k-th output units; y; is the output of the j-th

hidden unit, defined as
1

with
I+1
nety, = Zvjizi (D.6)
=1

I is the number of input units; the (I + 1) unit represents the bias to each hidden unit; v;
is the weight between the i-th input and hidden j-th hidden units; z; is the value of the i-th
input unit.
Weights are updated according to the following equations:
wii(t) = Awg;(t) + awg;(t —1) (D.7)
’Uji (t) = Avji(t) + Ol’l)ji(t — 1) (D.8)

where « is the momentum.

In the rest of this section the equations for calculating Awy;(t) and Awvj;(t) are derived. The

reference to time, ¢, is omitted for notational convenience.

From (D.3),
(90]‘; N 3fok . 'y
Onet,,  Onet,, (L= o)or = fo, (D-9)
From (D.4),
. Onet,, o
= O wrsyi) =y (D.10)

a’wk]’ 6wkj
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From (D.9), (D.10),

dop ~ Oop Onet,,
Bwkj N Bnetok 8wkj
= (1 —ok)ory,
= f;kyj (D.11)
From (D.2),
0E 0 1
7 _ Yz te —o0r)%) = —(t — D.12
dor 60’9(21;(]6 or)%) (te — o) (D.12)

Define the output error that needs to be back-propagated as d,, = %. Then, from (D.12)
K
and (D.9),

OF
Onet,,
OF Bok
doy, Onet,,

= —(tk —or)(1 —or)or = —(tx — o) fy, (D.13)

k

Then, the changes in the hidden-to-output weights are computed from (D.12), (D.11) and
(D.13),

OFE )
8wkj
_, 9F 0o
”aok Owg;
= —n0,Y; (D.14)

Awg; = 1(

Continuing with the input-to-hidden weights, from (D.5),

Oy _ Ofy

Onety, N Onety, =1 —y5)y; = le/; (D.15)
From (D.6), »
n
a%y B %@1” - (D.16)
From (D.15) and (D.16),
Ou; Dy Omety,
Ovji Onety;, Ovj;

= (1—yyzi = f;,jzz' (D.17)
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From (D.4),
onet,,
dyj
From (D.13) and (D.18),
OE
vy

OE 0oy Onet,,

/ Aoy, Onet,, 0y

K
>
k=
EK: OE Onet,,
k=1 '
K
>
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(D.18)

(D.19)

Define the hidden layer error which needs to be back-propagated from (D.19) and (D.15),

5y,

J

OF
Onety,
OE 0y;
dy; onety;

K
!
= Z 0o, W fy,
k=1

(D.20)

Finally, the changes to input-to-hidden weights are calculated from (D.19), (D.17) and (D.20),

Awvj;

If direct weights from the input to the output layer are

weight updates are needed:

Auki

where uyg; is a weight from the ¢-th input unit to the k-th output unit.

OF
B 8’Uji )
oF ayj
" Byj 8’Uji

= —n0y; %

= 1

OF
B 6’11,]%' )
OFE 0Ooy
T
= _77‘50;C Z;

= 1

(D.21)

included, the following additional

(D.22)



Appendix E

Sensitivity Analysis Derivations

Complete sensitivity analysis derivations are presented in this appendix for the feedforward
and product unit NN types, with differentiable activation functions. Unless otherwise spec-
ified, this appendix assumes a three layer architecture with one input, one hidden and one
output layer, with a bias unit in the input and hidden layers (as illustrated in figure A.1).
The notations and symbols listed in appendix A are used throughout. The sensitivity anal-
ysis presented in the first part of this appendix is that of the output layer with regard to
NN parameters, for example input units, hidden units and weights. The last part of the ap-
pendix gives the equations for the second-order sensitivity analysis of the objective function
with regard to NN parameters. The reader should note the independence of output sensitiv-
ity analysis to the objective function. For the purposes of this exposition, sigmoidal hidden
and output activation functions are assumed. Extension to other differentiable activation
functions is straightforward. Sensitivity analysis equations for FFNN and PUNN are given
in sections E.1.1 and E.1.2 respectively. For each network type, sensitivity analysis of the

output with regard to each layer and weight matrix is presented.

238
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E.1 Output Sensitivity Analysis

E.1.1 Feedforward Neural Network

This section starts by assuming an unrestricted number of hidden layers, and presents a gen-
eral sensitivity analysis formulation using matrix and vector notation as presented by Engel-
brecht and Cloete [Engelbrecht et al 1996]. A complete derivation of the different sensitivity
analysis types are then presented with reference to individual matrix and vector elements, us-
ing the notation in Engelbrecht and Cloete [Cloete et al 1994c, Engelbrecht et al 1995b] and
Zurada, Malinowski and Cloete [Zurada et al 1994].

Consider a FFNN which consists of the H + 1 layers Lg, L1,..., Ly, where Ly and Ly re-
spectively represent the input and output layers. Let the weight matrix between layer Ly
and Lp41 be denoted by Wj. Without loss of generality, assume that the sensitivity of layer
L; with respect to layer Lj; needs to be computed, with [ > h. The sensitivity matrix Sl(f:)

defines the sensitivity of the units in layer L; to small perturbations in the units of layer Ly,

for a specific training pattern p:

@ _ 90
Slh 8Oh
= OWi_10_Wi_g---Op Wy
-1
= [ Ons1Wam (E.1)
m=h
where O], is the diagonal matrix
O;n = dia'g(ollma 0,2m7 T aOINm) (E2)

with o,,,, the derivative of the output of unit n in layer L,,. The product O’m 11 Wi refers
to matrix multiplication. In the case of output-input layer sensitivity analysis, the dimen-
sion of the resulting sensitivity matrix Sg’()) for pattern p will be (number of outputs x

number of inputs).

The derivations presented in the rest of this appendix refer to a single pattern. The param-
eter superscript p is therefore omitted for notational convenience. This section continues by

defining equations for the sensitivity analysis of output units with respect to input units,
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hidden units and weights with reference to individual parameters. For notational purposes,

a three layer network is assumed.

Output-Input layer analysis

Let Sy, ki = % be the sensitivity of output unit o, with respect to input unit z; for a single
pattern. The first part of the subscript indicates the layers involved (o for the output layer,
and z for the input layer), and the second part indicate the respective unit of each layer. The

following derives equations for the calculation of S, ;.

From (D.6),
I+1

Onety;
7] - (9z, Z:UﬂzZ = vj; (E.3)

From (D.15) and (E.3),
% B 0y Bnetyj

N = (L= 45)yv5 E.4
Bzi Bnetyj azz ( Yj ) Y545 ( )
From (D.4) and (E.4),
Onet, Il

Wik - Zwkjyj)

. Z Bneto,c 0y;

jfl Oy; 0z
- Zwkﬁ — Y5)Y;ji (E.5)

Then, from (D.9) and (E.5), the sensitivity of output of to perturbations in input z; is defined

as

dop,  Oop Onety,
0z anet 0%;

Soz,ki

= 1 - Ok: Ok Z 'wk] y] Y;jVji

= fll?k Z wkjfg;j'vji (E.6)

=1
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Output-Hidden layer analysis

Denote by Soy,kj = % the sensitivity of output unit o; to small perturbations in hidden unit

y; for a single pattern. Then, from (D.9) and (D.18),

dor,  Oop Onety,

S ok _
oykj Oy;  Onet,, 0y
= (1 —op)orwy;

= f;kwkj (E7)

Output-Weights analysis

First consider the sensitivity of an output unit o to perturbations in a weight wy; between

hidden unit y; and output unit ox. From (D.11),

g dop,  Oop Onety,
Wik 8wkj N Bnetok 8wkj
= (1 — ok)ory;

where the first part of the subscript, w, indicates the weights between the hidden and output

layers.

Similarly, the sensitivity of output o to perturbations in the weight v;; between input unit

z; and hidden unit y; is defined from (E.7) and (D.17) as

dop % 0y,

Svii = =
vsJt Ovji Oy;j Ovji
= (1- Ok)ok'wkj(l - yj)yjzi

= f;kwkjf;j Zi (E.9)

where the v part of the subscript indicates the weights between the input and hidden layers.
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Hidden-Input analysis

Denote by Sy, ji = g—?g the sensitivity of hidden unit y; to small perturbations in input unit
z; for a single pattern. Then,

% _ Oyj Onety,

0z;  Onety, 0z

= (L —y)y;vji

Syz,ji

Direct Input-to-Output connections

If the NN also has direct input to output connections, all the sensitivity analysis equations
derived previously remain the same, except for the output-input analysis. In this case equation

(E.6) becomes

J
Sozki = for Y Wi [y Vji + Uki (E.11)
=1
where uy; is the direct weight between input z; and output og. Additionally, sensitivity

analysis with respect to a direct weight is formulated as

do
Su ki = 871’; =z (E.12)

E.1.2 Product Unit Neural Network

This section develops equations for the sensitivity analysis of product unit neural networks
(PUNN). The sensitivity of output units with respect to input units and weights, and the
sensitivity of hidden units with respect to input units are derived. The sensitivity equations
not repeated here are the same as for the FFNN presented in section E.1.1. For the purpose
of this exposition, it is assumed that there are product units in the single hidden layer only
(considering a three-layer architecture), and that linear activation functions are used in the

hidden layer.

For each hidden unit y;, the netto input to that hidden unit is

I

nety; = H 7" (E.13)
i=1
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Output-Input layer analysis

From equation (E.5),

J
Onet,, Onet,, Oy;
= —k E.14
0z; ]z:; Oy; 0z ( )
where
Oy; _ _Oy; Onety, (E.15)
Oz  Onety, 0z )
Because linear activation functions are used in the hidden layer,
O _4 (E.16)
Onety,
Equation (E.13) is rewritten as
I
nety, = H z:) 7
i=1
1
— H evii In(z;)
i=1
—  exivjiln(zi) (E.17)

If z; < 0, then z; can be written as the complex number z; = zQ\zi| which, substituted in
(E.17), yields
net,, = e Vi In [zi] )30, vji Ina? (E.18)

Let ¢ =041 = a + v be a complex number representing ¢. Then,

Inc =Inre’ =Inr + 10 + 2rks (E.19)
where r = Va2 + b2 = 1.

Considering only the main argument, arg(c), k = 0 which implies that 27kz = 0. Furthermore,
6 = 7 for 1 = (0,1). Therefore, 10 = 17, which simplifies equation (E.19) to Inc = 17, and
consequently,

Ins? = o (E.20)
Substitution of (E.20) in (E.18) gives

nety. — ezivﬁln\zﬂezi'z}jim
i

= 2iviiln|zl [COS(Z VjT) + 1 sin(z V)] (E.21)
i i
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The imaginary part of (E.21) is omitted, since Durbin and Rumelhart empirically dis-

covered that no substantial improvements were achieved by including the imaginary part

[Durbin et al 1989]. Equation (E.21) is therefore simplyfied as:

nety, = i i1zl cog(r E vj3)

Now, let
I
pi = D vjiln|z|
i=1
I
¢; = Z’UjiIi
i=1
with
0 ifz >0
T, =
1 ifz <0
and z; # 0.
Then,
net,, = e cos(mp;)
From (E.25),
Onety, 0 .
om so= 8_,21-(61)] cos(m;))

Substitution of (E.26) in (E.15), and from (E.6),

— = fOk Zwkﬂﬁe cos(me;)

Input-Hidden analysis

From (E.16) and (E.26),

% B Byj anety i
0z Onety, 0z
Vji

= ﬁe”f cos(me;)
Z

(E.22)

(E.23)

(E.24)

(E.25)

(E.26)

(E.27)

(E.28)
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Output-Weights analysis

Only the equation to calculate the sensitivity of the outputs to changes in the weights between

the input and hidden layer changes. From (E.9),

doy, _ Ooy Oy; Onety,
0vj; B 3y] Onety;, Ovjj;
f;kwkj%epf cos(ng) (E-29)
i

E.2 Objective Function Sensitivity Analysis

This section gives complete derivations of the sensitivity of the mean squared error (MSE)
objective function with respect to NN parameters. Only three layer FFNNs are considered,
and sigmoid activation functions are assumed. Sensitivity analysis of the objective function
with regard to each layer and weight matrix is presented, giving the equations to compute
‘g%, with 8 a NN parameter. For the equations below, the reader should note the dependence

of this sensitivity analysis approach on the objective function.

Define the objective function as in equation (D.1). Then,

1 &K 92EwP)

—2 22 o (E.30)

For the rest of this section, the error E(®) for one pattern (p) is considered. For notational

convenience the pattern superscript p is omitted.

Error-Input layer analysis

From equation (D.2),

’E _ 9 0F
82-2 azi azi

_ ZaEk 8ok
N Gzl — Oog az,

- Z[BEka O Bok 82Ek
N Odoy, 6z Bzi 0z;00y,

(E.31)
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From (E.6),
%0, B i doy,
822-2 0z 0z
0
= 9% (1 — og)og Zwk] — Y;)Y;Vji] (E.32)

Let f = (1—o0k)or and g = ijl wii (1 —y5)yv5i = Z]‘-Izl hj. Then, equation (E.32) becomes

0?0y dg af

_ 99 _Of E.
(9zi2 0%z + gazi (E.33)
But, from (E.6)

o _ 0f do
321' Gok 82’,

J
= (1—20k)(1—op)ox D wij(1 — y;)y;vji
i=1

J
= f;lk Z wkjfg;jvji (E.34)
=1

and
8g < Oh;
dz Jzz:l 0z;
~ 0l 0y,
— Oy; 0z

= Zwk] — 2y;)v5i(1 — y;)y;vj

= Z Whj fy V5 (E.35)
7j=1

Substitute (E.34) and (E.35) in (E.33) to get

32
Oz 2 = fok Zwk]fy Ujs + fok Zwkjfijjz (E.36)

j=1

Now, let f = o — tx. Then, from (D.12) and (E.6)

0*Ey, of dop . o ,
0z;00y, - a—ok 0z; - fok z; wany Vji (E37)
J:
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Substitute (E.36) and (E.37) in (E.

0’E

31) and simplify:

W = Z[ tk—Ok fy Zwkjfijgz+f0k[zwk7fyﬂvﬂ

? k=1

= Z[_(tk — o) fo, Z ijf;,jvgzi + [Z wkjfg';jvji]Q((f;k)Q —(t
k=1

=1

j=1

i=1
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J
+ e > Wiy, vjil’]

o) fo,)] (E.38)

Using the Levenberg-Marquardt assumption (refer to section 2.4.1), equation (E.38) becomes

82
8

Error-Hidden layer analysis

From equation (D.2),

Let a = (1 — ox)ogwy;. Then, from
da
dy;

Then,

0?0y, B
0y?

J

fo;c Z wkjfy] 'sz
j=1

9 OFE
Oyj 0y,
K 9 OE, 8o,

— dy; oy, Jy;

K 8Ek8 ([ 80k 82Ek
Ook 8y Byj 0y;j0oy,

k=1

(E.7)

Oa doy
Ooy, 0y

(1 —204)(1 - Ok)okw]%j = f;’kwizcj

d 0oy Jda

2
dy; Oy ) 0y, Joi ks

Now, let a = o — tx. Then, from (D.12) and (E.7)

0% Ey,
ayj 801C

0 ,0E
= 9y, o0
da
0y;
da Bok

Doy, dyj

’
= (1 - ok)okwkj = fokwkj

(E.39)

(E.40)

(E.41)

(E.42)

(E.43)
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Substitute (E.42) and (E.43) in (E.40) to get

0’E .
a—ng = Z[ fokwkj (fo, wks)®]

= Z[ (Fo)? = (t — o) for ] (E.44)

After application of the Levenberg-Marquardt assumption, equation (E.44) becomes

K
~ Y [fo wis)? (E.45)
k=1

Error-Weights analysis

First consider the hidden-to-output weights, and compute the sensitivity of the objective

function with respect to perturbations from (D.2):

’E 9  0E
6w,2€ j N ow kj 8wk j
0 8Ek 80k

Bwkj 80k E)wkj

BEk (92019 82Ek 8ok
= EA4
8ok 8w,%j + Bwkjaok 8’wkj ( 6)

From (E.37),
820k _ 0 aEk
awkj N awkj 8wkj
B d ,0Ey 0oy
N Bwkj 8ok Bwkj
6Ek 620k 82Ek 8ok
= E.47
BOk Bw,%j + Bwkjaok Bwkj ( )
From (E.8),
820k _ 0 8ok
Bwk]— N Bwk]— 8wkj
= (1 —20)(1 — o)oxy;

If a = o — g, then from (D.12) and (E.8)
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BQE']c - da
8wkj80k B 8wkj
_ a0
N 8ok 8wkj
= (1—ok)oryj = fo Ui (E.49)

Substitute (E.48) and (E.49) in (E.46):

62E ] n
oz, [(f0,)* = (t — 0k) fo, Jy5 (E.50)

and after applying the Levenberg-Marquardt assumption,

0*E ' g
W/%j ~ [fo, Yj] (E.51)

Next, consider the sensitivity of the objective function to perturbations in the input-hidden

layer weights:

?E 0 0E
8’l)j2-z~ 8’sz' (9’{)]'2'

(9yz- ayj a’l)j,‘

oF 82yj ayj 82E

= E.52
0y, ijzi + 0vj; Ovj;0y; (E-52)

Let a = (1 — y;)y;2;- Then, from equation (D.17),

y; _ 9 Oy
v Qv Oy
_ Oa @ 0y,
Bvﬁ 8yj iji
= (1-2y)(1 - y))y;2 = £y, (E.53)

Now, let a, = o — t;, and by = (1 — o )opwg;. Then, from equation (D.19),

PE 9 OE
0v;;0y; 0vj; Oy
K
0
= (arbr)
; 0vj;
K
Oby, Ofk
= E.54
> lax . + gk &in] (E.54)
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From (E.9),
oby, . % Ooy,
Ovji Doy Ovj;
= (1—20)(1 — og)opwi,; (1 — y;)y;%i
it (E.55)
and
Oay, . % Ooy,
Ovji  Oog Ovj
= (1 = op)opwyi(1 —y;)y;2

Substitute (E.55) and (E.56) in (E.54) and simplify to get

0’E
%Ty = fy] 24 Z[ fok tk - Ok)fok]wk] (E-57)

Now substitute (D.19), (D.17), (E.53) and (E.57) in (E.52) and simplify:

82E K K 7 n
8’02~ = Z fokwk]]fy Z + (fyjz”Z)2 Z[(fok)Q - (tk: - Ok)fok]wl%j
Jt k=1 k=1
K
= (f3,) "D _[(For)” = (b — 0n) fo Jwi; — (tk — 0k) fo,wij £y, 122 (E.58)
k=1

After applying the Levenberg-Marquardt assumption, (E.58) becomes

K
fy] 22 f(,kwk] 22 (E.59)
k=1
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