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Abstract

Multi-guide Particle Swarm Optimization for
Many-objective Optimization Problems

C. Steenkamp
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Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc (CS)
January 2021

The scalability of the multi-guide particle swarm optimization (MGPSO) al-
gorithm, with respect to the number of objectives for a problem, is investi-
gated. Two MGPSO algorithm adaptations are proposed; that is, the partial-
dominance multi-guide particle swarm optimization (PMGPSO) algorithm and
the knee-point driven multi-guide particle swarm optimization (KnMGPSO)
algorithm. As a sub-objective, the effect of different archive balance coeffi-
cient update strategies for the MGPSO, the PMGPSO, and the KnMGPSO
algorithms are investigated. The proposed algorithms attempt to address the
scalability limitations associated with a certain component of the MGPSO al-
gorithm. This study does not consider scalability with respect to the number
of decision variables. This study assumes a static search space; that is, where
the number of objectives remains fixed throughout the optimization. This
study also assumes that each objective remains static throughout the search
process. This study also considers only problems with boundary constraints.
The results indicate that the MGPSO algorithm scaled to many-objectives
competitively compared to other state-of-the-art many-objective optimization
algorithms. The results were unexpected because the MGPSO algorithm uses
the Pareto-dominance relation, which is known to degrade as the number
of objectives increases. The proposed PMGPSO and KnMGPSO algorithms
also scaled competitively, however, these algorithms were not superior to the
MGPSO algorithm. The investigated dynamic archive balance coefficient up-
date strategies did not improve the performance of the MGPSO, the PMGPSO,
or the KnMGPSO algorithms.
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Chapter 1

Introduction

“If everything seems under control, you’re not going fast enough.”
— Mario Gabriele Andretti, former F1 champion.

1.1 Motivation
Numerous real-life optimization problems consist of multiple conflicting objec-
tives that need to be optimized. These problems are called multi-objective
optimization problems (MOPs). MOPs are frequently encountered in domains
such as engineering [175], business [16], mathematics [89], and physics [92].
Consider the Coronavirus disease (COVID-19) as an example of an arduous
real-world MOP with (at least) three, clearly conflicting, objectives; that is, to
simultaneously maximize economic (or social) activity, minimize the number
of lives lost, and minimize the spread of the virus. The solution to a MOP
is not a single solution, but rather a collection of optimal trade-offs. Multi-
objective optimization (MOO) algorithms are used to find these well-balanced
solutions.

Many-objective optimization problems (MaOPs) have four or more objec-
tives to be optimized, where MOPs have at most three objectives. Many-
objective optimization (MaOO) algorithms are used to find optimal trade-off
solutions for MaOPs. As the number of objectives increases from MOPs to
MaOPs the objective space also increases. This, in turn, makes it challenging
to find truly optimal solutions that are also diverse. Another obstacle en-
countered with many-objectives is that the frequently used Pareto-dominance
relation, used to define optimality for MOPs, degrades as the number of objec-
tives increases [77, 106, 141]. Automotive engine calibration, for example, can
easily be a ten-objective MaOP [104]. Imagine being the engineer responsible
for the engine calibration of Lewis Hamilton’s Formula One race car. Find-
ing a set of optimal trade-off solutions for the engine parameters is vital to
achieving success. There are also other real-world MaOO applications such as
industrial scheduling [150, 172] and hybrid car controller optimization [111] to

1



CHAPTER 1. INTRODUCTION 2

only name a few. There is, therefore, an urgent need for research to further
develop effective MaOO algorithms as the number of MaOPs present in real
life continues to increase [107].

Recently, a multi-objective multi-swarm variant of particle swarm opti-
mization (PSO) [86], named multi-guide particle swarm optimization (MG-
PSO) [136], has been developed. Previous research results indicate that the
MGPSO algorithm is highly competitive when compared against current PSO-
based MOO algorithms as well as state-of-the-art multi-objective evolutionary
algorithms (MOEAs) [136]. The MGPSO algorithm has also been shown to
be suitable for efficiently solving MOPs [136]. However, no research has been
done on the scalability of the MGPSO algorithm to solve MaOPs, requiring
the simultaneous optimization of four or more objectives. It is expected that
the MGPSO algorithm would not scale effectively to MaOPs because of the
underlying dominance-relation being used that degrades as the number of ob-
jectives increases [77, 106, 141]. As mentioned, MaOPs are often encountered
in real-world situations. Thus, to ensure real-world applicability it is highly
desirable that MOO algorithms scale well. Therefore, this study not only aims
to investigate the scalability of the MGPSO algorithm but also proposes two
novel mechanisms that independently aim to improve the scalability of the
MGPSO algorithm.

Therefore, the purpose of this thesis is first to investigate the ability of
the MGPSO algorithm to scale with respect to the number of objectives for
MaOPs of varying difficulty and complexity. The secondary purpose of this
thesis is to propose and implement mechanisms that will help to improve the
scalability of the MGPSO algorithm; that is, allowing the MGPSO algorithm
to scale and effectively solve MaOPs. The proposed mechanisms will address
the scalability limitations associated with the MGPSO algorithm as related
to the number of objectives for a problem. This study does not consider
scalability concerning the number of decision variables. This study assumes
a static search space; that is, where the number of objectives remains fixed
throughout the optimization. This study also assumes that each objective
remains static (unchanged) throughout the search process. This study also
considers only problems with boundary constraints.

1.2 Research Objectives
The main objective of this research is to implement mechanisms to allow the
MGPSO algorithm to scale and effectively solve MaOPs. In light of the above,
the following research objectives have been identified:

• To identify and discuss the mechanisms that promote scalability for the
investigated state-of-the-art algorithms in effectively solving MaOPs.
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• To investigate the ability of the MGPSO algorithm to solve MaOPs (i.e.
scalability) by statistically comparing how well the MGPSO algorithm
scales in comparison with other state-of-the-art MaOO algorithms on a
set of benchmark problems.

• To propose two mechanisms (partial-dominance and knee-points) to help
the MGPSO algorithm to scale; that is, being able to effectively solve
MaOPs.

• To implement the two proposed mechanisms; that is, implement the
two MGPSO algorithm adaptations, the partial-dominance multi-guide
particle swarm optimization (PMGPSO) algorithm and the knee-point
driven multi-guide particle swarm optimization (KnMGPSO) algorithm.

• To statistically compare the performance of the PMGPSO algorithm and
the KnMGPSO algorithm with that of the original MGPSO algorithm
and other state-of-the-art MaOO algorithms on a set of benchmark prob-
lems.

• To statistically compare the performance of the PMGPSO algorithm
with that of the KnMGPSO algorithm on a set of benchmark problems,
in order to determine if any of the two approaches (partial-dominance or
knee-points) has best performance.

• As a sub-objective, this study also aims to investigate the use of different
dynamic archive balance coefficient update strategies for the purpose of
aiding the scalability of the MGPSO algorithm (as well as the PMGPSO
and the KnMGPSO algorithms).

1.3 Contributions
The main contributions of this study are:

• The finding that the original MGPSO does scale well to MaOPs consid-
ering the hypervolume (HV) rankings.

• The finding that the original MGPSO does not scale well to MaOPs
considering the inverted generational distance (IGD) rankings.

• The proposal of the PMGPSO algorithm, which uses partial-dominance
to help improve the scalability of the original MGPSO algorithm.

• The finding that the PMGPSO algorithm scales competitively in terms
of IGD.

• The proposal of the KnMGPSO algorithm, which uses knee-points to
help improve the scalability of the original MGPSO algorithm.
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• The finding that the KnMGPSO algorithm scales competitively in terms
of IGD.

• The proposal of using a dynamic archive balance coefficient update strat-
egy to further promote algorithm scalability.

• The finding that the investigated dynamic archive balance coefficient
update strategies did not improve the scalability of the MGPSO, the
PMGPSO, or the KnMGPSO algorithms.

• The finding that the MGPSO, the PMGPSO, and the KnMGPSO algo-
rithms perform competitively relative to the other state-of-the-art MaOO
benchmark algorithms.

• The finding that resampling control parameter values for the MGPSO,
PMGPSO, and the KnMGPSO algorithms from the convergent regions is
an effective method to avoid control parameter tuning while still ensuring
competitive algorithm performance.

• The finding that equal subswarm sizes were sufficient.

• The finding that the suggested values used for the desired ratio of knee-
points to non-dominated solutions were sufficient for the KnMGPSO
algorithm.

• The finding that the multi-swarm approach, employed by the MGPSO
algorithm and its adaptations, may play an important role in the scala-
bility of MaOO algorithms.

• The finding that no algorithm outperformed any other algorithm in all
cases considering both performance measures.

1.4 Dissertation Outline
The remainder of the dissertation proceeds as follows:

• Chapter 2 discusses the relevant background information including
MOO, MaOO, test problems, and performance measures.

• Chapter 3 continues with relevant background information related to
MaOO algorithms which include evolutionary algorithms and PSO ap-
proaches. This chapter also gives an overview of the algorithms used in
this study.

• Chapter 4 proposes the partial-dominance approach as related to aid-
ing the scalability of the MGPSO algorithm and presents the PMGPSO
algorithm. This chapter also discusses the empirical process that was
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followed throughout this study to compare the various algorithms. The
use of different dynamic archive balance coefficient update strategies for
the original MGPSO algorithm and the PMGPSO algorithm is also in-
vestigated with the hope of improving scalability. Finally, the results are
presented and discussed.

• Chapter 5 proposes the knee-points approach as related to aiding the
scalability of the MGPSO algorithm and presents the KnMGPSO algo-
rithm. The use of different dynamic archive balance coefficient update
strategies for the purpose of improving the scalability of the KnMGPSO
algorithm is also investigated. Finally, the results are presented and
discussed.

• Chapter 6 presents and discusses the experimental results for the PMG-
PSO and KnMGPSO algorithms when compared in isolation. That is,
to determine if either is best.

• Chapter 7 concludes the dissertation with a summary of all the findings
and conclusions of the presented work. This chapter also suggests ideas
for future research based on the presented work.

The dissertation is supplemented by several appendices listed below:

• Appendix A lists and defines the most important acronyms that are
used or introduced throughout the dissertation.

• Appendix B lists and defines the mathematical symbols used through-
out the dissertation.

• Appendix C provides the parameter configurations for the algorithms
used throughout this study.

• Appendix D presents the raw results (inverted generational distance
and hypervolume performance measure values) obtained by the algo-
rithms on the different problem instances for each independent sample
associated with Chapter 4.

• Appendix E presents the raw results (inverted generational distance
and hypervolume performance measure values) obtained by the algo-
rithms on the different problem instances for each independent sample
associated with Chapter 5.

• Appendix F presents the raw results (inverted generational distance
and hypervolume performance measure values) obtained by the algo-
rithms on the different problem instances for each independent sample
associated with Chapter 6.

• Appendix G lists all the publications derived from this work.
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Note that the dissertation makes extensive use of colour figures and is best
read in colour.



Chapter 2

Many-objective Optimization

“Artificial Intelligence is whatever hasn’t been done yet.”
— Larry Tesler, the computer scientist behind cut, copy, and paste.

“Any sufficiently advanced technology is indistinguishable from magic.”
— Arthur C. Clarke

In a nutshell, an optimization algorithm is a search method that aims to
find a solution to an optimization problem, such that a given quantity is op-
timized (minimized or maximized), possibly subject to a set of constraints.
The fundamental components of an optimization problem, according to En-
gelbrecht [47], are briefly described below:

• An objective function, representing the quantity to be optimized. Let
f denote the objective function. Note that a maximum of f is equivalent
to a minimum of −f . Problems such as constraint satisfaction problems
(CSPs) do not explicitly define an objective function but rather the ob-
jective is to find a solution that satisfies a set of constraints. However,
CSPs are not considered in this investigation.

• A set of unknowns/variables, directly affecting the value of the objec-
tive function. Let x denote the (independent) variables. By implication,
f(x) quantifies the quality of the candidate solution x.

• A set of constraints, restricting the possible values that may be as-
signed to the variables. Usually, and in this study, at least a set of
boundary constraints are defined, which define the domain (range) of
valid values for each variable. However, it is possible to have more com-
plex constraints that limit which candidate solutions can be considered as
solutions. Note that these more complex constraints are not considered
for this work.

7
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Furthermore, Engelbrecht [47] classified optimization problems based on
several attributes including:

• The number of variables: univariate (one variable) or multivariate
(more than one variable).

• The type of variables: continuous-valued, integer-valued, mixed-
valued (combination of continuous- and integer-valued variables), or com-
binatorial (permutations of integer-valued variables).

• The degree of nonlinearity of the objective function: linear or
non-linear.

• The constraints used: unconstrained or constrained.

• The number of optima: unimodal (one optimal solution), multimodal
(more than one optimum), or deceptive (false optima). There are three
types of optima including a global minimum/maximum, a strong local
minimum/maximum, and a weak local minimum/maximum.

• The number of optimization criteria: uni/single-objective (one ob-
jective function), multi-objective (two or three objective functions), or
many-objective (more than three objective functions). In the case of
MOPs and MaOPs, the objectives have to be optimized simultaneously.

In light of the above, this work only considers boundary constrained
continuous-valued multivariate multi- and many-objective static optimization
problems in a static search space. Boundary constrained continuous-valued
single-objective optimization can informally be described as the process of sys-
tematically choosing input values from within an allowed range and computing
the value of the real-valued objective function with the goal of minimizing (or
maximizing) the objective function value while satisfying the boundary con-
straints. The function represents the optimization problem. For the remainder
of this dissertation, unless otherwise stated, optimization problem minimiza-
tion is assumed since there is no loss of generality between minimization and
maximization. This is due to the duality principle [27] which allows maximiza-
tion objectives, f ′(x), to be rewritten as minimization objectives, f(x), where
f(x) = −f ′(x). A formal definition of a single-objective optimization problem
as well as single-objective optimization algorithms, and a few single-objective
benchmark problems can be found in [47].

The rest of this chapter is organized as follows. Sections 2.1 and 2.2 for-
mally define and discuss aspects related to multi- and many-objective opti-
mization. This is followed by section 2.3 and section 2.4 which discuss and
motivate the test problems and performance measures used in this study. Fi-
nally, this chapter is summarized in section 2.5.
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2.1 Multi-objective Optimization
This section focusses on MOO and related concepts. Section 2.1.1 formally
defines a MOP and other important concepts used throughout this study.
Sections 2.1.2 and 2.1.3 discuss different approaches used to define optimality
for MOPs.

2.1.1 Multi-objective Problem

Let S ⊆ Rn denote the n-dimensional search space (also known as the decision
space), and F ⊆ S the feasible space as determined by the constraints. If
there are only boundary constraints and the search space is defined by those
boundary constraints, the feasible space is equal to the search space; that is,
F = S. O ⊆ Rnm denotes the nm-dimensional objective space. Let n and
nm denote to the number of decision variables and the number of objectives
respectively. A MOP objective function translates a decision vector, x ∈ F ,
to an objective vector, f(x), such that f(x) ∈ O. The decision and objective
vectors are formally defined below.

Definition 2.1. Decision vector A decision vector, x = (x1, x2, ..., xn) ∈ F ,
is an n-dimensional vector representing the chosen values for an optimization
problem.

Definition 2.2. Objective vector An objective vector, f(x) =
(f(x)1, f(x)2, ..., f(x)nm) ∈ O, is an nm-dimensional vector representing the
possible solutions for an optimization problem.

Figure 2.1 illustrates a decision space, F , its corresponding objective space,
O, along with a three-dimensional decision vector, x, and the corresponding
two-dimensional objective vector, f(x).

Figure 2.1: Decision and objective space.
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Definition 2.3. Boundary constrained continuous-valued multi-
objective optimization problem A boundary constrained continuous-valued
multi-objective optimization problem, f(x), with nm (two or three) objectives
is of the form:

minimize f(x) = (f1(x), f2(x), ..., fnm(x)) (2.1)

with x ∈ F = S, fm ∶ Rn → R, ∀m ∈ {1, ..., nm}, F ⊆ S ⊂ Rn is the feasible space
as determined by the boundary constraints (x ∈ [xmin, xmax]n), S is the search
space, fm is the m-th objective function, and n is the number of dimensions or
decision variables. Note for a MOP the number of objectives, nm, can only be
two or three.

The interested reader is referred to [26, 107] where numerous benchmark,
as well as real-life MOPs, are discussed. For MOO and MaOO, the definition
of optimality is different than compared to uni-objective optimization (UOO).
For UOO, where only one objective is optimized, the goal is to find a minimum
or maximum for only that one objective function. For MOO or MaOO, the goal
is to simultaneously find the minimum or maximum for several functions that
are usually in conflict with one another. Consider the engine calibration exam-
ple from Chapter 1. Assume, at the most basic level, that the goal of engine
calibration is to only optimize the fuel consumption and acceleration. Intu-
itively, fuel consumption should ideally be minimized and acceleration should
be maximized. Less fuel is cheaper and more acceleration leads to better race
times. However, the amount of consumed fuel influences acceleration and vice
versa. Therefore, a trade-off between these two objectives exists, and the goal
is to find an optimal compromise. This example may be trivial but sufficiently
demonstrates the trade-off(s) that exist within optimization problems with
more than one objective. However, many real-world optimization problems
require the optimization of MaOPs that are by definition more complex and
not as easy to solve as simpler MOPs. Thus, optimal in terms of MOO and
MaOO refers to finding a set of trade-off solutions that balance the opposing
objectives. Sections 2.1.2 and 2.1.3 discuss different ways of mathematically
describing this desired balance.

2.1.2 Weighted Aggregation Approach

The simplest way to define optimality for MOPs is the weighted aggregation
approach [117, 118]. This approach defines an aggregate objective function as
a weighted sum of the objectives. This approach has the advantage of enabling
primitive UOO algorithms, without any modification, to solve MOPs since a
single aggregate objective function encapsulates all the objective functions.
However, using this approach also comes with some drawbacks including:

• The UOO algorithm has to be applied several times to find different
solutions and even then there is no guarantee that repeated execution
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of the algorithm would yield different solutions. Alternatively, a niching
(multi-solution) [5, 97, 98, 126] strategy could be used to obtain multiple
solutions.

• The weight values for the weighted sum of objectives are problem de-
pendent. Therefore, the weight values need to be optimized for each
problem. There are methods for dynamically adjusting the weights such
as random weight distribution, bang-bang weighted aggregation, and dy-
namic weighted aggregation [47, 83, 117, 118]. However, these methods
are limited to only two-objective problems [47, 83, 117, 118].

• The Pareto-optimal front (POF) for a MOP is a set of solutions where
each solution cannot improve any objective without degrading at least
one of the other objectives. Weighted aggregation can only be used when
the POF is concave regardless of the weight values [30, 83].

The advantages do not outweigh the disadvantages of this approach. Therefore,
the weighted aggregation approach was not used in this study, but rather the
Pareto-optimality approach discussed next.

2.1.3 Pareto-optimality Approach

Another way to define optimality for MOPs is the well-known Pareto-
optimality approach, which was also used in this study. In order to ensure
understanding and consistency when discussing Pareto-optimality, a number
of frequently used definitions are listed below. Note that problem minimization
is assumed.

Definition 2.4. Pareto-dominance A decision vector x1 ∈ F dominates a
decision vector x2 ∈ F (denoted by x1 ≺ x2) if and only if fm(x1) ≤ fm(x2) ∀
m ∈ {1, ..., nm} and ∃ m ∈ {1, ..., nm} such that fm(x1) < fm(x2).

The concept of Pareto-dominance is illustrated in figure 2.2 for a two-
objective MOP, f(x) = (f1(x), f2(x)). The striped area denotes the area of
objective vectors dominated by f(x).

Definition 2.5. Pareto-optimal A decision vector x1 ∈ F is said to be
Pareto-optimal if no decision vector x2 ∈ F exists such that x2 ≺ x1.

Definition 2.6. Pareto-optimal set A set P ⊆ F ∈ Rn is said to be the
Pareto-optimal set (POS) if it contains only Pareto-optimal decision vectors.
P is formally defined as

P = {x1 ∈ F ∣∄x2 ∈ F ∶ x2 ≺ x1} (2.2)
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Figure 2.2: Illustration of Pareto-dominance.

Definition 2.7. Pareto-optimal Front A set Q ⊆ Rnm is said to be the POF
if it contains only objective vectors for Pareto-optimal decision vectors. Q is
formally defined as

Q = {f(x) ∣x ∈ P} (2.3)

Figure 2.3 depicts a Pareto-optimal front along with the corresponding
objective space.

Figure 2.3: Pareto-optimal front.

Definition 2.8. Ideal objective vector The ideal objective vector, z∗, is a
vector with components consisting of the optimal objective values for each of
the nm objective functions. z∗ is formally defined as

z∗ = (f∗1 , f∗2 , ..., f∗nm) (2.4)
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where f∗m is the optimal objective value for objective m ∈ {1, ..., nm}.

Definition 2.9. Nadir objective vector The nadir objective vector, znad, is
a vector with components consisting of the worst objective values in the Pareto-
optimal set, P, for each of the nm objective functions. znad is formally defined
as

znad = (f∗∗1 , f∗∗2 , ..., f∗∗nm) (2.5)

where f∗∗m = fm(x1) with x1 ∈ P ∣∄x2 ∈ P ∶ fm(x2) > fm(x1).

Figure 2.4 depicts a Pareto-optimal front along with the ideal and nadir
objective vectors.

Figure 2.4: Illustration of Ideal (z∗) and Nadir (znad) objective vectors.

It is computationally expensive to find the true POF in the feasible decision
space. Therefore, the goal of a MOO algorithm is to approximate the true POF
and then to return the set of solutions representing the optimal compromises
(i.e. the found POF). To effectively solve a MOP (or MaOP) a MOO (or
MaOO) algorithm has the following objectives (which in itself is a MOP) [34,
178]:

• Minimize the distance from the approximated POF (i.e. the found solu-
tions) to the true POF; that is, minimize inaccurate approximation.

• Maximize the diversity of the found front; that is, maximize solution
spread. This implies that a MOP also has to maintain the already found
non-dominated solutions.
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2.2 Many-objective Optimization
This section focusses on MaOO and related concepts. More specifically, sec-
tion 2.2.1 formally defines a MaOP and section 2.2.2 discusses the challenges
related to MaOPs.

2.2.1 Many-objective Problem

In literature there is a distinction made between MOPs and MaOPs. That is,
MOPs consist of only two or three objectives per problem whereas MaOPs have
four or more objectives per problem. The reason for making this distinction
between MOPs and MaOPs is probably rooted in the fact that optimization
problems become increasingly more difficult to solve as the number of objec-
tives continues to increase, therefore, scientists put MaOPs in a class of their
own.

Note that the definition of a MOP, as defined in Equation (2.3), is essen-
tially the same as that of a MaOP except that the latter has no restrictions on
the maximum number of objectives while the former may have at most three
objectives.

2.2.2 Many-objective Optimization Challenges

MaOPs are not as easily solved as MOPs. This is due to the following chal-
lenges faced by a MaOO algorithm when solving a MaOP:

• The frequently used Pareto-optimality concept, defined in section 2.1.3,
breaks down as the number of objectives increases [77, 106, 141]. More
specifically, the Pareto-dominance approach struggles to successfully
identify good solutions for MaOPs since the majority of the candidate
solutions are non-dominated early on in the search process, which re-
sults in the MaOO algorithm degrading to a random search, likely to
find sub-optimal solutions [81]. Previous research shows that over 90%
of a randomly generated set of initial solutions is non-dominated for eight
or more objectives [68].

• Balancing solution diversity (exploration) and solution convergence
(exploitation) become more difficult as the number of objectives in-
creases [141]. This increased difficulty is due to the objective space that
increases together with the number of objectives. Consequently, solutions
found throughout the search will probably be distant from each other in
the objective space [38], for example, when a MOEA chooses parents to
mate and reproduce, the offspring will likely be far from the parents re-
sulting in reduced algorithm effectiveness. Another consequence is that
algorithms frequently terminate with a set of undesirable solutions that is
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either well-spread, but far from the true POF (diverse but lacking accu-
racy), or has converged to a small subregion close the true POF (accurate
but lacking diversity). In other words, MaOO algorithms often termi-
nate with a set of well-distributed non-dominated solutions, which are
far from Pareto-optimal, or with a set of similar non-dominated nearly
Pareto-optimal solutions.

• The crowding distance [35] value of a solution provides an estimate of
the density of solutions surrounding that solution. Crowding distance is
often used as a diversity preservation measure when maintaining already
found non-dominated solutions during the search process. Crowding dis-
tance is also utilized to enhance the exploration of a search algorithm, i.e.,
a diversity promotion mechanism. Unfortunately, the crowding distance
operator degrades as the number of objectives increases [91]. The crowd-
ing distance operator degrades due to favouritism towards dominance-
resistant solutions [77, 105]. Dominance-resistant solutions have great
performance in one objective and terrible performance in many oth-
ers but are hardly ever dominated. These dominant-resistant solutions
can misguide the MaOO algorithm to sub-optimal solutions. Therefore,
maintaining a set of well-spread solutions, i.e. diversity, becomes more
difficult. Note that dominant-resistant solutions should not be disre-
garded completely as they can promote solution diversity [77].

• Evaluation of diversity measures become computationally expensive. For
example, calculation of the crowding distance for solutions is computa-
tionally expensive. Approximations can be made to alleviate this issue,
but at the cost of possibly sacrificing the solution spread of the final
found POF due to inaccuracies introduced by the approximations [106].

• Occasionally, computationally expensive calculations, such as the hyper-
volume (HV) [181] calculation, are required to measure algorithm perfor-
mance. HV becomes exponentially more computationally expensive with
an increase in the number of objectives [168] and thus becomes practi-
cally infeasible to calculate when the number of objectives is large. The
Monte Carlo sampling technique [4] is often used to estimate the HV for
MaOPs [95, 106, 174]. Unfortunately, this will result in some degree of
inaccuracy when comparing MaOO algorithms.

• The number of solutions required to approximate the entire POF in-
creases exponentially as the number of objectives increases [105].

• Selecting a final solution from the approximated POF at the end of the
search (upon algorithm termination) is challenging due to the difficulty
in visualizing high-dimensional trade-off surfaces [106]. This challenge
relates more to the practical applications of MaOO.
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Note that the same approach for defining optimality for MOPs as discussed
in section 2.1.3 also applies to MaOPs. A MaOO algorithm also has the same
raison d’être1 as that of a MOO algorithm; that is, to find a set of diverse and
accurate solutions.

Taking into consideration the above mentioned many-objective challenges,
a MaOO algorithm that only incorporates the Pareto-dominance approach to
define optimality usually terminates with an unsatisfactory set of solutions.
The Pareto-optimality concept is also used by the original MGPSO algo-
rithm [106]. Therefore, this study proposes and implements mechanisms to
investigate if the scalability of the MGPSO algorithm can be improved. That
is, these mechanisms aim to improve the ability of the MGPSO algorithm to
effectively solve MaOPs while adhering to the goals of a MaOO algorithm as
described in section 2.1.3.

A number of potential solutions for scaling to MaOPs (i.e. MaOO ap-
proaches) have been proposed in previous literature to remedy the challenges
above. These approaches can largely be separated into six distinct categories
which include:

• Pareto-dominance relation modification: These approaches modify
the Pareto-dominance relation to promote convergence to the POF [33,
44, 55, 64, 68, 93, 131, 132, 166, 182].

• Secondary convergence metric: These approaches employ a sec-
ondary convergence-related metric alongside the Pareto-dominance re-
lation [90, 96, 102, 105, 174].

• Dimensionality reduction: These approaches identify and discard the
least non-conflicting objectives that can be removed without changing
the POS [14, 15, 99, 103, 108, 134, 148]. For example, dismissing objec-
tives that are highly correlated with others.

• Performance measure integration: These approaches integrate one
or more performance metrics which implicitly take diversity and conver-
gence into consideration [4, 10, 179]. The largest downfall to indicator-
based optimizers is the computational overhead that is required to calcu-
late useful indicators, e.g. HV. Note that some progress has already been
made in terms of reducing the computational complexity of performance
measures [4, 13, 58, 167].

• Decomposition: These approaches use decomposition to decompose a
MaOP problem into a set of subproblems to be optimized simultane-
ously [38, 95, 173].

• Reference- or preference-based: Interactive user preferences [39] or
reference-points [38] approaches have also been proposed.

1 reason for being
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2.3 Test Problems
To properly investigate a MaOO algorithm, it is crucial to have a set of well-
understood problems on which to test the algorithm. This set of test problems
(also known as the benchmark problems, the benchmark functions, the test
suite, or the benchmark suite) needs to include problems that can challenge
the ability of a MaOO algorithm to achieve its two primary objectives; that
is, solution convergence and solution diversity. To accurately and thoroughly
evaluate a MaOO algorithm, the benchmark problems should have several
properties [34]. Properties that challenge convergence include multimodality,
deception, and isolated optima [136]. Properties that challenge diversity in-
clude convexity or non-convexity, discreteness, and non-uniformity [136].

There exist several benchmark suites for single-, multi-, and many-objective
optimization problems [107]. The two problem sets chosen for this work present
a mix of different desirable properties useful for properly testing MaOO algo-
rithms. The two chosen benchmark problem sets are presented and discussed
in sections 2.3.1 and 2.3.2. Most importantly, the chosen benchmark func-
tions are scalable both in terms of the number of objectives and the number
of decision variables. Note, however, that this study only considers scalability
concerning the number of objectives.

2.3.1 Deb-Thiele-Laumanns-Zitzler Test Problems

Deb et al. [41] proposed a benchmark suite, referred to as the Deb-Thiele-
Laumanns-Zitzler (DTLZ) test suite. This set consists of nine scalable prob-
lems, DTLZ1 through DTLZ9. However, two of these are constrained opti-
mization problems (DTLZ8 and DTLZ9) and, therefore, are omitted from this
study. Note that for all the problems defined below nm refers to the number
of objectives and n refers to the number of decision variables. A set Z of n
parameters are divided into two distinct sets as follows:

Given Z = {z1, ..., zn} = {z1, ..., zj, zj+1, ..., zn}
let P = {p1, ..., pl} = {z1, ..., zj}

D = {d1, ..., dk} = {zj+1, ..., zn}

where P is a set of j position parameters, D is a set of k distance parameters,
and the total number of parameters is n = j + k. For this study k was
defined as k = n − nm + 1. Note that for all the DTLZ problems defined below
zi ∈ [0,1] ,∀ i = 1,2, ..., n. DTLZ1 through DTLZ7 are defined as follows (all
objectives are to be minimized):
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DTLZ1

f1(Y ) = (1 + g(D)) × 0.5 ×∏nm−1
i=1 pi

fm=2∶nm−1(P ) = (1 + g(D)) × 0.5 × (∏nm−m
i=1 pi)(1 − pnm−m+1)

fnm(P ) = (1 + g(D)) × 0.5 × (1 − p1)
where g(D) = 100 [k +∑k

i=1 ((di − 0.5)2 − cos(20π(di − 0.5)))]

(2.6)

Using D = 0 will result in the Pareto-optimal solutions with objective function
values on the linear hyperplane ∑nm

m=1 fm = 0.5 [41]. The search space contains
(11k−1) local optima making it difficult to convergence to the hyperplane [41].
The problem can be made more complex by using other difficult multi-modal
g functions (using a larger k) and/or replacing di by non-linear mapping as
described in [41].

DTLZ2

f1(P ) = (1 + g(D))∏nm−1
i=1 cos(piπ/2)

fm=2∶nm−1(P ) = (1 + g(D))(∏nm−m
i=1 cos(piπ/2)) sin(pnm−m+1π/2)

fnm(P ) = (1 + g(D)) sin(p1π/2)
where g(D) = ∑k

i=1(di − 0.5)2

(2.7)

The Pareto-optimal solutions are obtained with D = 0.5 which will result in
objective function values that satisfy ∑nm

i=1 f
2
i = 1 [41]. To make the problem

more difficult, each variable zi for i = 1 to (nm − 1) can be replaced by the
mean value of the variables as described in [41].

DTLZ3

f1(P ) = (1 + g(D))∏nm−1
i=1 cos(piπ/2)

fm=2∶nm−1(P ) = (1 + g(D))(∏nm−m
i=1 cos(piπ/2)) sin(pnm−m+1π/2)

fnm(P ) = (1 + g(D)) sin(p1π/2)
where g(D) = 100 [k +∑k

i=1 ((di − 0.5)2 − cos(20π(di − 0.5)))]

(2.8)

Note that DTLZ3 is similar to DTLZ2 except for the equation for g which is
replaced by the one from DTLZ1. There are (3k − 1) local optima and one
global optimum [41]. All local POFs (local optima) are parallel to the global
POF (global optimum); that is, the global POF is at g = 0 and the next local
optimum is at g = 1 [41]. The global POF corresponds to D = 0.5 [41]. The
problem can be made more difficult by using a large k or a higher-frequency
cosine function [41].
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DTLZ4

f1(P ) = (1 + g(D))∏nm−1
i=1 cos(p100i π/2)

fm=2∶nm−1(P ) = (1 + g(D))(∏nm−m
i=1 cos(p100i π/2)) sin(p100nm−m+1π/2)

fnm(P ) = (1 + g(D)) sin(p1001 π/2)
where g(D) = ∑k

i=1(di − 0.5)2

(2.9)

DTLZ4 is another modification of DTLZ2, which induces a bias towards the
fnm − f1 plane; that is, allowing a dense collection of solutions to exist near
this plane [41].

DTLZ5

f1(P ) = (1 + g(D))∏nm−1
i=1 cos(θiπ/2)

fm=2∶nm−1(P ) = (1 + g(D))(∏nm−m
i=1 cos(θiπ/2)) sin(θnm−m+1π/2)

fnm(P ) = (1 + g(D)) sin(θ1π/2)
where g(D) = ∑k

i=1(di − 0.5)2

and θi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

π

4(1+g(D))(1 + 2g(D)pi), for i = 2,3, ..., (nm − 1)

pi, for i = 1

(2.10)
DTLZ5 is yet another modified version of DTLZ2 which introduces the
θ-mapping ensuring that there is only one POF (one global optimum or
non-dominated region) in the entire search space [41]. The global POF
corresponds to D = 0.5 [26].

DTLZ6

f1(P ) = (1 + g(D))∏nm−1
i=1 cos(θiπ/2)

fm=2∶nm−1(P ) = (1 + g(D))(∏nm−m
i=1 cos(θiπ/2)) sin(θnm−m+1π/2)

fnm(P ) = (1 + g(D)) sin(θ1π/2)
where g(D) = ∑k

i=1 d
0.1
i

and θi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

π

4(1+g(D))(1 + 2g(D)pi), for i = 2,3, ..., (nm − 1)

pi, for i = 1

(2.11)
DTLZ6 is similar to DTLZ5 except for the modified g equation. The global
POF corresponds to D = 0 [26].
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DTLZ7

fm=1∶nm−1(P ) = ym

fnm(P ) = (1 + g(D))(nm −∑nm−1
i=1 [ fi(P )

1+g(D)(1 + sin(3πfi(P )))] )
where g(D) = 1 + 9

k ∑
k
i=1 di

(2.12)
DTLZ7 has 2nm−1 disconnected Pareto-optimal regions which will test the abil-
ity of an algorithm to maintain a subpopulation in each of these optimal regions
of the search space [41]. The Pareto-optimal solutions are obtained by using
D = 0 [41]. The problem can be made harder by using a higher-frequency sine
function or using a multi-modal g function as described in [41].

Table 2.1 summarizes other important properties of DTLZ1 through
DTLZ7. The POFs for the three-objective DTLZ1 through DTLZ7 problems
are visualized from different viewing angles in figures 2.5 to 2.11 as taken
from [26]. For more detail, about the DTLZ test suite, the reader is referred
to [41].
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Table 2.1: DTLZ Benchmark Function Properties
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Figure 2.5: 3-objective DTLZ1 Pareto Front
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Figure 2.6: 3-objective DTLZ2 Pareto Front
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Figure 2.7: 3-objective DTLZ3 Pareto Front
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Figure 2.8: 3-objective DTLZ4 Pareto Front
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Figure 2.9: 3-objective DTLZ5 Pareto Front
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Figure 2.10: 3-objective DTLZ6 Pareto Front
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Figure 2.11: 3-objective DTLZ7 Pareto Front
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2.3.2 Walking Fish Group Test Problems

Huband et al. [74, 75] proposed a benchmark suite, referred to as the Walking
Fish Group (WFG) test suite. This set consists of nine scalable problems,
WFG1 through WFG9. Minimization is assumed for all objectives. The WFG
problems are of the following form:

Given Z = {z1, ..., zk, zk+1, ..., zn}
minimize fm(X) = qxnm + smhm(x1, ..., xnm−1), ∀m ∈ {1, ..., nm}

where X = {x1, ..., xnm}
= {max(tpnm , o1)(tp1 − 0.5) + 0.5, ...,

max(tpnm , onm−1)(tpnm−1 − 0.5) + 0.5, tpnm}
tp = {tp1, ..., t

p
nm}↤ tp−1 ↤ ...↤ t1 ↤ Z[0,1]

Z[0,1] = {z1,[0,1], ..., zn,[0,1]}

= { z1
z1,max

, ..., zn
zn,max

}

(2.13)

where

• Z is a set of k + l = n ≥ nm working parameters, where the first k work-
ing parameters are position-related parameters and the last l working
parameters are distance-related parameters. For this study k was de-
fined as k = 2(nm − 1). The domain for all zi ∈ Z is [0, zi,max], where all
zi,max > 0. Note that the domain of all xi ∈X is [0,1];

• X is a set of nm underlying parameters, where xnm is an underlying
distance parameter and x1∶nm−1 are underlying position parameters;

• q > 0 is a distance scaling constant;

• s1∶nm > 0 are scaling constants;

• o1∶nm−1 ∈ {0,1} are degeneracy constants, and for each oi = 0, the dimen-
sionality of the POF is reduced by one;

• h1∶nm are shape functions; and

• t1∶p are transition vectors, where “↤” indicates that each transition vector
is created from another vector via transformation functions.

The nature of the POF is determined by the shape functions. The shape
functions map parameters with a domain [0,1] onto a range [0,1]. The
following shape functions are defined:
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Linear

linear1(x1, ..., xnm−1) = ∏nm−1
i=1 xi

linearm=2∶nm−1(x1, ..., xnm−1) = (∏nm−m
i=1 xi)(1 − xnm−m+1)

linearnm(x1, ..., xnm−1) = 1 − x1
(2.14)

When hm=1∶nm = linearm, the POF is a linear hyperplane, where
∑nm
m=1 hm = 1 [74, 75].

Convex

convex1(x1, ..., xnm−1) = ∏nm−1
i=1 (1 − cos(xi π2 ))

convexm=2∶nm−1(x1, ..., xnm−1) = (∏nm−m
i=1 (1 − cos(xi π2 )))(1 − sin(xnm−m+1 π2 ))

convexnm(x1, ..., xnm−1) = 1 − sin(x1 π2 )
(2.15)

When hm=1∶nm = convexm, the POF is purely convex [74, 75].

Concave

concave1(x1, ..., xnm−1) = ∏nm−1
i=1 sin(xi π2 )

concavem=2∶nm−1(x1, ..., xnm−1) = (∏nm−m
i=1 sin(xi π2 ))( cos(xnm−m+1 π2 ))

concavenm(x1, ..., xnm−1) = cos(x1 π2 )
(2.16)

When hm=1∶nm = concavem, the POF is purely concave, and a region of the
hypersphere of radius one is centred at the origin, where ∑nm

m=1 h
2
m = 1 [74, 75].

Mixed convex/concave (α > 0, a ∈ {1,2, ...})

mixednm(x1, ..., xnm−1) = (1 − x1 −
cos(2aπx1+π2 )

2aπ )α (2.17)

Equation (2.17) will result in a POF with both concave and convex segments.
The number of convex and concave segments are controlled by a [74, 75].
The overall shape is controlled by α: when α > 1, the overall shape is convex,
when α < 1, the overall shape is concave, and when α = 1, the overall shape is
linear [74, 75].

Disconnected (α,β > 0, a ∈ {1,2, ...})

discnm(x1, ..., xnm−1) = 1 − (x1)α cos2 (a(x1)βπ) (2.18)

Equation (2.18) causes the POF to have disconnected regions. The number of
disconnected regions is controlled by a [74, 75]. The overall shape is controlled
by α: when α > 1, the overall shape is convex, when α < 1, the overall shape
is concave, and when α = 1, the overall shape is linear [74, 75]. The location
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of the disconnected regions is controlled by β: larger values of β push the
location of the disconnected regions towards larger values of x1, and vice
versa [74, 75].

The purpose of transformation functions is to map input parameters with
domain [0, 1] onto the range [0, 1]. The following transformation functions
have been defined:

Bias: Polynomial (α > 0, α ≠ 1)

b_poly(y,α) = yα (2.19)

When α > 1, y is biased towards zero, and when α < 1, y is biased towards
one [74, 75].

Bias: Flat Region (a, b, c ∈ [0,1], b < c, b = 0⇒ a = 0∧c ≠ 1, c = 1⇒ a = 1∧b ≠
0)

b_flat(y, a, b, c) = a +min(0, ⌊y − b⌋)a(b−y)b

−min(0, ⌊c − y⌋) (1−a)(y−c)
1−c

(2.20)

Values y between b and c (i.e. the area of the flat region) are all mapped to
the value of a [74, 75].

Bias: Parameter Dependent (a ∈ (0,1),0 < b < c)

b_param(y,y′a, b, c) = yb+(c−b)v(u(y
′))

where v(u(y′)) = a − (1 − 2u(y′))∣⌊0.5 − u(y′)⌋ + a∣
(2.21)

a, b, c, and the secondary parameter vector y′ together determine the extent
to which y is biased by being raised to some power, values of u(y′) ∈ [0,0.5]
are mapped linearly onto [b, b + (c − b)a], and values of u(y′) ∈ [0.5,1] are
mapped linearly onto [b + (c − b)a, c] [74, 75].

Shift: Linear (a ∈ (0,1))

s_linear(y, a) = y−a
∣⌊a−y⌋+a∣ (2.22)

a is the value for which y is mapped to zero [74, 75].

Shift: Deceptive (a ∈ (0,1),0 < b≪ 1,0 < c≪ 1, a − b > 0, a + b < 1)

s_decept(y, a, b, c) = 1 + (∣y − a∣ − b)×

( ⌊y−a+b⌋(1−C+a−b
b

)
a−b + ⌊a+b−y⌋(1−c+ 1−a−b

b
)

1−a−b + 1
b)

(2.23)
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a is the value for which y is mapped to zero, and the global minimum of
the transformation [74, 75]. The size of the well/basin “opening” (leading to
the global minimum at a) is b, and c is the value of the only two deceptive
minima [74, 75].

Shift: Multimodal (a ∈ {1,2, ...}, b ≥ 0, (4a + 2)π ≥ 4b, c ∈ (0,1))

s_multi(y, a, b, c) = 1+cos[(4a+2)π(0.5− ∣y−c∣
2(⌊c−y⌋+c)

)]+4b( ∣y−c∣
2(⌊c−y⌋+c)

)2

b+2
(2.24)

The number of optima is controlled by a, the magnitude of the “hill sizes” of
the multi-modality is controlled by b, and c is the value for which y is mapped
to zero [74, 75]. When b = 0, 2a + 1 values of y (one at c) are mapped to
zero, and when b ≠ 0, there are 2a local minima, and one global minimum at
c [74, 75]. More difficult problems can be created with larger values of a and
smaller values of B [74, 75].

Reduction: Weighted Sum (∣w∣ = ∣y∣,w1, ...,w∣y∣ > 0)

r_sum(y,w) = ∑∣y∣

i=1wiyi

∑∣y∣

i=1wi
(2.25)

The constant weight vector w forces an algorithm to treat the parameter
vector, y, differently [74, 75]. For conciseness, a weighted product reduction
function, equivalent to the weighted sum reduction function defined above,
has been omitted.

Reduction: Non-separable (a ∈ {1, ..., ∣y∣}, ∣y∣ mod a = 0)

r_nonsep(y, a) = ∑∣Y∣

j=1 (yj+∑a−2k=0 ∣yj−y1+(j+k) mod ∣y∣
∣)

∣y∣

a
⌈a
2
⌉(1+2a−2⌈a

2
⌉)

(2.26)

The degree of non-separability is controlled by a [74, 75], noting that

r_nonsep(y,1) = r_sum(y,1)

The role of the bias transformations is to bias the fitness landscape [74, 75].
The location of optima is moved by shift transformations (subject to skewing
by bias transformations) [74, 75]. The deceptive and multimodal shift
transformations make the corresponding problem deceptive and multimodal,
respectively [74, 75]. The flat region transformation can also have a significant
impact on the fitness landscape [74, 75].

The following restrictions apply to ensure that the problems have a
well-balanced design:
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Constants
Constants must be fixed values and cannot be tied to the value of any
parameter [74, 75].

Primary Parameters
For any given transition vector, all the parameters of the originating transition
vector must be employed exactly once as a primary parameter, counting
parameters that appear independently as primary parameters, and in the
same order in which the parameters appear in the originating transition
vector [74, 75].

Secondary Parameters
Care must be taken to avoid cyclical dependencies in b_param [74, 75].
Consider the following terminology: if param1 is a primary parameter of
b_param, and param2 is a secondary parameter, then param1 depends on
param2. If param2 likewise depends on param3, then param1 depends,
indirectly, on param3 [74, 75]. To prevent cyclical dependencies, no two
parameters should be dependent on one another. A parameter should also
not depend on itself.

Shifts
Parameters should only be subjected to a maximum of one shift transforma-
tion [74, 75].

Reductions
Reduction transformations should belong to transition vectors that are closer
to the underlying parameter vector than any shift transformations [74, 75].

b_flat
When a = 0, b_flat should only belong to transition vectors that are further
away from the underlying parameter vector than any shift or reduction
transformation [74, 75].

The constant values and domains of the working parameters for the nine
WFG test problems are defined as follows:

Constants
sm=1∶nm = 2m

o1 = 1

o2∶nm−1 =
⎧⎪⎪⎨⎪⎪⎩

0 for WFG3

1 otherwise

(2.27)

The settings for s1∶nm ensure that the POFs have dissimilar trade-off magni-



CHAPTER 2. MANY-OBJECTIVE OPTIMIZATION 34

tudes, and the settings for o1∶nm−1 ensure that the POFs are not degenerate,
except in the case of WFG3, which has a one-dimensional POF [74, 75].

Domains
zi=1∶n,max = 2i (2.28)

The working parameters have domains of dissimilar magnitude [74, 75].

Finally, the nine WFG test problems can be defined by using a combination
of the shape, transformation functions, and restrictions as presented above.
WFG1 through WFG9 are defined as follows:

WFG1

Shape hm=1∶nm−1 = convexm
hnm = mixednm ,with α = 1 and a = 5

t1 t1i=1∶k = yi

t1i=k+1∶n = s_linear(yi,0.35)
t2 t2i=1∶k = yi

t2i=k+1∶n = b_flat(yi,0.8,0.75,0.85)
t3 t3i=1∶n = b_poly(yi,0.02)
t4 t4i=1∶nm−1 = r_sum((y(i−1)k/(nm−1)+1, ..., yik/(nm−1)),

(2((i − 1)k/(nm − 1) + 1), ...,2ik/(nm − 1)))
t4nm = r_sum((yk+1, ..., yn), (2(k + 1), ...,2n))

(2.29)

WFG2

Shape hm=1∶nm−1 = convexm
hnm = discnm ,with α = β = 1 and a = 5

t1 t1i=1∶k = yi

t1i=k+1∶n = s_linear(yi,0.35)
t2 t2i=1∶k = yi

t2
i=k+1∶k+l/2 = r_nonsep((yk+2(i−k)−1, yk+2(i−k)),2)

t3 t3i=1∶nm−1 = r_sum((y(i−1)k/(nm−1)+1, ..., yik/(nm−1)), (1, ...,1))
t3nm = r_sum((yk+1, ..., yk+l/2), (1, ...,1))

(2.30)
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WFG3

Shape hm=1∶nm = linearm
t1 t1i=1∶k = yi

t1i=k+1∶n = s_linear(yi,0.35)
t2 t2i=1∶k = yi

t2
i=k+1∶k+l/2 = r_nonsep((yk+2(i−k)−1, yk+2(i−k)),2)

t3 t3i=1∶nm−1 = r_sum((y(i−1)k/(nm−1)+1, ..., yik/(nm−1)), (1, ...,1))
t3nm = r_sum((yk+1, ..., yk+l/2), (1, ...,1))

(2.31)
Note that the only difference between WFG2 and WFG3 is the shape function;
that is, WFG2 uses a convex shape function whereas WFG3 uses a linear
shape function.

WFG4

Shape hm=1∶nm = concavem
t1 t1i=1∶n = s_multi(yi,30,10,0.35)
t2 t2i=1∶nm−1 = r_sum((y(i−1)k/(nm−1)+1, ..., yik/(nm−1)), (1, ...,1))

t2nm = r_sum((yk+1, ..., yn), (1, ...,1))
(2.32)

WFG5

Shape hm=1∶nm = concavem
t1 t1i=1∶n = s_decept(yi,0.35,0.001,0.05)
t2 t2i=1∶nm−1 = r_sum((y(i−1)k/(nm−1)+1, ..., yik/(nm−1)), (1, ...,1))

t2nm = r_sum((yk+1, ..., yn), (1, ...,1))
(2.33)

Note that the only difference between WFG4 and WFG5 is the shift transfor-
mation function used; that is, WFG4 uses a multimodal shift whereas WFG5
uses a deceptive shift.
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WFG6

Shape hm=1∶nm = concavem
t1 t1i=1∶k = yi

t1i=k+1∶n = s_linear(yi,0.35)
t2 t2i=1∶nm−1 = r_nonsep((y(i−1)k/(nm−1)+1, ..., yik/(nm−1)), k/(nm − 1))

t2nm = r_nonsep((yk+1, ..., yn), l)
(2.34)

Note that WFG1 and WFG6 use the same shift transformation function; that
is, a linear shift.

WFG7

Shape hm=1∶nm = concavem
t1 t1i=1∶k = b_param(yi, r_sum((yi+1, ..., yn), (1, ...,1)),

0.98
49.98 ,0.02,50)

t1i=k+1∶n = yi

t2 t2i=1∶k = yi

t2i=k+1∶n = s_linear(yi,0.35)
t3 t3i=1∶nm−1 = r_sum((y(i−1)k/(nm−1)+1, ..., yik/(nm−1)), (1, ...,1))

t3nm = r_sum((yk+1, ..., yn), (1, ...,1))
(2.35)

Note that WFG7 uses the linear shift transformation like WFG1 and the
weighted sum reduction like WFG4.

WFG8

Shape hm=1∶nm = concavem
t1 t1i=1∶k = yi

t1i=k+1∶n = b_param(yi, r_sum((y1, ..., yi−1), (1, ...,1)),
0.98
49.98 ,0.02,50)

t2 t2i=1∶k = yi

t2i=k+1∶n = s_linear(yi,0.35)
t3 t3i=1∶nm−1 = r_sum((y(i−1)k/(nm−1)+1, ..., yik/(nm−1)), (1, ...,1))

t3nm = r_sum((yk+1, ..., yn), (1, ...,1))
(2.36)

Note that both WFG8 and WFG7 use the same linear shift transformation
and weighted sum reduction as WFG1 and WFG4 respectively.
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WFG9

Shape hm=1∶nm = concavem
t1 t1i=1∶n−1 = b_param(yi, r_sum((yi+1, ..., yn), (1, ...,1)),

0.98
49.98 ,0.02,50)

t1n = yn

t2 t2i=1∶k = s_decep(yi,0.35,0.001,0.05)
t2i=k+1∶n = s_multi(yi,30,95,0.35)

t3 t3i=1∶nm−1 = r_nonsep((y(i−1)k/(nm−1)+1, ..., yik/(nm−1)), k/(nm − 1))
t3nm = r_nonsep((yk+1, ..., yn), l)

(2.37)
Note that WFG9 uses the same non-separable reduction function as WFG6.

The Pareto-optimal solutions for WFG1 to WFG9 are obtained when the
following conditions are satisfied:

• For WFG1 to WFG7 a solution is Pareto-optimal iff all

zi=k+1∶n = 2i × 0.35

• For WFG8 it is required that all of

zi=k+1∶n = 2i × 0.35
(0.02+49.98( 0.98

49.98
−(1−2u)∣⌊0.5−u⌋+ 0.98

49.98
∣))−1

where u = r_sum((z1, ..., zi−1), (1, ...,1))

• For WFG9 it is required that all of

zi=k+1∶n = 2i ×
⎧⎪⎪⎨⎪⎪⎩

0.35(0.02+1.96u)
−1, i ≠ n

0.35, i = n
where u = r_sum((zi+1, ..., zn), (1, ...,1))

which can be found by first determining zn, then zn−1, and so on, until the
required value for zk+1 is determined [74, 75]. Once the optimal values
for zk+1∶n are determined, the position-related parameters can randomly
be varied to obtain different Pareto-optimal solutions [74, 75].

Table 2.2 summarizes other important properties of WFG1 through WFG9.
The POFs for three-objective WFG1 through WFG9 problems are visualized
from different viewing angles in figures 2.12 to 2.20 as taken from [26]. For
more detail, about the WFG test suite, the reader is referred to [74, 75].
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Table 2.2: WFG Benchmark Function Properties
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Figure 2.12: 3-objective WFG1 Pareto Front



CHAPTER 2. MANY-OBJECTIVE OPTIMIZATION 40

Figure 2.13: 3-objective WFG2 Pareto Front
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Figure 2.14: 3-objective WFG3 Pareto Front
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Figure 2.15: 3-objective WFG4 Pareto Front
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Figure 2.16: 3-objective WFG5 Pareto Front
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Figure 2.17: 3-objective WFG6 Pareto Front
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Figure 2.18: 3-objective WFG7 Pareto Front
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Figure 2.19: 3-objective WFG8 Pareto Front
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Figure 2.20: 3-objective WFG9 Pareto Front
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2.4 Performance Measures
Empirical comparison of different optimization algorithms require some way
to quantify the performance quality of an algorithm. In the case of MOO and
MaOO, quantification of performance quality is substantially more complex
than for a UOO. This is due to the multiple, often contradictory, objectives
present in MOPs and MaOPs. Remember from section 2.1.3 that an ideal
POF has a good spread of solutions that are as close as possible to the true
POF. There exist several quality indicators that either measure closeness to
the true POF (such as generational distance [160, 161]) or diversity among
the found POF (such as maximum spread [151, 177], spacing [138], solution
distribution [63], and spread [35]). However, this study chose two performance
measures that each takes into account both solution accuracy and diversity.
The chosen performance indicators are discussed next in section 2.4.1 and
section 2.4.2.

2.4.1 Hypervolume

The HV measure was introduced by Zitzler and Thiele [180] with the purpose
of quantifying the objective space volume covered by the hypercubes, Vk, for
each solution f(x)k ∈ Q, where Vk is the hypercube constructed between the
reference-point rhv (originally defined as the zero vector, 0) and the solution
f(x)k. Due to overlapping hypercube volumes, the HV measure calculates
the volume of the union of all the hypercubes in the objective space [180].
Formally, the HV measure is calculated as

HV = volume(⋃Vk),∀ f(x)k ∈ Q (2.38)

Van Veldhuizen [159] observed that the HV measure can be spurious if the
POF is non-convex. That is, when using the zero vector as the reference-point,
the HV would decrease as the quality of the POF improves, which is misleading
since a larger HV should be indicative of a better POF. Zitzler [177] concluded
that Van Veldhuizen’s [159] finding indicates that the coverage of the objective
space is one of several viable criteria to be considered during the evaluation
of the POF. An alternative approach, improving upon that of Ziztler and
Thiele [180], uses the nadir vector, znad, as the reference-point. When using the
nadir vector as the reference-point, the HV increases as the quality of the POF
improves. More recently [106], and in this study, the reference-point is chosen
to be a vector with values slightly larger than the normalized nadir point, i.e.,
1.1. This vector has been shown to appropriately accentuate the convergence
and diversity of the found solutions [3] by including the HV contribution of
each extreme Pareto-optimal solution [79]. The computational cost of the HV
calculation increases as the number of found solutions and objectives increase.
The HV measure can, however, be estimated when the number of objectives is
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more than some threshold. The HV calculation can be approximated using the
Monte Carlo sampling technique [4]. Bader and Zitzler recommend at least
10 000 sampling points [4] for the Monte Carlo approach. Note that a more
computational friendly, recursive, dimension-sweep HV algorithm [58] exists.
However, this algorithm [58] is still extremely time-consuming for MaOPs with
a large number of objectives such as 10 or 15. Also, note that other faster
calculation algorithms do exist [9].

2.4.2 Inverted Generational Distance

The IGD measure was introduced by Coello Coello and Reyes-Sierra [25, 128].
The IGD measure is calculated as

IGD =
√
∑∣POF∗ ∣
k=1

b2
k

∣POF ∗∣
(2.39)

where POF ∗ is a set of Pareto-optimal solutions representing the true POF,
and bk is the Euclidean distance in the objective space between solution k
of the true POF and the nearest solution of the known front, Q. Note that
Q = POF ∗ when IGD = 0.

The quality of the IGD measure depends on the quality of the known POF.
Ishibuchi et al. [80] investigated the challenges in specifying the reference-
points making up the true POF. Ishibuchi et al. [80] found that uniform sam-
pling of reference-points from the known true POF leads to counter-intuitive
results. For all IGD calculations, this work made use of the true POFs gen-
erated by the PlatEMO framework [153] – an evolutionary multi-objective
optimization platform.

2.5 Summary
The goal of this chapter was to provide background information about opti-
mization in general, multi-objective optimization (MOO), multi-objective op-
timization problems (MOPs), many-objective optimization (MaOO), many-
objective optimization problems (MaOPs), test problems, and MaOO per-
formance measures. More specifically, a MOP was defined formally. Next,
approaches for defining optimality for optimization problems with more than
one objective were defined and discussed, which included the weighted aggre-
gation and Pareto-optimality approach. The formal definition of a MaOP was
also presented followed by the challenges faced by MaOO algorithms when
solving MaOPs. Different approaches to MaOO were also discussed. Finally,
the benchmark problems, as well as the performance measures used in this
study to help evaluate the investigated algorithms, were formally defined and
discussed.

The next chapter provides further background information related to the
MaOO algorithms that formed part of this investigation.



Chapter 3

Many-objective Optimization
Algorithms

“Truly successful people have learned to do what does not come naturally. Real
success lies in experiencing fear or aversion and acting in spite of it.”

— Dr Joseph Mancusi

An optimization algorithm is a search method with the purpose of find-
ing an optimal solution by the process of iteratively transforming a current
candidate solution with the hope of improving the quality of that candidate
solution. The end goal for MOO and MaOO algorithms is to find a set of
solutions which cannot improve any objective without degrading some of the
other objectives. When considering all possible solutions, a set like this is
deemed Pareto-optimal. This study investigates stochastic, local search, op-
timization algorithms. Stochastic algorithms incorporate random elements
when modifying candidate solutions. Local search algorithms only use locally
available search space information by exploiting neighbourhoods; this implies
that only local optima discovery can be guaranteed. In contrast, determinis-
tic algorithms do not use random elements and global search algorithms can
guarantee global optimal solutions by exploring the entire search space. Fur-
thermore, each of the algorithms investigated in this study can be classified
as either an evolutionary algorithm (EA) or a particle swarm optimization
(PSO) algorithm. To better understand where these algorithms fit into the
vast field of artificial intelligence (AI), the reader is referred to [47], where a
classification of computational intelligence (CI), a sub-branch of AI, paradigms
are sufficiently covered. There are numerous MaOO algorithms, however, this
study selected some of the well-performing competitive MaOO algorithms; that
is, MOO algorithms that have been shown to scale well to MaOPs. The inter-
ested reader is referred to [107] where over a hundred MaOO algorithms are
categorized. Note that this list of MaOO algorithms [107] is non-exhaustive
and ever-growing.

50
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Section 3.1 introduces the basic EA followed by a discussion highlight-
ing the most prominent features of each of the many-objective evolutionary
algorithms (MaOEAs) investigated in this study. Section 3.2 introduces the
basic PSO algorithm, followed by a discussion highlighting the most prominent
features of the only many-objective particle swarm optimization (MaOPSO)
algorithm investigated in this study. The focal algorithm of this thesis, the
MGPSO algorithm (an aspiring MaOPSO algorithm), is also discussed in sec-
tion 3.2. Finally, this chapter is epitomized in section 3.3.

3.1 Evolutionary Algorithms
This section focusses on EAs, which are part of the evolutionary computation
(EC) paradigm, a sub-branch of CI [47]. EC aims to model the concept of nat-
ural evolution. EC has been used successfully in real-world applications, for
example, data mining, combinatorial optimization, fault diagnosis, classifica-
tion, clustering, scheduling, and time series approximation [47]. Section 3.1.1
introduces the original EA and section 3.1.2 gives a high-level overview of the
MaOO EAs relevant to this study.

3.1.1 Basic Evolutionary Algorithm

An evolutionary algorithm (EA) aims to imitate biological evolution as de-
fined by the Darwinian theory of natural selection [28]. Natural selection is
established on the concept of survival of the fittest where the weak perish.
EAs use a randomly chosen population of chromosomes, where each chromo-
some represents an individual. An individual is simply a candidate solution
to the problem at hand. A chromosome consists of genes, where each gene
describes a characteristic of that individual in the population. The value of a
gene is also known as an allele. For each generation (or algorithm iteration),
the individuals of a population compete for the privilege of being allowed to
reproduce offspring. The fittest individuals of the population have a higher
probability of being selected to reproduce offspring. Crossover is the process
of creating new individuals (offspring) by combining the desirable genes from
two or more parents. In an effort to promote diversity, each individual of the
population can also undergo mutation which alters some of the alleles of the
chromosome. The fitness of an individual is measured using a function which
takes into account both the objectives and constraints of the problem. At the
end of each generation, a new population can be selected from the offspring
or, from both the parents and the offspring - as long as the fittest individu-
als survive to the next generation(s). Therefore, an EA is a stochastic search
algorithm that searches through the search space of viable chromosome val-
ues for an optimal combination of genes. The pseudocode for a generic EA is
presented in Algorithm 1.
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Algorithm 1 Evolutionary Algorithm (EA)

1 ∶ Let t = 0 be the generation counter;

2 ∶ Create and initialize an n-dimensional population, C(0),
to consist of ns individuals;

3 ∶ while stopping condition(s) not true do

4 ∶ Evaluate the fitness, f(xi(t)), of each individual, xi(t);
5 ∶ Select parents to perform reproduction (i.e. crossover) at a

probability to create offspring;

6 ∶ Apply mutation to the population at some probability;

7 ∶ Select the new population, C(t + 1);
8 ∶ Advance to the new generation, i.e. t = t + 1;

9 ∶ end while

10 ∶ return C;

Note that at line 6 of Algorithm 1 a low probability is often preferred. How-
ever, occasionally, an EA may be more effective if a large mutation probability
is used initially (to promote exploration) which is then gradually decreased
over time as the search progresses (to promote exploitation). In other words,
the mutation probability, to some degree, is problem-dependent.

The following section gives an overview of the benchmark MaOEAs used
in this study.

3.1.2 Many-objective Evolutionary Algorithms

Since the first EA [12], innovation and research of more complex problems
have led to the development of MOEAs as well as MaOEAs. MaOEAs have
the ability to solve problems with two or more objectives; such as MOPs
and MaOPs. MOEAs, on the other hand, can only solve MOPs effectively.
Sections 3.1.2.1 to 3.1.2.3 give an overview of the three benchmark MaOEAs
used in this work, focussing on the most important and unique features that
help each algorithm to scale. All MaOEAs considered in this study are at their
core elitist, i.e., the average fitness value of the population will never decrease
as the search progresses. Elitist EAs ensures that a certain number of the
fittest individuals are chosen from the union of the current population set and
the offspring set to survive to the next generation.
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3.1.2.1 Knee-point driven Evolutionary Algorithm

The knee-point driven evolutionary algorithm (KnEA) [174] primarily uses the
Pareto-dominance relationship during selection. However, the KnEA also uti-
lizes a secondary selection (convergence) criterion, referred to as knee-points,
that assists the Pareto-dominance relationship which is known to degrade as
the number of objectives increases [68, 77, 81, 106, 141, 174].

Knee-points are a subset of the Pareto-optimal solutions for which an im-
provement in one objective will result in an acute deterioration in at least one
other objective [174]. The KnEA incorporates knee-points with the purpose
of increasing its selection pressure; i.e., the ability of an algorithm to converge
to the true POF.

The importance of knee-points has long been recognized and has, therefore,
lead to the development of several knee-point identification methods [8, 11, 29,
37, 40, 105, 124, 125, 142, 174]. Some problems have also been developed to
test the ability of algorithms to find knee-points [11, 155]. Note, however, that
these problems are not scalable, i.e., these problems are limited to two, three,
four, and five objectives.

The KnEA uses an adaptive strategy for identifying knee-points as defined
by Das [29] and Bechikh et al. [8]. To identify a knee-point, this approach first
determines a set, E, of extremal solutions, where an extremal solution Em is
defined as the solution with the least desirable fitness for objective m. Next,
a hyperplane H is created as follows:

1. Create all possible nm − 1 distinct vectors using the solutions of E.

2. Construct a matrix G, where each row of G is a vector computed in the
previous step.

3. Compute the null space ofG, using the result to determine the constants
of the hyperplane H.

H can then be used to determine the knee-points of the approximated
(found) front using the following method: for each solution x, x is considered
a knee-point if, and only if, x possesses the maximum objective space distance
to H within its neighbourhood. An adaptive strategy is used to determine
the neighbourhood size of each solution. The neighbourhood of a solution is a
hypercube with nm sides, where each side is calculated as

Rm(t) = (maxm(t) −minm(t)) ⋅ ratio(t) (3.1)

where maxm(t) and minm(t) denote the maximal and minimal values of the
m-th objective at iteration t respectively and ratio(t) corresponds to the ratio
of the neighbourhood size to the range spanned by objective m at iteration t.
ratio(t) is updated using
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ratio(t) = ratio(t − 1) ⋅ e−
1−(ζ(t−1)/κ)

nm (3.2)

where ζ(t − 1) denotes the ratio of knee-points to non-dominated solutions at
iteration t − 1 and κ is a user-defined parameter which represents the desired
ratio of knee-points to non-dominated solutions, with 0 < κ < 1. Note that
initially ζ(t) = 0 and ratio(t) = 1. The strategy above essentially shrinks
and grows the neighbourhood size adaptively until the ratio of knee-points to
non-dominated solutions in the solution set converges to κ.

Importantly, it is made clear in [174] that the KnEA identifies the knee-
points within the found POF and not the true (theoretical) POF. An illus-
tration of determining knee-points for a bi-objective minimization problem is
illustrated in figure 3.1. In this example, solutions B, E, and G are identified
as knee-points because each of these solutions possesses the largest objective
space distance to the extreme hyperplane H within their neighbourhood. Note
that if a solution is isolated within its neighbourhood, e.g., solution G, this
solution is also considered to be a knee-point. The above knee-point definition
leads to the benefit that the diversity of the population is implicitly taken
into account. Note that extreme solutions are also considered knee-points, as
depicted in figure 3.1.

Figure 3.1: Illustration for determining knee-points.

The main components of the KnEA are presented in Algorithm 2. The
KnEA starts by first setting the generation counter and then initializes the
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population by generating a random set of solutions (lines 1 and 2).
Second, simulated binary crossover (SBX) [2] and polynomial mutation [36]

are performed to generate the offspring individuals (lines 4 and 5). Mutation
is used to introduce variation into the population which enhances solution di-
versity and promotes exploration. Mutation is usually applied at a low prob-
ability as to not completely transform already promising solutions. During
crossover (line 4), three tournament metrics are adopted, namely, the Pareto-
dominance relationship, the knee-point criterion, and the weighted distance
measure. The weighted distance measure, like crowding distance, is an alter-
native way of measuring the crowdedness of a solution. The weighted distance
measure is based on the k-nearest neighbours algorithm [56]. The reader is re-
ferred to [174], where the details of the weighted distance metric are discussed.
During the binary tournament mating selection, the KnEA randomly selects
two individuals from the parent population. If one solution dominates the
other solution, then the former solution is chosen as the winner. When per-
forming a binary tournament between two mutually non-dominated solutions,
if either solution is a knee-point it is regarded as more desirable and wins the
tournament. If both of the solutions are knee-points or neither is a knee-point,
then a weighted distance is used for comparing the two solutions. The solution
with the larger weighted distance wins the tournament. If both solutions have
an equal weighted distance, then one of the solutions is randomly chosen for
reproduction.

Third, non-dominated sorting is performed which sorts the combined par-
ent and offspring population into several non-domination levels (line 6). So-
lutions in the first level have the highest priority to be selected as the next
parents. Next an adaptive strategy is used to identify solutions located in the
knee-regions of each non-dominated front in the combined population (line 7).
The KnEA does not require an additional diversity mechanism (such as crowd-
ing distance) since the knee-point identification strategy used implicitly takes
diversity into account by ensuring that each neighbourhood has exactly one
knee-point [174]. Also, this knee-point identification strategy used by the
KnEA can identify false knee-points, which further promotes diversity through
exploration, and can speed up convergence towards the POF [174].

Fourth, environmental selection is conducted to select the fittest individuals
as the parent population of the next generation (lines 8 and 9). Note that
knee-points are also employed during the environmental selection phase of the
KnEA. During the environmental selection phase, the KnEA starts to select
the non-dominated solutions in the first non-dominated front. If the number
of solutions in the first non-dominated front is larger than the population
size, which is very likely already in the early generations in MaOO, then knee-
points in the first non-dominated front are selected first as parents for the next
population. If the number of knee-points in the first non-dominated front is
larger than the population size, then ns knee points having a larger distance to
the extremal hyperplane are selected. Otherwise, the knee points are selected
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together with the remaining solutions in the first non-dominated front that
have a larger distance to the hyperplane of the first non-dominated front. If
the number of solutions in the first non-dominated front is smaller than ns,
the KnEA turns to the second non-dominated front for selecting the remaining
parent solutions. If the second non-dominated front is larger than the number
of remaining population slots, then the same procedure described above will
be applied to the second non-dominated front. This process is repeated until
the parent population for the next generation reaches ns.

This procedure repeats until one or more stopping conditions are met.
Finally, the KnEA terminates after returning the final population, i.e., the
solutions representing the found POF (line 11).

Algorithm 2 Knee-point driven Evolutionary Algorithm (KnEA)

1 ∶ Let t = 0 be the generation counter;

2 ∶ Create and initialize an n-dimensional population, C(0),
to consist of ns individuals;

3 ∶ while stopping condition(s) not true do

4 ∶ Mating selection;

5 ∶ Generate offspring using a variation method;

6 ∶ Perform non-dominated sorting;

7 ∶ Identify knee-points;

8 ∶ Perform environmental selection to select the new population,
C(t + 1);

9 ∶ Advance to the new generation, i.e. t = t + 1;

10 ∶ end while

11 ∶ return C;

It is shown in [174] that favouring knee-points in the found POF results in
an approximation of a bias towards a larger HV. This is a desirable property
since the HV calculation cannot guarantee diversity even though it implicitly
takes diversity into account [174]. The KnEA has also been shown to be very
competitive both in terms of solution quality and computational efficiency
when solving MaOPs [106, 174]. Therefore, the KnEA was selected as one of
the benchmark algorithms in this study. Also, note that this same adaptive
knee-points identification approach is used similarly in this study to investigate
if it helps with the scalability of the MGPSO algorithm. For more detail about
the KnEA, the reader is referred to [174].
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3.1.2.2 Many-objective Evolutionary Algorithm based on
Dominance and Decomposition

Decomposition refers to decomposing the MOP or MaOP being solved into a
set of scalar optimization subproblems which is then optimized cooperatively,
allowing for better convergence [95]. The many-objective evolutionary algo-
rithm based on dominance and decomposition (MOEA/DD) [95] combines the
strengths of the well-known non-dominated sorting genetic algorithm (NSGA-
II) [35] and the multi-objective evolutionary algorithm based on decomposition
(MOEA/D) [173], which have been shown to excel at different problems [171].
The MOEA/DD exploits the desirable properties of the Pareto-dominance re-
lationship, decomposition, and local density estimation to balance convergence
and diversity during the evolutionary search process [95]. Local density esti-
mation is used to determine the density (crowdedness) of solutions within a
subregion of the search space.

The MOEA/DD uses the promising penalty-based boundary intersection
(PBI) decomposition method [95, 173]. The PBI aggregation method is defined
as

minimize gpbi(x∣w,z∗) = d1 + ϕd2 (3.3)

where
d1 = ∣∣(f(x)−z∗)ψw∣∣

∣∣w∣∣

d2 = ∣∣f(x) − (z∗ + d1 w
∣∣w∣∣)∣∣

and ϕ ≥ 0 is a user-defined penalty parameter that controls the balance between
d1 (i.e. the convergence component) and d2 (i.e. the diversity component); ψ
is the neighbourhood size; w is a weight vector associated with solution x. By
modifying the choice of w, different Pareto-optimal points (solutions) can be
found.

Algorithm 3 presents the pseudocode for the MOEA/DD. First, the initial-
ization procedure (lines 2 and 3) generates the initial population, C(0), and a
set of weight vectors,W . The weight vectors are generated to be widely spread
using the boundary intersection method of Das and Dennis [31]. The details of
this weight generation approach used by the MOEA/DD is discussed in detail
in [95] and [31]. Each weight vector defines a subproblem that can be used
for fitness evaluation and also represents a unique subregion of the objective
space that can be used to estimate the local population density [95]. A subre-
gion consists of a number of the closest weight vectors evaluated by Euclidean
distances. Next, the non-domination level structure of the population is de-
termined using the fast non-dominated sorting method [35] (line 4). Finally,
each individual of the population is randomly assigned to (or associated with)
a unique subregion (line 5).

Within the while-loop, in case that one or more termination criteria are
not met, for each weight vector, the mating selection procedure chooses neigh-
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bouring individuals as parents for offspring generation (line 7). Neighbouring
solutions are located in neighbouring subregions. This allows for more efficient
mating in a high-dimensional search space; that is, producing offspring close to
the parents in the objective space [95]. In case no associated solution exists in
the selected subregions, mating parents are randomly chosen from the whole
population. Moreover, to enhance exploration [94], mating between parents
selected from the whole population is allowed at a low probability.

Next, offspring is generated by performing SBX [2] and polynomial mu-
tation [36] (line 8). Mutation is applied to the individuals (usually at a low
probability) for diversity and exploration purposes.

After sorting the population into non-dominated levels (line 9), each indi-
vidual in the population is associated with a weight vector (subregion) based
on Euclidean distance (line 10). To help distinguish solutions, the MOEA/DD
performs local density estimation by incorporating a local niche count (line 11)
for each subregion (i.e. the number of solutions associated with a subre-
gion) [95]. Local density estimation promotes diversity by allowing poor solu-
tions to survive to the next generation if the solution is located in an isolated
subregion; that is, if the solution is located in a subregion with a low niche
count [95]. Then the PBI value for each individual is calculated (line 12).

Next, the parent population is updated using a steady-state scheme
(line 13), where only one offspring solution is considered each time [95]. In
the case of only one non-dominated front, the solution located in the most
crowded subregion, i.e., the neighbourhood with the largest niche count is
chosen as the worst solution. In any case, where more than one subregion has
the same largest niche count, the MOEA/DD chooses the solution with the
largest PBI value in the subregion with the largest sum of PBI values as the
worst solution. In the case that more than one non-domination level (front)
exists, culling of solutions start at the last (least desirable) non-domination
level. A solution is culled from the population if it is the only solution in
the last non-domination level that is located in a subregion containing other
better converging solutions (i.e. solutions in better non-domination levels). If
the only solution in the worst non-domination level is located in an isolated
subregion it is definitely preserved and the solution in the next best (second
last) non-domination level with the largest PBI value in the most crowded
subregion is removed. In the case of more than one non-domination levels and
more than one solution in the last (worst) non-dominated level, the solution
with the largest PBI value in the most crowded subregion is chosen to be the
worst solution - the solution to be eliminated. If the niche count of the most
crowded subregion is one, it means that every member in the current worst
non-domination level is associated with an isolated subregion. As discussed
before, such solutions should be preserved for the next round without reserva-
tion and the solution in the worst non-domination level with the largest PBI
value in the most crowded subregion is rather removed.

This procedure repeats until one or more stopping conditions are met,
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at which point the MOEA/DD algorithm will return the final population,
representing the found POF (line 16).

Algorithm 3 Many-objective Evolutionary Algorithm based on Dominance
and Decomposition (MOEA/DD)

1 ∶ Let t = 0 be the generation counter;

2 ∶ Create and initialize an n-dimensional population, C(0),
to consist of ns individuals;

3 ∶ Generate an m-dimensional set of weight vectors, W,
to consist of ns weight vectors;

4 ∶ Perform non-dominated sorting on the population;

5 ∶ Randomly associate each individual with a unique neighbourhood;

6 ∶ while stopping condition(s) not true do

7 ∶ Mating selection;

8 ∶ Generate offspring using a variation method;

9 ∶ Perform non-dominated sorting;

10 ∶ Associate each individual with a neighbourhood;

11 ∶ Compute niche counts;

12 ∶ Compute PBI values;

13 ∶ Select the new population,
C(t + 1);

14 ∶ Advance to the new generation, i.e. t = t + 1;

15 ∶ end while

16 ∶ return C;

The MOEA/DD has been shown to work well for MaOPs [95, 106]. There-
fore, the MOEA/DD was chosen to be part of the set of benchmark algorithms
used in this study. The reader is referred to [95] for greater detail about the
different components of the MOEA/DD.

3.1.2.3 Reference-point based Many-objective Non-dominated
Sorting Genetic Algorithm

A genetic algorithm (GA) [71] is a specific type of EA. The reference-
point based many-objective non-dominated sorting genetic algorithm
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(NSGA-III) [38] favours individuals of a population which are non-dominated
and also near a set of supplied well-spread reference-points [38].

Algorithm 4 presents the pseudocode for the NSGA-III. The NSGA-
III starts with a similar initialization process as the MOEA/DD
(lines 1 through 5). The NSGA-III uses the structured reference-point creation
procedure proposed by Das and Dennis [31]. The details of this weight gen-
eration approach used by the NSGA-III (and the MOEA/DD) is discussed in
detail in [38] and [31]. Note that, with some domain knowledge, the reference-
points can also be supplied by the user [38].

The NSGA-III uses the same crossover and mutation operators as the
KnEA and the MOEA/DD, i.e., SBX [2] and polynomial mutation [36]
(lines 7 and 8). Next, the NSGA-III ranks the population by performing a
non-dominated sort which divides the population into non-domination levels
(line 9).

Furthermore, for each generation, the NGSA-III normalizes each objec-
tive function value using the extreme solutions found since the start of search
(line 10). This allows the NSGA-III to solve MaOPs whose objective values
may be differently scaled [38].

Next, each individual is associated with one of the reference-points (line 11).
An individual is associated with the closest reference-point in terms of Eu-
clidean distance in the normalized objective space. It is worth noting that a
reference-point may have one or more population members associated with it or
need not have any population member associated with it. Then the niche count
for each reference-point (neighbourhood or subregion) is calculated (line 12).

A niche-preserving operation is performed to select the fittest diverse indi-
viduals for the next generation (line 13). This is done by counting the number
of individuals associated with each reference-point. In essence, this process is
used to preserve individuals that are associated with a reference-point with a
low niche count. The details of the niche-preservation operation can be viewed
in [38]. This approach not only speeds up the search process (convergence
to the POF) but also ensures diversity if the specified reference-front is di-
verse [38]. Therefore, if a diverse set of reference-points is used there is no
need for other computationally expensive diversity management approaches
such as, for example, the crowding distance operator [38].

This process is repeated until one or more stopping conditions are reached,
at which point the algorithm returns the approximated POF (line 16).

Note that the NSGA-III and the MOEA/DD have some similarities:

• Both employ a set of weight vectors (reference-points) to guide the se-
lection procedure.

• Both algorithms associate each solution with a weight vector (reference-
point).
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Algorithm 4 Reference-point based many-objective Non-dominated Sorting
Genetic Algorithm (NSGA-III)

1 ∶ Let t = 0 be the generation counter;

2 ∶ Create and initialize an n-dimensional population, C(0),
to consist of ns individuals;

3 ∶ Generate an m-dimensional set of reference-points, W,
to consist of ns weight vectors;

4 ∶ Perform non-dominated sorting on the population;

5 ∶ Randomly associate each individual with a unique neighbourhood;

6 ∶ while stopping condition(s) not true do

7 ∶ Mating selection;

8 ∶ Generate offspring using a variation method;

9 ∶ Perform non-dominated sorting;

10 ∶ Perform adaptive normalization;

11 ∶ Associate each individual with a reference-point;

12 ∶ Compute niche counts;

13 ∶ Select the new population,
C(t + 1);

14 ∶ Advance to the new generation, i.e. t = t + 1;

15 ∶ end while

16 ∶ return C;

• Both divide the population into several non-domination levels according
to the Pareto-dominance relation. Note that this is also the case for the
KnEA.

The NSGA-III and the MOEA/DD also have subtle differences which in-
clude:

• With the MOEA/DD a solution associated with an isolated subregion
will survive to the next iteration even if it belongs to the last non-
domination level. In contrast, the NSGA-III does not allow such a solu-
tion to survive to the next generation even if it could promote population
diversity.

• In the MOEA/DD, each weight vector not only specifies a unique subre-
gion in the objective space but also defines a subproblem which can be
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used to evaluate the fitness value of a solution (Equation 3.3).

The NSGA-III has been shown to perform well on MaOPs [38, 106] and,
therefore, was also selected as a benchmark algorithm for this work. The reader
is referred to [38] for greater detail about the NSGA-III.

3.2 Particle Swarm Optimization
This section focusses on PSO algorithms, which are part of the swarm intel-
ligence (SI) paradigm, a sub-branch of CI [47]. SI is rooted in the study of
colonies, or swarms of social organisms. PSO has been successfully applied to a
variety of real-world problems, for example, neural network training, optimiz-
ing equipment design parameters, optimizing space mission fuel expenditure
models, clustering, design, scheduling, planning, controllers, power systems,
bioinformatics, and data mining [47]. PSO has also been shown to outperform
traditional EC algorithms on complex problems [87]. PSO can also, in princi-
ple, be applied to any problem that can be expressed in terms of an objective
function to be optimized. PSO does not use gradient information, making it
suitable for problems where no gradient information is available or where the
objective function is not differentiable. In other words, PSO can be used to
solve black-box optimization problems. Note that PSO is discussed in greater
detail than EAs, because PSO is foundational to the central algorithm of this
work, i.e., the MGPSO algorithm.

Section 3.2.1 introduces the original PSO algorithm and related concepts.
Section 3.2.2 gives a high-level overview of the benchmark MaOPSO algo-
rithm used in this study as well as the focal, aspiring MaOPSO algorithm, the
MGPSO algorithm.

3.2.1 Basic Particle Swarm Optimization

Kennedy and Eberhart [86] introduced PSO in 1995. PSO is rooted in studies
that simulated bird flocking behaviour when finding food [86]. These simu-
lations aimed to model the graceful, but unpredictable, choreography of bird
flocks; that is, to model the ability of birds to abruptly, yet synchronously,
change their flight direction and then regroup in an optimal formation. From
this initial objective, the concept evolved into a simple and efficient stochas-
tic population-based search (optimization) algorithm. In PSO, a collection of
individuals, referred to as a swarm of particles, are “flown” through a hyper-
dimensional search space. Two very simple principles govern the behaviour of
the particles in the swarm. First of all, the particles emulate the success of
neighbouring particles, also known as the socio-psychological tendency of the
particles. Secondly, particles also emulate their own successes. The collective
behavioural pattern that emerges from the swarm is that particles stochasti-
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cally return toward previously successful regions of the search space; that is,
discovering the optimal regions of a high dimensional search space.

Next, core aspects of PSO are discussed in sections 3.2.1.1 to 3.2.1.6. Topics
covered include the position and velocity update equations, velocity clamping,
the velocity update equation making use of the inertia weight coefficient, the
velocity update equation making use of the constriction coefficient, neighbour-
hood topologies, and parameter sensitivity as related to algorithm stability.

3.2.1.1 Position and Velocity Update Equations

In analogy with the EC paradigm, a swarm is similar to a population and
a particle is similar to an individual. Each particle, i, is represented by an
n-dimensional vector xi. The quality of a candidate solution is quantified by
evaluating an objective function, f(xi). In other words, the objective function
measures how “close” each particle is to the optimal objective function value.
Each particle moves through the search space by adjusting its position based
on the best position encountered by itself, the best position encountered by its
neighbours, and its momentum (previous flight direction). This results in the
particles converging to the optimum while still exploring the neighbourhoods
around the current best position. The position of a particle is updated by
adding a velocity, vi, to its current position. Kennedy and Eberhart [86]
defined the particle position and velocity update equations as follows:

xi(t + 1) = xi(t) + vi(t + 1) (3.4)

with

vi(t + 1) = vi(t) + c1r1(t)⊙ [yi(t) − xi(t)] + c2r2(t)⊙ [ŷi(t) − xi(t)]
(3.5)

where xi(t) is the position of particle i at iteration t; vi(t) is the velocity of
particle i at iteration t; c1 and c2 are positive acceleration constants, usually in
the range [0,2], used to scale the contribution of the second and third term of
the velocity equation respectively; r1(t), r2(t) ∼ U(0,1)n are vectors of random
(stochastic) values in the range [0,1], sampled from a uniform distribution;
the position and velocity of each particle are respectively initialized as xi(0) ∼
U(xmin,xmax)n and vi(0) = 0 [48]; yi(t) is the personal best position particle
i has visited since the start of the search up until the current iteration t and is
initialized to its starting position, i.e., yi(0) = xi(0); ŷi(t) is the best position
found by the neighbourhood of particle i since the start of the search up until
the current iteration t. The personal and neighbourhood best positions are
also referred to as guides since these positions are used in the velocity update
equation to guide the particle to better areas of the search space.

The first term of the velocity Equation (3.5) is also known as the momentum
component. The momentum component ensures that a particle is able to
maintain some of its previous search direction as the search progresses. The
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second term of Equation (3.5) is also known as the cognitive component. The
cognitive component represents the cumulative experiential knowledge gained
by the particle since the start of the search. Finally, the third term of Equation
(3.5) is referred to as the social component. The social component represents
the information exchanged socially by the particle.

There exist several alternative velocity models, including the cognitive-
only, social-only, and selfless models [85]. These velocity model variants elicit
different behaviours in the swarm. The cognitive-only model is likened unto
nostalgia where particles stochastically return toward their previous best posi-
tion. With the social-only model, particles only care about the best position of
the neighbourhood. For the selfless model a particle also only cares about the
best-found neighbourhood position, but without considering its own position.
The reader is referred to [85] that discusses the implications when choosing
either of the velocity models.

A geometrical illustration of the velocity and position updates for a single
two-dimensional particle is shown in figure 3.2 as taken from [47]. Figure 3.2
illustrates an example movement of a particle, where the particle subscript has
been dropped for notational convenience. Figure 3.2(a) illustrates the state of
the swarm at time step t. Note how the new position, x(t + 1), moves closer
towards the global best ŷ(t). For time step t+1, as illustrated in figure 3.2(b),
assume that the personal best position does not change. The figure shows how
the three components contribute to still move the particle towards the global
best particle.

(a) Iteration t (b) Iteration t + 1

Figure 3.2: Geometrical Illustration of Velocity and Position Updates for a
Single Two-Dimensional Particle
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3.2.1.2 Velocity Clamping

One of several qualities that characterizes efficient and accurate optimization
algorithms is the ability to balance exploration and exploitation during the
search. Exploration refers to the ability of a search algorithm to explore dif-
ferent regions of the search space in search of an acceptable optimum [47].
Exploitation, on the other hand, refers to the ability of a search algorithm to
concentrate the search around a promising region with the goal of improving
a candidate solution [47]. Within the PSO algorithm, these objectives are
addressed by the velocity update equation, which drives the search process.

The velocity update in Equation (3.5) has three terms (momentum, cog-
nitive, and social) that each contribute to the step size of particles. When
a particle, xi(t), is distant from its personal best position, yi(t), and/or its
neighbourhood best position, ŷi(t), it may cause the velocity of that particle
to “explode”, causing the velocity to increase towards infinity [157]. Part of the
problem is also that the degree to which the inertia component, in Equation
(3.5), influences the search is left uncontrolled.

A particle with an extreme velocity is undesirable because the particle will
then experience a large position update causing it to roam outside the search
space, failing to return to the search space [50, 70]. This problem is intensified
when it happens for multiple particles, causing the swarm to diverge [50, 70].

Eberhart and Kennedy proposed clamping the velocity of the particles [46]
to control the roaming behaviour of particles. The effect of velocity clamping
is that particles whose velocities exceed some upper or lower limit are adjusted
to adhere to the “speed limit”. Note that velocity clamping is applied to each
velocity vector post the velocity update equation, but prior to being used in
the position update equation.

There are different variations of velocity clamping but the simplest ap-
proach is to set a static minimum and maximum velocity value in each dimen-
sion. When one lacks prior knowledge about the problem being solved, Shi
and Eberhart [45, 145] suggested controlling the global exploration of the PSO
algorithm by setting the allowed velocity range proportional to the boundary
constraints. The optimal proportion, however, is problem-dependent [145].
Let vmax be the maximum velocity. Then the velocity update equation, incor-
porating velocity clamping, is of the form:

vi(t + 1) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

vi(t + 1)
vmax
−vmax

if − vmax ≤ vi(t + 1) ≤ vmax
if vi(t + 1) > vmax
if vi(t + 1) < −vmax

(3.6)

Note that velocity clamping does not restrict the positions of particles,
only the step sizes as determined by the velocity of each particle. However,
velocity clamping also influences the direction in which a particle moves, which
can be said to improve exploration but can also cause the optimum to not be
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found. Another possible pitfall of velocity clamping is when all the velocities
are equal to the maximum velocity, which causes the particles to only search
on the boundary of the hypercube defined by the velocity constraints. This
will hinder the effectiveness of the PSO algorithm since the global optimum is
probably not located on the boundary of the search space. Note that velocity
clamping is optional when the control parameters w, c1, and c3 are set to values
that ensure that the swarm will converge to some set of solutions, i.e., the
particles will stop moving. These values can be determined using theoretically
derived stability conditions [17]. Note that other dynamic velocity mechanisms
have also been used [76, 140].

3.2.1.3 Particle Swarm Optimization with Inertia Weight
Coefficient

The momentum component of the velocity update equation causes each par-
ticle to maintain its current trajectory. This may cause particles to oscil-
late between positions and become stuck. This can also cause particles to
move through areas of the search space that may not be directly on coarse to
previously observed successes, thereby encouraging exploration of the search
space [144]. There must be a balance between exploration and exploitation: a
swarm that only explores and never refines good solutions will waste resources
exploring fruitless areas of the search space. A swarm that only exploits is
likely to converge prematurely to a local optimum. Shi and Eberhart [144]
introduced the inertia weight, w, as a mechanism to control the exploration
and exploitation of a swarm. In other words, the inertia weight controls the
momentum of each particle; that is, how much the previous flight direction of
a particle influences its new velocity. The velocity update equation of the PSO
algorithm, incorporating the inertia weight coefficient, is defined as

vi(t + 1) = wvi(t) + c1r1(t)⊙ [yi(t) − xi(t)] + c2r2(t)⊙ [ŷi(t) − xi(t)]
(3.7)

where w ∈ (0,1).
Note that the inertia weight does not replace the need for velocity clamping

when unstable control parameter values are used [154, 157, 158]. A large inertia
weight will cause extreme particle velocities due to the cumulative effect over
time [157]. For w ≥ 1, velocities increase over time, towards the maximum
velocity or infinity depending on whether velocity clamping is used or not [157].
For w < 1, particles decelerate until they are motionless (only if the stability
conditions are satisfied) [157]. In other words, a small inertia weight promotes
local exploitation, whereas, a large inertia weight promotes exploration and
diversity (depending on the values of c1 and c2).

The inertia weight, like all the PSO algorithm parameters in general, is
problem-dependent. A static inertia weight can be used for the entire duration
of the search, or one of several dynamic methods [22, 88, 110, 113, 119, 120,
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127, 147, 149, 163, 164, 176] can be used to update the inertia weight as the
search progresses.

The pseudocode for a generic PSO algorithm, incorporating the inertia
weight, is presented in Algorithm 5. Note that Algorithm 5 is for a synchronous
PSO algorithm where all the personal best and neighbourhood best positions
are updated prior to updating the particle velocities and positions.

When choosing an appropriate stopping condition it is important to pro-
tect against premature convergence to sub-optimal solutions as well as unnec-
essary computational overhead. One way to protect against premature conver-
gence when choosing one or more stopping conditions is to allow the algorithm
enough execution time (iterations or objective function evaluations) to be able
to explore the search space to find a good solution [47]. Other alternatives
include stopping when a solution with an acceptable error has been found, no
improvement is observed over a number of iterations, the normalized swarm
radius is close to zero, and/or the objective function slope is approximately
zero [47].

3.2.1.4 Particle Swarm Optimization with Constriction Coefficient

Bypassing the need for velocity clamping, Clerc and Kennedy [21, 23] devel-
oped a constriction factor (coefficient), χ, to control the step size of the velocity
of a particle. The constriction factor ensures a convergent swarm state, i.e.,
vi(t) = 0,∀i = 1, ..., ns. The resulting PSO velocity update equation with the
constriction factor incorporated is defined as

vi(t + 1) = χ(wvi(t) + c1r1(t)⊙ [yi(t) − xi(t)] + c2r2(t)⊙ [ŷi(t) − xi(t)])
(3.8)

with
χ = 2

2−%−
√
%2−4% (3.9)

where

% =
⎧⎪⎪⎨⎪⎪⎩

c1 + c2
0

if c1 + c2 > 4

if c1 + c2 ≤ 4

Small values for the constriction factor, i.e. χ ≈ 0, encourage exploitation
and faster convergence. Larger values for the constriction factor, i.e. χ ≈ 1,
encourage exploration and slow convergence.

3.2.1.5 Neighbourhood Topologies

The power of PSO resides in the ability of simple particles to share information
in order to facilitate a complex and intelligent behaviour exhibited by the
swarm as a whole. The neighbourhood topology (social structure) of a particle
describes this information exchange among the other particles in the swarm.
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Algorithm 5 Particle Swarm Optimization (PSO)

1 ∶ Create and initialize an n-dimensional swarm, S, to consist of
ns particles;

2 ∶ Let t = 0;

3 ∶ while stopping condition(s) not true do

4 ∶ for each particle i = 1, ..., ns do

5 ∶ if f(xi(t)) < f(yi) then

6 ∶ yi = xi(t); // set personal best position

7 ∶ end if

8 ∶ for particles î with particle i in their neighbourhood do

9 ∶ if f(yi) < f(ŷî) then

10 ∶ ŷî = yi; // set neighbourhood best position

11 ∶ end if

12 ∶ end for

13 ∶ end for

14 ∶ for each particle i = 1, ..., ns do

15 ∶ Update the velocity using Equation (3.7);

16 ∶ Update the position using Equation (3.4);

17 ∶ end for

18 ∶ t = t + 1;

19 ∶ end while

A topology can be visualized by a graph where the vertices represent the
particles and the edges represent the “communication channels”. A number of
neighbourhood topologies exist, with the two most popular and extreme being
the star and ring topologies. The star and ring social structures are shown in
figure 3.3 as taken from [47]. Other social structures are discussed in [47].

The star or fully connected neighbourhood in figure 3.3 (a) connects each
particle in the swarm with every other particle in the swarm. The entire swarm,
therefore, belongs to a single neighbourhood. This allows for rapid exploitation
of the available information regarding promising particle positions, which leads
to faster convergence and less exploration [49]. PSO algorithms that use the
star social structure are referred to as global best (gbest) PSO algorithms.

The ring topology restricts the flow of information to some number of the
immediate neighbours of a particle; that is, the neighbourhood size. In fig-
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(a) Star Topology (b) Ring Topology

Figure 3.3: The Star and Ring Neighbourhood Topologies

ure 3.3 (b), each particle can communicate with its two adjacent particles (i.e.
a neighbourhood size of two). Note that the particles communicate in the
abstract sense, i.e., through the velocity update in Equation (3.7). The swarm
has several overlapping neighbourhoods, allowing for gradual information ex-
change between all the particles, which results in a slower convergence rate
and greater exploration. The star topology can be seen as a special case of the
ring topology where the neighbourhood size is equal to the size of the swarm
minus one. PSO algorithms that use the ring topology are known as local best
(lbest) PSO algorithms.

As with other PSO parameters, the optimal neighbourhood topology is
problem-dependent. Engelbrecht [49] showed that neither gbest nor lbest PSO
is superior to the other in any problem class.

Note that, in general, the neighbourhood of a particle is determined by its
index and not its position in the search space. This index (non-spatial) ap-
proach promotes the flow of information between different neighbourhoods of
the actual search space since neighbourhoods can overlap. Spatial topologies,
on the other hand, are computationally more expensive than their non-spatial
counterparts since these involve the calculation of the Euclidean distance be-
tween all pairs of particles. Spatial neighbourhoods can also cause particles
to fruitlessly roam bad neighbourhoods. This unwanted trait is due to the
fact that these particles become trapped in undesirable regions because they
do not receive information about superior solutions outside of their immediate
spatial neighbourhood.

3.2.1.6 Parameter Sensitivity and Algorithm Stability

The PSO algorithm is sensitive to the assigned parameter values [6, 85, 121,
145, 146, 157], which include the swarm size, neighbourhood size, inertia
weight, and acceleration coefficients. The value of w, c1, and c2 is extremely
important to ensure convergent (i.e. stable) swarm behaviour. When choosing
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a value for w, the values selected for c1 and c2 should also be taken into ac-
count. Typically, the values for c1 and c2 are chosen in the range [0,2] and that
of w is in (0,1). Although some regard PSO to be fairly robust concerning the
selection of these parameters [46], infelicitous values may lead to premature
convergence, excessive roaming, or cause the swarm to exhibit divergent or
cyclic behaviour [121, 157, 158].

Eberhart and Shi [46] proposed “rule of thumb” parameter values for which
the PSO algorithm performs well. The chosen values were c1 = c2 = 1.49445
and w = 0.7929. However, later theoretical research has shown that there exists
a convergent region within which swarm convergence to an equilibrium state is
guaranteed [18, 19, 23, 62, 82, 84, 114, 115, 121, 122, 154, 157, 158, 170, 176].
Equilibrium is reached when the entire swarm stops moving (i.e. the velocity of
all particles become zero). Algorithm stability, therefore, refers to the ability
of the swarm to converge to an equilibrium state. For stable parameter values,
those satisfying the stability conditions, it is guaranteed that the expectation
and variance of particle positions will converge to constant values (i.e. the
particles become motionless).

Cleghorn and Engelbrecht [19] generalized the work done by Van den Bergh
and Engelbrecht [158], Van den Bergh [157], and Trelea [154] and found that
convergent particle trajectories are guaranteed for parameter values that sat-
isfy the following condition:

c1 + c2 < 2(1 +w), for − 1 < w < 1, c1 > 0 and c2 > 0 (3.10)

Gazi [62] expanded the region derived by Kadirkamanathan et al. [84] and
found that convergence is guaranteed for parameter values that satisfy the
following condition:

c1 + c2 < 24(1+w)
7 , for − 1 < w ≤ 0

c1 + c2 < 24(1−w)2
7(1+w) , for 0 < w ≤ 1

(3.11)

The most accurate convergent region (stability condition) was indepen-
dently derived by Poli [121], Poli and Broomhead [122], and Jiang et al. [82],
given below:

c1 + c2 < 24(1−w)2
7−5w , for − 1 ≤ w ≤ 1 (3.12)

Other, less accurate, approaches exist that vary the inertia weight and
acceleration coefficients over time or based on other information of the search
space [66, 117, 162]. Note that these are not stability conditions.

3.2.2 Many-objective Particle Swarm Optimization

PSO algorithms, as with EAs, has also matured since the first of its kind and
has been successfully applied to MaOPs. Section 3.2.2.1 gives an overview of
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yet another benchmark MaOO algorithm used in this study. Next, a detailed
overview of the focal algorithm of this study, the MGPSO algorithm, is given
in section 3.2.2.2.

3.2.2.1 Controlling Dominance Area of Solutions Speed
Constraint Multi-objective Particle Swarm Optimization

The speed constraint multi-objective particle swarm optimization (SMPSO)
algorithm [112] uses the constriction coefficient (discussed in section 3.2.1.4)
developed by Clerc and Kennedy [21, 23] to limit the velocity of the swarm. For
each iteration, the parameters of the SMPSO algorithm are varied randomly
in some range which, together with the constriction coefficient, guarantees a
stable state, i.e., vi(t) = 0,∀i = 1, ..., ns [21, 23, 112]. The SMPSO algorithm,
in addition to the constriction coefficient, also uses a mechanism to further
bound the accumulated velocity of each dimension, in each particle. Carvalho
and Pozo [33] combined the SMPSO algorithm with the controlling dominance
area of solutions (CDAS) [32, 132] ranking method, referred to as the CDAS-
SMPSO algorithm.

An archive, A, is a “container” used to store promising non-dominated
solutions found throughout the search. The CDAS-SMPSO algorithm uses a
bounded archive; that is, an archive with a fixed capacity. The alternative to
a bounded archive is an unbounded archive, which has no limit on the number
of solutions it can store. An unbounded archive is seldomly practical due to
storage limitations and the computational costs associated with maintaining
large archives.

The CDAS method, as its name suggests, controls the levels of contraction
and expansion of the dominance area of particles in the swarm. Contraction
and expansion are proportional to a user-defined control parameter, γ, that can
be defined for each objective m. However, this study uses the same γ-value for
each objective as done in [106]. Note that the optimal value for γ is problem-
dependent. The goal with the CDAS technique is to induce an appropriate
non-dominated ranking of the particles by modifying the objective function
values of each objective. Appropriate here refers to the ranking that will best
guide the swarm to the POF. The objective function value modification is
done by using a trigonometric operation that modifies the objective function
value of each particle into a new objective value. The objective function value
modification is necessary to be able to induce a stronger or weaker selection
pressure depending on the problem and the value of γ to help guide the swarm
towards the true POF. The modification of the dominance area is defined as

f
′′

m(x) = ∣∣f(x)∣∣2⋅sin(ωm+γπ)
sin(γπ) (3.13)

where
ωm = arccos( fm(x)

∣∣f(x)∣∣2 )
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and f ′′m(x) is the modified function value for objective m; ∣∣f(x)∣∣2 is the Eu-
clidean norm of f(x); and ωm is the declination angle between fm(x) and
f(x).

Figure 3.4 depicts the modified dominance area of solutions associated with
different values for γ. Note that figure 3.4 represents a MOP requiring the
maximization of two objectives. For γ = 0.5, shown in figure 3.4 (a), the new
fitness value is equal to the old fitness value; that is, an unmodified dominance
area. For γ < 0.5, shown in figure 3.4 (b), fewer particles will become non-
dominated and the particles tend to converge to positions that translate to a
small area of the objective space (i.e. promoting exploitation). For γ > 0.5,
shown in figure 3.4 (c), some particles that were dominated will become non-
dominated and the algorithm tends to find a more diverse set of solutions (i.e.
promoting exploration).

(a) γ = 0.5 (i.e. Pareto-dominance)

(b) γ < 0.5 (c) γ > 0.5

Figure 3.4: Illustration of CDAS for a maximization MOP with two objectives.

The CDAS technique was incorporated in the CDAS-SMPSO algorithm
search as follows: the CDAS technique modifies the objective function val-
ues according to Equation (3.13) whenever the Pareto-dominance relation is
applied (i.e. whenever the archive is updated). This modification directly
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influences the neighbourhood guide selection step of the CDAS-SMPSO algo-
rithm. With the CDAS method, a subset of non-dominated solutions can be
selected or a relaxed update of the archive can be performed.

Algorithm 6 gives the pseudocode for the CDAS-SMPSO algorithm. It
starts by initializing a swarm (line 1), which includes the position, velocity, and
personal best of the particles. The archive is initialized with the non-dominated
solutions in the swarm (line 2). The CDAS-SMSPSO algorithm stores non-
dominated solutions in a bounded archive. When the archive reaches maximum
capacity (usually the swarm size), the crowding distance operator [35] is used
to determine which solutions are allowed to remain. That is, the least crowded
solutions are safe.

Then, the main loop of the algorithm is executed for a maximum number of
iterations. The constricted velocities [21, 23] of the particles are calculated first
(line 5). The neighbourhood best position of a particle, part of the velocity
update equation, is selected as the winner of a random binary tournament.
Two particles are randomly selected from the archive and the particle with the
largest crowding distance to its nearest neighbours in the archive is selected
to be the winner. Next, the positions of the particles are calculated (line 6)
and a mutation operator is applied with a given probability (line 7). Mutation
is a concept borrowed from the EC paradigm that is used to introduce more
diversity. The addition of a mutation operator can also be said to promote
exploration of other regions of the search space. The archive is then updated
with the newly discovered non-dominated particle positions, as determined
by applying the Pareto-dominance operator to the CDAS-modified objective
function values (line 8). Finally, just before advancing to the next iteration,
the personal best position of each particle is updated if its current position
dominates its personal best position or if neither position dominates the other;
that is, both positions are non-dominated with respect to each other (line 9).
Note that when updating personal best positions the unmodified objective
function values are considered. As the search concludes, the algorithm returns
the archive as the found (approximated) POF (line 12).

The CDAS-SMPSO algorithm has been shown to perform well on
MaOPs [33, 106]. Therefore, it was also included as part of the benchmark
algorithms used in this study. The reader is referred to [33] for greater detail
about the CDAS-SMPSO algorithm.

3.2.2.2 Multi-guide Particle Swarm Optimization

The MGPSO algorithm was developed by Scheepers et al. [137]. The MGSPO
algorithm is a multi-swarm multi-objective PSO algorithm that utilizes mul-
tiple swarms (subswarms), one per objective. Note that the first multi-swarm
multi-objective PSO algorithm was the vector evaluated particle swarm op-
timization (VEPSO) algorithm [117, 135]. Each subswarm is dedicated to
optimizing only one objective, independent of the other objectives. Particles
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Algorithm 6 Controlling Dominance Area of Solutions Speed Constraint
Multi-objective Particle Swarm Optimization (CDAS-SMPSO)

1 ∶ Create and initialize an n-dimensional swarm, S, to consist of
ns particles;

2 ∶ Initialize the archive, A;
3 ∶ Let t = 0;

4 ∶ while stopping condition(s) not true do

5 ∶ Compute the constricted particle velocities;

6 ∶ Update particle positions;

7 ∶ Apply mutation (turbulence);

8 ∶ Update the archive;

9 ∶ Update personal best positions;

10 ∶ t = t + 1;

11 ∶ end while

12 ∶ return A;

in each subswarm are evaluated using the objective function associated with
that subswarm. The personal and neighbourhood best positions of the MG-
PSO algorithm are also updated according to the objective function value of
the corresponding objective function.

The MGPSO algorithm adds an archive guide term to the velocity up-
date equation to facilitate information exchange between the subswarms. The
exchanged information helps the subswarms to find promising solutions with
respect to all of the objectives of the problem. The MGPSO velocity update
equation is defined as

vi(t + 1) = wvi(t) + c1r1(t)⊙ [yi(t) − xi(t)] + λic2r2(t)⊙ [ŷi(t) − xi(t)]
+ (1 − λi)c3r3(t)⊙ [âi(t) − xi(t)]

(3.14)
where c3 is an acceleration coefficient; r3(t) is a random vector with compo-
nents sampled uniformly from (0,1); âi(t) is the randomly selected archive
guide for particle i at iteration t; λi is the archive balance coefficient for par-
ticle i.

The archive balance coefficient controls the amount of influence that the
archive guide has on the velocity of the particle. In other words, the archive
balance coefficient controls how much the already found POF (stored in an
archive) is exploited. Large values for the archive balance coefficient decreases
the influence of the archive guide and simultaneously increase the influence of
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the neighbourhood guide. Small values for the archive balance coefficient does
the opposite, increasing the influence of the archive guide while decreasing the
influence of the neighbourhood guide. The MGPSO uses a bounded archive.

The archive guide is selected using tournament selection. Three solutions
are randomly selected to partake in the tournament and the winner is chosen to
be the particle with the largest corresponding crowding distance. Selection of
the winner of the tournament using crowding distance encourages the MGPSO
algorithm to prioritize the exploration of sparsely populated areas over densely
populated areas of the objective space, i.e., to promote global exploration and
diversity [136].

At each iteration, each particle is allowed to deposit its current position
into the archive if it is non-dominated with respect to the solutions already in-
serted into the archive. When a non-dominated solution has to be inserted into
the archive, and there is still space available, the solution is simply inserted.
Otherwise, if the archive is full, the new non-dominated particle position re-
places the most crowded solution in the archive - in doing so, the diversity
of the found POF is preserved [136]. After a new solution has been inserted
into the archive, any solutions in the archive that is then dominated by the
newly inserted solution are removed. The pseudocode for archive insertion in
the MGPSO algorithm is presented in Algorithm 7.

Algorithm 7 Multi-guide Particle Swarm Optimization (MGPSO) - Archive
Insert

1 ∶ if solution to be inserted is non-dominated do

2 ∶ if space available in A do

3 ∶ Insert non-dominated solution into A;
4 ∶ Remove any dominated solutions from A;
5 ∶ end if

6 ∶ else if A has reached maximum capacity do;

7 ∶ Remove most crowded solution from A;
8 ∶ Insert non-dominated solution into A;
9 ∶ Remove any dominated solutions from A;
10 ∶ end if

11 ∶ end if

12 ∶ return A;

Archive balance coefficients are sampled per particle randomly from a uni-
form distribution in the range [0,1]. The values assigned to the archive balance
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coefficients do not change. This original approach is referred to as the standard
static archive balance coefficient update strategy (STD).

Erwin and Engelbrecht [53] investigated the use of five different dynamic
archive balance coefficient update strategies. The dynamic approaches change
the value of the archive balance coefficient at each iteration of the search. Each
of the five dynamic archive balance coefficient update strategies is defined and
discussed below.

The linearly decreasing dynamic archive balance coefficient update strategy
(LD) initializes the archive balance coefficient of each particle to 1.0. There-
after, λi is updated as

λi(t + 1) = λi(t) − 1.0
nt (3.15)

where nt is the maximum number of iterations.
The linearly increasing dynamic archive balance coefficient update strategy

(LI) initializes the archive balance coefficient of each particle to 0.0. There-
after, λi is updated as

λi(t + 1) = λi(t) + 1.0
nt

(3.16)

The LI approach gradually increases the influence of the neighbourhood
guide, while decreasing the influence of the archive guide, whereas, the LD
approach does the opposite.

Three random dynamic archive coefficient update strategies were investi-
gated, each with a different degree of stochasticity:

• Coarse granularity: The random dynamic archive balance coefficient up-
date strategy (R) samples a new archive balance coefficient at every
iteration. This value is used by all particles. Thus, every particle will
have the same archive balance coefficient at each iteration, updated as

λi(t) = λ(t) ∼ U(0,1),∀i = 1, ..., ns (3.17)

• Medium granularity: The random update per particle dynamic archive
balance coefficient update strategy (RI) randomly assigns a new archive
balance coefficient to each particle, at every iteration. The archive bal-
ance coefficient is updated as

λi(t) ∼ U(0,1) (3.18)

• Fine granularity: The random update per particle per dimension (RIJ)
strategy randomly assigns a new archive balance coefficient to every di-
mension jn ∈ {1, ..., n} of each particle, at every iteration. In this case,
the archive balance coefficient is updated as

λijn(t) ∼ U(0,1) (3.19)
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The linearly increasing strategy and stochastic strategies have been shown
to outperform the standard approach to initializing the archive balance coef-
ficient on optimization problems with two and three objectives [53].

As expected, the performance of the MGPSO algorithm is also sensitive to
the values assigned to its parameters [136]: poorly chosen parameter values
can cause the MGPSO algorithm to diverge (i.e. finding no solution at all). It
is extremely tedious and resource-intensive to find the optimal combination of
parameter values for a specific problem. Stability conditions of the MGPSO
algorithm have been derived [20, 137]. This means that initializing the MGPSO
algorithm with parameter values for w, c1, c2, c3, and λ that satisfy the stability
conditions guarantees that the algorithm will converge, i.e., all the particles will
eventually stop moving. The stability conditions for the MGPSO algorithm,
with differing acceleration coefficient values [137], are defined as

0 < c1 + λc2 + (1 − λ)c3 < 4(1−w2)

1−w+ (c2
1
+λ2c2

2
+(1−λ)2c2

3
)(1+w)

3(c1+λc2+(1−λ)c3)
2

, ∣w∣ < 1 (3.20)

Detailed pseudocode for the MGPSO algorithm is presented in Algorithm 8.
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Algorithm 8 Multi-guide Particle Swarm Optimization (MGPSO) - Search

1 ∶ Perform algorithm initialization (Algorithm 9);

2 ∶ Let t = 0;

3 ∶ while stopping condition(s) not true do

4 ∶ for each objective m = 1, ..., nm do

5 ∶ for each particle i = 1, ..., Sm.nsm do

6 ∶ if fm(Sm.xi(t)) < fm(Sm.yi) then
7 ∶ Sm.yi = Sm.xi(t); // set personal best position

8 ∶ end if

9 ∶ for particles î with particle i in their neighbourhood do

10 ∶ if fm(Sm.yi) < fm(Sm.ŷî) then
11 ∶ Sm.ŷî = Sm.yi; // set neighbourhood best position

12 ∶ end if

13 ∶ end for

14 ∶ Update the archive, A, with the solution Sm.xi(t)
(Algorithm 7);

15 ∶ end for

16 ∶ end for

17 ∶ for each objective m = 1, ..., nm do

18 ∶ for each particle i = 1, ..., Sm.nsm do

19 ∶ Select a solution, Sm.âi(t), from the archive using
tournament selection;

20 ∶ Sm.vi(t + 1) = wSm.vi(t)
+ c1(t)r1(t)⊙ [Sm.yi(t) − Sm.xi(t)]
+ Sm.λi(t)c2(t)r2(t)⊙ [Sm.ŷi(t) − Sm.xi(t)]
+ (1 − Sm.λi(t))c3(t)r3(t)⊙ [Sm.âi(t) − Sm.xi(t)];

21 ∶ Sm.xi(t + 1) = Sm.xi(t) + Sm.vi(t + 1);
22 ∶ end for

23 ∶ end for

24 ∶ t = t + 1;

25 ∶ end while

26 ∶ return A;
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Algorithm 9 Multi-guide Particle Swarm Optimization (MGPSO) - Initial-
ization

1 ∶ for each objective m = 1, ..., nm do

2 ∶ Create and initialize a swarm, Sm, of nsm particles
uniformly within a predefined hypercube of dimension n;

3 ∶ Let fm be the objective function;

4 ∶ Let Sm.yi represent the personal best position of particle Sm.xi,
initialized to Sm.xi(0);

5 ∶ Let Sm.ŷi represent the neighbourhood best position of particle
Sm.xi, initialized to Sm.xi(0);

6 ∶ Initialize Sm.vi(0) to 0;

7 ∶ Initialize Sm.λi ∼ U(0,1);
8 ∶ end for
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3.3 Summary
This chapter gave an overview of, and a justification for, the many-objective
optimization (MaOO) algorithms used in this study. More specifically, this
chapter dealt with the two types of algorithms, i.e., evolutionary algorithms
(EAs) and particle swarm optimization (PSO) algorithms. The basic single-
objective EA and PSO algorithm were introduced first before discussing the
multi- and many-objective variants that were used in this study.

The many-objective evolutionary algorithms (MaOEAs) used in this study,
each with their most prominent features, are listed below:

• The knee-point driven evolutionary algorithm (KnEA) [174], which incor-
porates knee-points as a secondary convergence metric to aid the Pareto-
dominance relation.

• The many-objective evolutionary algorithm based on dominance and de-
composition (MOEA/DD) [95], which decomposes the MaOP into scalar
optimization problems to be optimized cooperatively and uses the non-
dominance concept. The MOEA/DD also uses a set of weight vectors
(reference-points) to help guide the search.

• The reference-point based many-objective non-dominated sorting genetic
algorithm (NSGA-III) [38], which favours non-dominated solutions that
are also near a specified reference-front.

The many-objective particle swarm otpimization (MaOPSO) and multi-
objective particle swarm otpimization (MOPSO) algorithms used in this study,
each with their most prominent features, are listed below:

• The controlling dominance area of solutions speed constraint multi-
objective particle swarm optimization (CDAS-SMPSO) algorithm [33],
which modifies the Pareto-dominance relation with the CDAS method
to induce an appropriate ranking of the swarm.

• The multi-guide particle swarm optimization (MGPSO) algorithm [137],
an aspiring MaOPSO algorithm, which uses the Pareto-dominance rela-
tion.

As mentioned, the MGPSO uses the original Pareto-dominance relation
and is therefore expected to not scale well from multi-objective optimization
problems (MOPs) to many-objective optimization problems (MaOPs) [68, 77,
81, 106, 141]. The two novel, hopefully scalable, MGPSO algorithm adap-
tations are presented in the chapters to follow, together with the empirical
results.



Chapter 4

Partial-dominance Multi-guide
Particle Swarm Optimization

“Most people are more comfortable with old problems than with new solutions.”
— Charles H. Bower

This chapter proposes a new variation of the MGPSO algorithm, i.e., the
partial-dominance multi-guide particle swarm optimization (PMGPSO) algo-
rithm. As sub-objectives, this chapter aims to: evaluate the performance of
the MGPSO algorithm and PMGPSO algorithm in comparison with other
algorithms; evaluate the effect of different archive balance coefficient update
strategies for the PMGPSO algorithm; investigate if the scalability of the MG-
PSO algorithm can be improved by using different dynamic archive balance
coefficient update strategies. This chapter also empirically compares the scala-
bility of the various MOO and MaOO algorithms. More specifically, section 4.1
proposes partial-dominance as an approach to improve the scalability of the
MGPSO algorithm. The PMGPSO algorithm is presented in section 4.2, the
empirical process followed in this study is presented in section 4.3, and sec-
tion 4.4 presents the results and discusses the findings. Finally, section 4.5
gives a summary of this chapter.

4.1 Partial-dominance Approach
Helbig and Engelbrecht [52, 69] proposed the partial-dominance approach to
replace the Pareto-dominance relation. Whenever two solutions need to be
compared, the partial-dominance relation randomly selects three of the objec-
tives and applies the Pareto-dominance relation only on these three distinct
objectives. The partial-dominance approach can be thought of as an adapta-
tion of the Pareto-dominance relation. The partial-dominance approach can
also be considered a temporary random objective reduction approach, because

81
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whenever two solutions are compared, to determine which is best, this ap-
proach randomly selects three objectives while neglecting the other objectives
of the MaOP. The partial-dominance relation selects objectives randomly, with
an equal selection probability for each objective. For the partial-dominance
relation, the probability of objective m being selected is calculated as

P PD
m = 1

nm
(4.1)

The partial-dominance relation was applied to the NSGA-II [35] and a
MOPSO [129] algorithm, and shown to scale these multi-objective algorithms
to many-objectives [52, 69]. Therefore, this study proposes to investigate if
the partial-dominance relation will help the MGPSO algorithm to scale.

4.2 Partial-dominance Multi-guide Particle
Swarm Optimization

Recall from section 3.2.2.2 that the MGPSO algorithm only uses the Pareto-
dominance relation during the archive update phase. The Pareto-dominance
relation is known for struggling to effectively identify desirable solutions as
the number of objectives increases [77, 106, 141]. As the number of objectives
increases the size of the objective space also increases. This, in turn, results in
most solutions becoming non-dominated early on and will guide the particles
to sub-optimal regions of the search space. Recall from section 2.2.2 that
the Pareto-dominance relation lacks selection pressure towards the POF when
used as the sole convergence-related metric. Therefore, the performance of the
MGPSO algorithm, and other pure Pareto-based MOO algorithms for that
matter, heavily depends on whether solutions that can promote convergence
towards, and diversity along, the POF will be selected to guide the search
during MaOO. Unfortunately, since no other convergence-related metric is
used, the diversity-related operator largely guides the search, resulting in most
algorithms terminating with a set of diverse sub-optimal solutions [1, 81, 165].
That is, the search is lead by dominance-resistant solutions that are extremely
inferior to others in at least one objective but hardly ever dominated [77, 105].

The PMGPSO algorithm is the same as the original MGPSO algorithm
except for the differences discussed next. The PMGPSO algorithm is an adap-
tation of the original MGPSO algorithm. The PMGPSO algorithm proposes
to use the partial-dominance relation instead of the Pareto-dominance rela-
tion with the goal of scaling the MGPSO algorithm to many-objectives. The
partial-dominance relation, used by the PMGPSO algorithm, belongs to the
category of methods which modifies the Pareto-dominance relation in order to
increase the selection pressure. Partial-dominance can also be said to belong
to the category of methods which reduces the dimensionality of the problem
because of how the relation randomly selects a subset of objectives each time
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the relation is applied. The PMGPSO algorithm also aims to find a set of
solutions well-spread (diverse) along the true POF by using the diversity pro-
moter and preserver (the crowding distance operator) already utilized by the
original MGPSO.

The PMGPSO algorithm replaces the Pareto-dominance relation used by
the original MGPSO algorithm with the partial-dominance relation. In other
words, in Algorithm 7 the PMGPSO algorithm uses the partial-dominance re-
lation instead of the Pareto-dominance relation when attempting to insert a
solution into the archive. By doing this, the archive no longer stores fully non-
dominated solutions (when considering all of the objectives), instead partially-
dominated solutions are stored which might be dominated by other solutions in
some of the objectives but are non-dominated for at least the three randomly
selected objectives. As a consequence of storing partially-dominated solutions,
the PMGPSO algorithm does not remove dominated solutions from the archive
after inserting a solution into the archive (lines 4 and 9 of Algorithm 7). That
is, the MGPSO algorithm removes any newly dominated solutions from the
archive after inserting a non-dominated solution, whereas the PMGPSO algo-
rithm simply inserts a partially-dominated solution and then continues with
the next step of the algorithm. Note that for three objectives, the Pareto-
dominance relation is identical to the partial-dominance relation. However,
for three objectives the MGPSO and PMGPSO algorithms still differ with
regards to lines 4 and 9 of Algorithm 7 as explained above. In the case of a
full archive, the new partially-dominated particle position replaces the most
crowded solution in the archive, thereby preserving the diversity of the found
POF [136].

4.3 Empirical Process
This section discusses the empirical process that was followed to investigate the
scalability of the MGPSO, PMGPSO, and other benchmark MaOO algorithms.
Sections 4.3.1 through 4.3.4 respectively discuss the benchmark functions, the
algorithms and parameter tuning approach, the performance measures, and
the statistical analysis methodology.

4.3.1 Benchmark Functions

Seven problems from the DTLZ suite and nine problems from the WFG suite,
as defined in sections 2.3.1 and 2.3.2, were used in this study. This collec-
tion of scalable benchmark functions present a mix of problems with different
challenges and characteristics. These problems simulate challenging practical
environments, making it suitable for testing algorithm scalability from MOO
to MaOO. This thesis considers the benchmark problems with 3, 5, 8, 10, and
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15 objectives with 30 decision variables, resulting in (9 + 7) × 5 = 80 unique
problems.

4.3.2 Algorithms and Parameter Tuning Approach

The experimental work for the original MGPSO algorithm, and all adaptations
thereof, were conducted using CIlib1 [24, 116] – a computational intelligence
library written in Scala. The MGPSO algorithm and other versions thereof
were implemented according to the coding standards of CIlib; that is, stan-
dards ensuring highly generic and correct code. CIlib aims to

• provide a type-safe library, preventing as many runtime errors and invalid
data representations as possible;

• allow for the perfect reproduction of simulations, enabling researchers to
validate and reuse previous work and published results with confidence;
and

• enable composition, reducing the need to repeat implementations.

To ensure correctness and reliability, the implemented MGPSO algorithm and
variations thereof were tested thoroughly throughout the implementation of
the algorithm. Testing was mainly done in the form of property-based tests.
Property-based2 testing involves generating 100 random test cases to test dif-
ferent properties (functionality) of the algorithm.

The experimental work for the benchmark algorithms (i.e. the addi-
tional algorithms investigated throughout this study) was conducted using
the PlatEMO3 [153] framework.

For this part of the study, the following algorithms were investigated:

1. The multi-guide particle swarm optimization algorithm with the stan-
dard static archive balance coefficient update strategy (MGPSOSTD) [53,
136]. Refer to section 3.2.2.2 for detail.

2. The multi-guide particle swarm optimization algorithm with the ran-
dom dynamic archive balance coefficient update strategy (MGPSOR) [53,
136]. Refer to sections 3.2.2.2 and 3.17 for detail.

1 Visit https://github.com/ciren/cilib and https://cilib.net/ for more information
about CIlib. The source code can be found at
https://github.com/CianSteenkamp96/CIlib_research/tree/v44.

2 For more information regarding property-based testing, visit
http://www.scalatest.org/user_guide/property_based_testing.

3 Visit https://github.com/BIMK/PlatEMO for more information about PlatEMO.
The source code can be found at
https://github.com/CianSteenkamp96/PlatEMO_research/tree/master.
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3. The multi-guide particle swarm optimization algorithm with the ran-
dom per particle dynamic archive balance coefficient update strategy
(MGPSORI) [53, 136]. Refer to sections 3.2.2.2 and 3.18 for detail.

4. The partial-dominance multi-guide particle swarm optimization algo-
rithm with the standard static archive balance coefficient update strategy
(PMGPSOSTD) [52, 53, 69]. Refer to sections 3.2.2.2 and 4.2 for detail.

5. The partial-dominance multi-guide particle swarm optimization algo-
rithm with the random dynamic archive balance coefficient update strat-
egy (PMGPSOR) [52, 53, 69]. Refer to sections 3.17 and 4.2 for detail.

6. The partial-dominance multi-guide particle swarm optimization algo-
rithm with the random per particle dynamic archive balance coefficient
update strategy (PMGPSORI) [52, 53, 69]. Refer to sections 3.18 and 4.2
for detail.

7. CDAS-SMPSO [33]. Refer to section 3.2.2.1 for detail.

8. KnEA [174]. Refer to section 3.1.2.1 for detail.

9. MOEA/DD [95]. Refer to section 3.1.2.2 for detail.

10. NSGA-III [38]. Refer to section 3.1.2.3 for detail.

Each of the investigated algorithms has control parameters that need to be
set which, to a large degree, determines the success of each algorithm. The
process of finding an optimal control parameter configuration is referred to as
parameter tuning. Parameter tuning is necessary because which configuration
is best is very much problem-dependent. Finding an optimal control parameter
configuration is a computationally expensive process due to the large volume
of the control parameter problem space. Furthermore, a priori parameter tun-
ing is a time-consuming procedure and assumes that the best parameters to
employ do not change over time [67]. For the original PSO algorithm, results
indicate that sampling control parameter values from a region known to con-
tain promising control parameter configurations performed on par with the
best control parameter configurations suggested in the literature [67]. There-
fore, the MGPSO algorithm (and any adaptations thereof) used in this study,
sampled new control parameter values from the convergent regions for each
velocity update [20, 137]. Note that the convergent regions for the PMGPSO
algorithm and MGPSO algorithm are the same since both algorithms use the
same velocity update equation.

For each tunable algorithm (the CDAS-SMPSO algorithm, the KnEA, and
the MOEA/DD), the optimal control parameter value combination for each
problem was chosen as the setting with the best average IGD value over 30
independent runs. Each independent run consisted of 2000 iterations. Different



CHAPTER 4. PARTIAL-DOMINANCE MULTI-GUIDE PARTICLE SWARM
OPTIMIZATION 86

parameter values were sampled for each parameter from the corresponding
predefined parameter value domains. Note that the NSGA-III has no tunable
parameters [38]. The general control parameter configurations used in this
study are presented and discussed below.

For all 3-, 5-, 8-, 10-, and 15-objective problems, the number of candidate
solutions (ns) for each algorithm was set to 153, 126, 156, 110, and 135 re-
spectively. For all relevant algorithms, the archive size was also set equal to
ns. These somewhat odd-looking values were chosen because the two-layered
reference-point generation method [31], used by both the MOEA/DD [95] and
NSGA-III [38], can only generate a certain number of points for each num-
ber of objectives. Note that the relatively small population size of 135 for 15
objectives is a consequence of the extremely high computational complexity
required for the MOEA/DD and NSGA-III when solving MaOPs. That is, a
larger population size would drastically increase the computational complexity,
which would ultimately result in infeasible experimental runtimes [106]. Also,
note that the same population sizes were used for each algorithm to ensure
fair and unprejudiced comparisons, as recommended by [51].

Note that the initialization process of each algorithm was the same as
described in Chapter 3, or as recommended or conventionally used by the
original algorithms. A summary of the control parameter configurations for
each of the considered algorithms is listed below.

MGPSOSTD, MGPSOR, MGPSORI, PMGPSOSTD, PMGPSOR, and
PMGPSORI
The control parameter configurations for the different MGPSO and PMGPSO
algorithms were as follows:

• The subswarm sizes of the MGPSO and PMGPSO algorithms, which are
strictly speaking problem-dependent [20, 137], were set equal to the total
swarm size divided by the number of objectives for convenience. That
is, the size of each subswarm ns1 to nsnm was (51, 51, 51) in the case of 3
objectives, (25, 25, 25, 25, 26) for 5 objectives, (19, 19, ..., 19, 20) for 8
objectives, (11, 11, ...) for 10 objectives, and (9, 9, ...) for 15 objectives.

• A tournament size of three was used for the archive guide selection pro-
cess as recommended by [136].

• The inertia weight, w, and the acceleration coefficients c1, c2, and c3 were
resampled from the convergent regions [20, 137] at each iteration for each
particle. In an effort to avoid sampling fruitlessly, default parameter
values were assigned to the control parameters if no satisfactory values
have been sampled after 10 tries. The default parameter values were
w = 0.356, c1 = 1.222, c2 = 1.3, and c3 = 1.517. These default values
were calculated as the average optimal control parameter values for the
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MGPSO algorithm on the three-objective WFG problems [136]. Note the
default parameter values also satisfy the convergence/stability criteria.

• A maximum archive size equal to the total number of particles in all the
subswarms combined was used.

• Velocity clamping was not used.

• The star neighbourhood topology was used.

• To ensure feasible guides, the personal and neighbourhood best position
of each particle was only updated if the resulting position was feasible
and better with reference to the corresponding objective.

CDAS-SMPSO
The control parameter configurations for the CDAS-SMPSO algorithm were
as follows:

• At each iteration, w was randomly selected in the interval [0,0.8], r1
and r2 were randomly selected in [0,1], and c1 and c2 were randomly se-
lected over the interval [1.5,2.5] [33]. The CDAS-SMPSO algorithm also
guarantees convergent behaviour by ensuring that these randomly gener-
ated parameter values satisfy the necessary constraints of the constricted
velocity [21, 23, 33, 112].

• The CDAS parameter, γ, was tuned in the range γ ∈ {0.25,0.3, ...,0.75}.
The optimal γ-value for each of the problems investigated in this study
is provided in table C.3.

• Polynomial mutation [36] with a distribution index of 20 was used.

• Polynomial mutation was applied at a probability of 1
n to 15% of the

population, randomly selected [33, 106].

KnEA
The control parameter configurations for the KnEA were as follows:

• The rate of knee-points, κ, was tuned in the range κ ∈ {0.1,0.2, ...,0.9}.
The optimal κ-value for each of the problems investigated in this study
is provided in table C.1.

• The weighted distance metric employed by the KnEA used five-nearest
neighbours [106, 174].

• Simulated binary crossover [2] with a distribution index of 30 and poly-
nomial mutation [36] with a distribution index of 20 was used.

• The crossover probability was set to 1.0 and the mutation probability
was set to 1

n [106, 174].
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MOEA/DD
The control parameter configurations for the MOEA/DD were as follows:

• The PBI penalty parameter, ϕ, was set to 5.0 as recommended in [173].

• The neighbourhood size, ψ, was set equal to the number of weight vectors
divided by 10, since it has been shown that neighbourhood sizes between
10 and 20 are generally sufficient [95]. The chosen population sizes all
satisfy this condition.

• A neighbourhood selection probability, δ, of 0.9 is recommended by [94,
95], but this study tuned δ ∈ {0.0,0.1, ...,1.0}. The optimal neighbour-
hood selection probability turned out to be different from this recom-
mended value for most of the investigated problems. The tuned δ-value
for each investigated problem is provided in table C.2.

• Simulated binary crossover [2] with a distribution index of 30 and poly-
nomial mutation [36] with a distribution index of 20 was used [95, 106].

• The crossover probability was set to 1.0 and the mutation probability
was set to 1

n [95, 106].

NSGA-III
The control parameter configurations were as follows:

• Simulated binary crossover [2] with a distribution index of 30 and poly-
nomial mutation [36] with a distribution index of 20 was used [38, 106].

• The crossover probability was set to 1.0 and the mutation probability
was set to 1

n [38, 106].

4.3.3 Performance Measures

This study quantified algorithm performance using the HV and IGD perfor-
mance measures as defined in section 2.4. These quality indicators take into
account both solution accuracy and solution diversity.

For all MaOPs investigated, this study approximated the HV using the
Monte Carlo sampling technique [4]. This study used 10 000 000 sampling
points for the Monte Carlo technique, as this number of sampling points have
been shown to lead to 100% accuracy [4].

The IGD and HV performance measure values were calculated using the
normalized objective function values (solutions) without outliers. Outlier re-
moval is necessary to avoid anomalous solutions from skewing the results. Nor-
malization is necessary to ensure a common scale in case of differing objective
function value ranges.

The reference-point for all HV calculations was set to 1.1, as this vector
has been shown to appropriately emphasize the convergence and diversity of
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the solution set [106]. For all IGD calculations, the true POSs were generated
using the PlatEMO framework [153]. PlatEMO mathematically derives the
true POFs by using the analytical forms of the benchmark suite functions.
Each POS contained more than a 1000 Pareto-optimal decision vectors.

Both performance measures were calculated, using the final population or
archive (normalized and without outliers), for each independent run for each
algorithm on each problem. This study used 30 independent runs. Each
independent run consisted of 2000 iterations/generations.

4.3.4 Statistical Analysis Process

After calculating the performance measure values, a series of non-parametric
analysis of variance (ANOVA) statistical tests were executed. ANOVA tests
are necessary because the average performance measure value for an algorithm
on a problem may or may not be statistically significant, or different enough,
from that of the other investigated algorithms. Claims about algorithm su-
periority can only be made if a statistically significant difference in algorithm
performance exists. ANOVA tests are executed to determine if, and between
which algorithms, statistically significant performance differences exist.

Non-parametric statistical tests are required due to the stochastic nature
of the algorithms, i.e., the distribution of the solution samples cannot be as-
sumed to be Gaussian. Some non-parametric outlier detection methods include
Dbscan [54, 139] (which requires parameter tuning and training), isolation
forests [100, 101] (an unsupervised clustering algorithm which also requires
parameter tuning for each problem), the reference POF extreme values ap-
proach, and the interquartile range (IQR) [156, 183]. This study initially used
the extreme values of the reference POFs for each problem to detect outliers.
However, this resulted in 35% of the independent runs to be empty after out-
lier removal. With so little data left to analyze, no statistical inference could
be made about algorithm superiority using this approach. The IQR outlier
detection method removed all solutions for less than 1% of all independent
runs. Therefore, this study used the intuitive and simple IQR outlier detec-
tion method to remove any outliers before normalizing all solutions to have
values in the range [0,1].

This study used an extension/correction of the Friedman omnibus test [59,
60], referred to as the Iman-Davenport omnibus test [42, 78], at a confidence
level of 95% to determine if a significant difference in algorithm performance
existed between any of the algorithms. If a significant difference existed, two-
tailed pairwise Wilcoxon signed rank sum tests [7, 43, 61, 72, 123, 169] at a
confidence level of 95% were used to test for significant performance differ-
ences between specific algorithm pairs. To control the family-wise error rate
(FWER) [143], the Holm [73] post-hoc p-value [143] adjustment was applied
before accepting or rejecting the null hypothesis. Leaving the FWER uncon-
trolled can result in a cumulative error that significantly increases the prob-



CHAPTER 4. PARTIAL-DOMINANCE MULTI-GUIDE PARTICLE SWARM
OPTIMIZATION 90

ability of discovering undesired false positives (Type 1 errors [43, 61]). Note
that this study appropriately makes use of two-tailed non-parametric paired
tests, since the stochastic algorithms generated data (found solutions) for the
same set of problems [43, 61, 123].

For each pair-wise test, if a statistically significant difference existed, the
algorithm with the more desirable mean over 30 independent runs was given a
win and the algorithm with the less desirable mean was given a loss. Note a low
IGD average is desirable in contrast to a high HV average; that is, IGD should
be minimized while HV should be maximized. The term difference is used
to distinguish the performance of algorithms, which is simply the difference
between pairwise wins and losses for a given algorithm. Additionally, the rank
of each algorithm denotes the ranking in comparison to all other algorithms
with respect to difference values for a given benchmark function [65, 106, 136].
The results in this study are reported as tables containing the overall wins,
losses, difference, and rank across all the problems for each algorithm.

4.4 Results and Discussion
The results of the statistical analysis are shown in tables 4.1 to 4.20, which are
then thoroughly analyzed and discussed. The tables contain the overall wins,
losses, difference, and rank across the problems for each algorithm. Note that
the top-three best overall ranks are highlighted for each table. The average,
standard deviation, maximum, and minimum HV and IGD performance mea-
sure values are provided in Appendix D. Sections 4.4.1 and 4.4.2 discuss the
findings with respect to HV and IGD respectively. Finally, section 4.4.3 makes
some general remarks and summarizes the findings.

Table 4.1: HV Ranking for 3-objective DTLZ

Algorithm Result 3-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOSTD

Wins 8 7 8 0 7 3 7 40

Losses 0 2 0 3 2 6 0 13

Difference 8 5 8 -3 5 -3 7 27

Rank 1 3 1 6 3 7 1 1
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Table 4.1: HV Ranking for 3-objective DTLZ (continue)

Algorithm Result 3-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOR

Wins 4 8 4 0 8 4 7 35

Losses 4 0 3 3 0 4 0 14

Difference 0 8 1 -3 8 0 7 21

Rank 5 1 4 6 1 5 1 3

MGPSORI

Wins 4 8 4 0 8 4 7 35

Losses 4 0 3 4 0 4 0 15

Difference 0 8 1 -4 8 0 7 20

Rank 5 1 4 8 1 5 1 4

PMGPSOSTD

Wins 3 2 2 6 3 0 4 20

Losses 6 6 7 0 3 7 3 32

Difference -3 -4 -5 6 0 -7 1 -12

Rank 7 7 8 3 5 8 4 7

PMGPSOR

Wins 1 0 0 7 1 0 4 13

Losses 7 7 8 0 5 7 3 37

Difference -6 -7 -8 7 -4 -7 1 -24

Rank 8 9 9 1 8 8 4 8

PMGPSORI

Wins 1 0 0 7 1 0 4 13

Losses 7 8 8 0 6 7 3 39

Difference -6 -8 -8 7 -5 -7 1 -26

Rank 8 10 9 1 9 8 4 9

CDAS-

SMPSO

Wins 0 1 3 0 0 6 0 10

Losses 9 6 6 5 8 2 9 45

Difference -9 -5 -3 -5 -8 4 -9 -35

Rank 10 8 7 9 10 3 10 10
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Table 4.1: HV Ranking for 3-objective DTLZ (continue)

Algorithm Result 3-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

KnEA

Wins 8 6 8 3 0 9 2 36

Losses 0 3 0 2 3 0 6 14

Difference 8 3 8 1 -3 9 -4 22

Rank 1 4 1 4 7 1 7 2

MOEA/DD

Wins 6 5 4 2 4 8 2 31

Losses 2 4 3 3 3 1 6 22

Difference 4 1 1 -1 1 7 -4 9

Rank 3 5 4 5 4 2 7 5

NSGA-III

Wins 6 4 7 0 2 6 1 26

Losses 2 5 2 5 4 2 8 28

Difference 4 -1 5 -5 -2 4 -7 -2

Rank 3 6 3 9 6 3 9 6

Table 4.2: HV Ranking for 5-objective DTLZ

Algorithm Result 5-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOSTD

Wins 6 4 6 4 7 2 7 36

Losses 2 1 2 3 0 2 0 10

Difference 4 3 4 1 7 0 7 26

Rank 3 3 3 6 1 5 1 3

MGPSOR

Wins 5 4 4 4 7 4 7 35

Losses 3 1 3 1 0 2 0 10

Difference 2 3 1 3 7 2 7 25

Rank 5 3 4 4 1 3 1 4
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Table 4.2: HV Ranking for 5-objective DTLZ (continue)

Algorithm Result 5-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSORI

Wins 5 5 4 5 7 4 7 37

Losses 2 1 3 1 0 2 0 9

Difference 3 4 1 4 7 2 7 28

Rank 4 2 4 3 1 3 1 2

PMGPSOSTD

Wins 2 0 1 2 2 1 4 12

Losses 5 6 5 6 4 5 3 34

Difference -3 -6 -4 -4 -2 -4 1 -22

Rank 6 8 7 7 5 9 4 6

PMGPSOR

Wins 2 0 0 0 2 1 4 9

Losses 5 6 7 7 4 4 3 36

Difference -3 -6 -7 -7 -2 -3 1 -27

Rank 6 8 10 9 5 7 4 8

PMGPSORI

Wins 2 0 0 0 2 1 4 9

Losses 5 6 6 7 4 4 3 35

Difference -3 -6 -6 -7 -2 -3 1 -26

Rank 6 8 9 9 5 7 4 7

CDAS-

SMPSO

Wins 1 0 0 4 1 1 0 7

Losses 8 5 5 2 7 2 9 38

Difference -7 -5 -5 2 -6 -1 -9 -31

Rank 9 7 8 5 9 6 10 9

KnEA

Wins 0 3 2 0 0 0 2 7

Losses 9 2 2 6 9 9 6 43

Difference -9 1 0 -6 -9 -9 -4 -35

Rank 10 6 6 8 10 10 7 10
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Table 4.2: HV Ranking for 5-objective DTLZ (continue)

Algorithm Result 5-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MOEA/DD

Wins 8 9 8 9 6 9 1 50

Losses 0 0 1 0 3 0 6 10

Difference 8 9 7 9 3 9 -5 40

Rank 1 1 2 1 4 1 8 1

NSGA-III

Wins 8 4 9 6 1 8 1 37

Losses 0 1 0 1 4 1 7 14

Difference 8 3 9 5 -3 7 -6 23

Rank 1 3 1 2 8 2 9 5

Table 4.3: HV Ranking for 8-objective DTLZ

Algorithm Result 8-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOSTD

Wins 6 6 5 6 7 1 8 39

Losses 3 0 2 3 0 3 0 11

Difference 3 6 3 3 7 -2 8 28

Rank 4 1 3 4 1 4 1 1

MGPSOR

Wins 4 6 4 3 7 1 4 29

Losses 4 0 3 4 0 3 1 15

Difference 0 6 1 -1 7 -2 3 14

Rank 5 1 5 5 1 4 4 5

MGPSORI

Wins 4 6 4 2 7 1 5 29

Losses 4 0 2 4 0 3 1 14

Difference 0 6 2 -2 7 -2 4 15

Rank 5 1 4 7 1 4 2 4
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Table 4.3: HV Ranking for 8-objective DTLZ (continue)

Algorithm Result 8-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

PMGPSOSTD

Wins 1 1 0 3 6 1 4 16

Losses 6 5 7 4 3 3 0 28

Difference -5 -4 -7 -1 3 -2 4 -12

Rank 7 6 8 5 4 4 2 6

PMGPSOR

Wins 1 1 0 1 4 1 4 12

Losses 6 5 7 6 4 3 1 32

Difference -5 -4 -7 -5 0 -2 3 -20

Rank 7 6 8 8 5 4 4 8

PMGPSORI

Wins 1 1 0 0 4 1 4 11

Losses 6 5 7 7 4 3 2 34

Difference -5 -4 -7 -7 0 -2 2 -23

Rank 7 6 8 9 5 4 6 9

CDAS-

SMPSO

Wins 0 1 3 7 1 7 0 19

Losses 9 5 5 2 6 1 9 37

Difference -9 -4 -2 5 -5 6 -9 -18

Rank 10 6 7 3 7 2 10 7

KnEA

Wins 9 0 3 0 0 0 2 14

Losses 0 9 2 8 9 9 6 43

Difference 9 -9 1 -8 -9 -9 -4 -29

Rank 1 10 5 10 10 10 7 10

MOEA/DD

Wins 7 6 8 9 1 9 1 41

Losses 1 0 0 0 6 0 8 15

Difference 6 6 8 9 -5 9 -7 26

Rank 2 1 1 1 7 1 9 2
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Table 4.3: HV Ranking for 8-objective DTLZ (continue)

Algorithm Result 8-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

NSGA-III

Wins 7 5 8 8 1 7 2 38

Losses 1 4 0 1 6 1 6 19

Difference 6 1 8 7 -5 6 -4 19

Rank 2 5 1 2 7 2 7 3

Table 4.4: HV Ranking for 10-objective DTLZ

Algorithm Result 10-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOSTD

Wins 5 7 3 5 7 2 8 37

Losses 1 0 2 2 0 1 0 6

Difference 4 7 1 3 7 1 8 31

Rank 2 2 5 3 1 3 1 1

MGPSOR

Wins 5 7 3 0 7 2 4 28

Losses 1 1 2 4 0 2 2 12

Difference 4 6 1 -4 7 0 2 16

Rank 2 3 5 8 1 7 3 3

MGPSORI

Wins 5 8 3 0 7 2 4 29

Losses 1 0 2 3 0 1 2 9

Difference 4 8 1 -3 7 1 2 20

Rank 2 1 5 7 1 3 3 2

PMGPSOSTD

Wins 1 1 0 3 4 2 8 19

Losses 5 3 7 2 3 1 0 21

Difference -4 -2 -7 1 1 1 8 -2

Rank 7 5 8 4 4 3 1 5
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Table 4.4: HV Ranking for 10-objective DTLZ (continue)

Algorithm Result 10-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

PMGPSOR

Wins 1 1 0 0 4 3 4 13

Losses 5 4 7 5 3 1 2 27

Difference -4 -3 -7 -5 1 2 2 -14

Rank 7 8 8 9 4 2 3 8

PMGPSORI

Wins 1 1 0 0 4 2 4 12

Losses 5 4 7 5 3 1 2 27

Difference -4 -3 -7 -5 1 1 2 -15

Rank 7 8 8 9 4 3 3 9

CDAS-

SMPSO

Wins 0 3 3 0 3 9 0 18

Losses 9 3 1 0 6 0 9 28

Difference -9 0 2 0 -3 9 -9 -10

Rank 10 4 3 5 7 1 10 6

KnEA

Wins 9 1 3 2 1 0 2 18

Losses 0 3 1 3 7 8 7 29

Difference 9 -2 2 -1 -6 -8 -5 -11

Rank 1 5 3 6 8 10 8 7

MOEA/DD

Wins 1 0 6 7 1 0 1 16

Losses 4 9 0 0 7 7 8 35

Difference -3 -9 6 7 -6 -7 -7 -19

Rank 6 10 2 1 8 9 9 10

NSGA-III

Wins 4 1 8 7 0 1 3 24

Losses 1 3 0 0 9 1 6 20

Difference 3 -2 8 7 -9 0 -3 4

Rank 5 5 1 1 10 7 7 4
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Table 4.5: HV Ranking for 15-objective DTLZ

Algorithm Result 15-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOSTD

Wins 5 7 4 6 7 1 8 38

Losses 0 0 1 0 0 1 0 2

Difference 5 7 3 6 7 0 8 36

Rank 2 1 4 1 1 6 1 1

MGPSOR

Wins 5 7 4 0 7 2 4 29

Losses 1 0 2 2 0 1 2 8

Difference 4 7 2 -2 7 1 2 21

Rank 4 1 5 6 1 2 3 2

MGPSORI

Wins 5 7 4 0 7 0 4 27

Losses 1 0 2 2 0 1 2 8

Difference 4 7 2 -2 7 -1 2 19

Rank 4 1 5 6 1 8 3 3

PMGPSOSTD

Wins 1 3 0 5 4 2 8 23

Losses 5 3 7 1 3 1 0 20

Difference -4 0 -7 4 1 1 8 3

Rank 6 4 8 2 4 2 1 4

PMGPSOR

Wins 1 3 0 0 4 2 4 14

Losses 5 3 7 2 3 1 2 23

Difference -4 0 -7 -2 1 1 2 -9

Rank 6 4 8 6 4 2 3 5

PMGPSORI

Wins 1 3 0 0 4 2 4 14

Losses 5 3 7 2 3 1 2 23

Difference -4 0 -7 -2 1 1 2 -9

Rank 6 4 8 6 4 2 3 5
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Table 4.5: HV Ranking for 15-objective DTLZ (continue)

Algorithm Result 15-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

CDAS-

SMPSO

Wins 0 2 3 0 3 8 0 16

Losses 9 3 6 0 6 0 9 33

Difference -9 -1 -3 0 -3 8 -9 -17

Rank 10 7 7 3 7 1 10 9

KnEA

Wins 7 1 4 0 0 0 2 14

Losses 0 7 0 2 7 6 7 29

Difference 7 -6 4 -2 -7 -6 -5 -15

Rank 1 9 3 6 8 10 8 8

MOEA/DD

Wins 5 0 7 0 0 0 1 13

Losses 0 9 0 0 7 0 8 24

Difference 5 -9 7 0 -7 0 -7 -11

Rank 2 10 1 3 8 6 9 7

NSGA-III

Wins 1 1 6 0 0 0 3 11

Losses 5 6 0 0 7 5 6 29

Difference -4 -5 6 0 -7 -5 -3 -18

Rank 6 8 2 3 8 9 7 10

Table 4.6: HV Ranking for 3-objective WFG

Algorithm Result 3-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOSTD

Wins 3 3 7 5 3 5 2 3 7 38

Losses 6 4 2 1 1 3 4 5 1 27

Difference -3 -1 5 4 2 2 -2 -2 6 11

Rank 7 7 3 2 4 4 5 7 3 5
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Table 4.6: HV Ranking for 3-objective WFG (continue)

Algorithm Result 3-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOR

Wins 4 3 8 5 3 7 2 4 7 43

Losses 4 3 0 1 1 1 4 4 0 18

Difference 0 0 8 4 2 6 -2 0 7 25

Rank 5 5 1 2 4 2 5 5 2 4

MGPSORI

Wins 4 4 8 5 3 7 2 3 8 44

Losses 4 3 0 1 1 1 4 4 0 18

Difference 0 1 8 4 2 6 -2 -1 8 26

Rank 5 4 1 2 4 2 5 6 1 3

PMGPSOSTD

Wins 0 0 1 1 0 0 2 0 3 7

Losses 7 7 5 6 7 7 4 7 3 53

Difference -7 -7 -4 -5 -7 -7 -2 -7 0 -46

Rank 8 8 6 9 8 8 5 8 6 8

PMGPSOR

Wins 0 0 1 1 0 0 0 0 4 6

Losses 7 7 5 5 7 7 8 7 3 56

Difference -7 -7 -4 -4 -7 -7 -8 -7 1 -50

Rank 8 8 6 7 8 8 9 8 4 9

PMGPSORI

Wins 0 0 1 1 0 0 0 0 4 6

Losses 7 7 5 5 7 7 8 7 3 56

Difference -7 -7 -4 -4 -7 -7 -8 -7 1 -50

Rank 8 8 6 7 8 8 9 8 4 9

CDAS-

SMPSO

Wins 7 8 6 5 4 5 8 8 3 54

Losses 0 0 3 1 1 3 1 1 5 15

Difference 7 8 3 4 3 2 7 7 -2 39

Rank 2 1 4 2 2 4 2 2 7 2
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Table 4.6: HV Ranking for 3-objective WFG (continue)

Algorithm Result 3-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

KnEA

Wins 6 8 1 9 9 9 9 9 2 62

Losses 3 0 5 0 0 0 0 0 7 15

Difference 3 8 -4 9 9 9 9 9 -5 47

Rank 4 1 6 1 1 1 1 1 8 1

MOEA/DD

Wins 8 7 0 0 3 3 6 6 0 33

Losses 0 2 9 9 3 5 3 3 8 42

Difference 8 5 -9 -9 0 -2 3 3 -8 -9

Rank 1 3 10 10 7 6 4 4 9 7

NSGA-III

Wins 7 3 5 2 4 3 7 7 0 38

Losses 1 3 4 5 1 5 2 2 8 31

Difference 6 0 1 -3 3 -2 5 5 -8 7

Rank 3 5 5 6 2 6 3 3 9 6

Table 4.7: HV Ranking for 5-objective WFG

Algorithm Result 5-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOSTD

Wins 3 5 7 2 1 3 2 3 7 33

Losses 6 1 2 4 4 6 4 4 0 31

Difference -3 4 5 -2 -3 -3 -2 -1 7 2

Rank 7 2 3 7 6 7 5 5 1 7

MGPSOR

Wins 4 5 9 3 2 4 2 3 7 39

Losses 4 1 0 4 4 3 4 4 0 24

Difference 0 4 9 -1 -2 1 -2 -1 7 15

Rank 5 2 1 5 5 5 5 5 1 3
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Table 4.7: HV Ranking for 5-objective WFG (continue)

Algorithm Result 5-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSORI

Wins 4 5 8 3 1 4 2 3 7 37

Losses 4 1 1 4 4 3 4 4 0 25

Difference 0 4 7 -1 -3 1 -2 -1 7 12

Rank 5 2 2 5 6 5 5 5 1 5

PMGPSOSTD

Wins 0 1 6 0 0 0 2 0 3 12

Losses 7 5 3 7 4 7 4 7 3 47

Difference -7 -4 3 -7 -4 -7 -2 -7 0 -35

Rank 8 6 4 9 8 8 5 8 4 8

PMGPSOR

Wins 0 1 4 0 0 0 0 0 3 8

Losses 7 5 4 7 7 7 8 7 3 55

Difference -7 -4 0 -7 -7 -7 -8 -7 0 -47

Rank 8 6 5 9 10 8 9 8 4 10

PMGPSORI

Wins 0 1 4 0 0 0 0 0 3 8

Losses 7 5 4 6 5 7 8 7 3 52

Difference -7 -4 0 -6 -5 -7 -8 -7 0 -44

Rank 8 6 5 8 9 8 9 8 4 9

CDAS-

SMPSO

Wins 7 8 3 7 6 4 6 6 2 49

Losses 0 0 6 1 3 2 1 3 6 22

Difference 7 8 -3 6 3 2 5 3 -4 27

Rank 1 1 7 2 4 4 2 4 8 2

KnEA

Wins 6 4 1 9 9 9 9 9 2 58

Losses 3 0 8 0 0 0 0 0 3 14

Difference 3 4 -7 9 9 9 9 9 -1 44

Rank 4 2 9 1 1 1 1 1 7 1
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Table 4.7: HV Ranking for 5-objective WFG (continue)

Algorithm Result 5-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MOEA/DD

Wins 7 0 0 7 7 7 6 7 0 41

Losses 0 8 9 1 1 1 1 1 8 30

Difference 7 -8 -9 6 6 6 5 6 -8 11

Rank 1 10 10 2 2 2 2 2 9 6

NSGA-III

Wins 7 0 2 6 7 6 6 7 0 41

Losses 0 4 7 3 1 1 1 1 8 26

Difference 7 -4 -5 3 6 5 5 6 -8 15

Rank 1 6 8 4 2 3 2 2 9 3

Table 4.8: HV Ranking for 8-objective WFG

Algorithm Result 8-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOSTD

Wins 4 7 7 3 4 5 1 3 7 41

Losses 2 0 0 0 2 0 2 3 0 9

Difference 2 7 7 3 2 5 -1 0 7 32

Rank 3 1 1 2 4 3 4 4 1 3

MGPSOR

Wins 8 7 7 3 1 7 1 3 7 44

Losses 0 0 0 0 5 0 3 3 0 11

Difference 8 7 7 3 -4 7 -2 0 7 33

Rank 1 1 1 2 7 1 5 4 1 2

MGPSORI

Wins 8 7 7 5 1 7 1 3 7 46

Losses 0 0 0 0 5 0 3 3 0 11

Difference 8 7 7 5 -4 7 -2 0 7 35

Rank 1 1 1 1 7 1 5 4 1 1
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Table 4.8: HV Ranking for 8-objective WFG (continue)

Algorithm Result 8-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

PMGPSOSTD

Wins 0 6 5 3 4 4 1 1 4 28

Losses 6 3 3 1 2 2 3 3 3 26

Difference -6 3 2 2 2 2 -2 -2 1 2

Rank 8 4 4 6 4 4 5 7 4 5

PMGPSOR

Wins 0 4 4 3 1 4 1 1 4 22

Losses 6 4 4 0 5 3 3 6 3 34

Difference -6 0 0 3 -4 1 -2 -5 1 -12

Rank 8 5 6 2 7 6 5 8 4 8

PMGPSORI

Wins 0 4 4 3 1 4 1 1 4 22

Losses 6 4 3 1 3 2 3 6 3 31

Difference -6 0 1 2 -2 2 -2 -5 1 -9

Rank 8 5 5 6 6 4 5 8 4 7

CDAS-

SMPSO

Wins 0 1 3 3 9 1 8 7 2 34

Losses 3 6 6 0 0 6 0 0 6 27

Difference -3 -5 -3 3 9 -5 8 7 -4 7

Rank 7 7 7 2 1 7 1 2 7 4

KnEA

Wins 3 1 0 0 0 0 0 0 0 4

Losses 2 6 8 9 9 9 9 9 9 70

Difference 1 -5 -8 -9 -9 -9 -9 -9 -9 -66

Rank 4 7 9 10 10 10 10 10 10 10

MOEA/DD

Wins 3 0 0 1 5 1 6 7 1 24

Losses 2 9 8 7 1 6 2 1 8 44

Difference 1 -9 -8 -6 4 -5 4 6 -7 -20

Rank 4 10 9 8 3 7 3 3 9 9
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Table 4.8: HV Ranking for 8-objective WFG (continue)

Algorithm Result 8-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

NSGA-III

Wins 3 1 2 1 7 1 8 8 2 33

Losses 2 6 7 7 1 6 0 0 6 35

Difference 1 -5 -5 -6 6 -5 8 8 -4 -2

Rank 4 7 8 8 2 7 1 1 7 6

Table 4.9: HV Ranking for 10-objective WFG

Algorithm Result 10-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOSTD

Wins 4 7 7 4 7 4 2 8 5 48

Losses 2 0 0 1 0 1 0 0 0 4

Difference 2 7 7 3 7 3 2 8 5 44

Rank 3 1 1 4 1 3 1 1 3 2

MGPSOR

Wins 8 7 7 5 2 4 2 6 6 47

Losses 0 0 0 0 2 0 0 1 0 3

Difference 8 7 7 5 0 4 2 5 6 44

Rank 1 1 1 2 4 2 1 3 2 2

MGPSORI

Wins 8 7 7 7 2 8 2 3 7 51

Losses 0 0 0 0 2 0 0 2 0 4

Difference 8 7 7 7 0 8 2 1 7 47

Rank 1 1 1 1 4 1 1 4 1 1

PMGPSOSTD

Wins 0 4 4 3 7 4 2 7 4 35

Losses 6 3 3 2 0 1 0 0 2 17

Difference -6 1 1 1 7 3 2 7 2 18

Rank 9 4 4 6 1 3 1 2 5 4
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Table 4.9: HV Ranking for 10-objective WFG (continue)

Algorithm Result 10-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

PMGPSOR

Wins 1 4 4 4 2 4 2 3 4 28

Losses 5 3 3 0 2 1 0 3 1 18

Difference -4 1 1 4 0 3 2 0 3 10

Rank 7 4 4 3 4 3 1 5 4 5

PMGPSORI

Wins 0 4 4 4 2 4 2 3 4 27

Losses 5 3 3 1 2 1 0 3 3 21

Difference -5 1 1 3 0 3 2 0 1 6

Rank 8 4 4 4 4 3 1 5 6 6

CDAS-

SMPSO

Wins 0 1 3 3 2 2 2 2 0 15

Losses 6 8 6 5 2 6 0 3 6 42

Difference -6 -7 -3 -2 0 -4 2 -1 -6 -27

Rank 9 9 7 7 4 7 1 7 7 7

KnEA

Wins 4 2 1 0 2 2 0 0 0 11

Losses 2 6 8 7 0 6 8 8 6 51

Difference 2 -4 -7 -7 2 -4 -8 -8 -6 -40

Rank 3 7 9 8 3 7 9 9 7 9

MOEA/DD

Wins 4 0 0 0 0 0 0 0 0 4

Losses 2 9 9 7 9 9 8 8 6 67

Difference 2 -9 -9 -7 -9 -9 -8 -8 -6 -63

Rank 3 10 10 8 10 10 9 9 7 10

NSGA-III

Wins 1 2 2 0 1 1 2 2 0 11

Losses 2 6 7 7 8 8 0 6 6 50

Difference -1 -4 -5 -7 -7 -7 2 -4 -6 -39

Rank 6 7 8 8 9 9 1 8 7 8
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Table 4.10: HV Ranking for 15-objective WFG

Algorithm Result 15-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOSTD

Wins 4 6 7 4 4 3 1 1 2 32

Losses 0 1 0 0 1 2 2 1 0 7

Difference 4 5 7 4 3 1 -1 0 2 25

Rank 1 2 1 3 3 5 4 3 2 3

MGPSOR

Wins 4 6 7 6 2 6 1 1 3 36

Losses 0 1 0 0 5 1 2 1 0 10

Difference 4 5 7 6 -3 5 -1 0 3 26

Rank 1 2 1 1 7 2 4 3 1 2

MGPSORI

Wins 4 6 7 6 2 4 1 1 2 33

Losses 0 1 0 0 5 1 2 1 0 10

Difference 4 5 7 6 -3 3 -1 0 2 23

Rank 1 2 1 1 7 3 4 3 2 4

PMGPSOSTD

Wins 0 2 4 2 6 3 1 1 2 21

Losses 3 4 3 3 1 3 2 1 0 20

Difference -3 -2 1 -1 5 0 -1 0 2 1

Rank 7 5 4 7 2 7 4 3 2 5

PMGPSOR

Wins 0 2 4 2 4 3 1 1 2 19

Losses 3 4 3 3 2 2 2 1 0 20

Difference -3 -2 1 -1 2 1 -1 0 2 -1

Rank 7 5 4 7 4 5 4 3 2 7

PMGPSORI

Wins 0 2 4 2 4 3 1 1 2 19

Losses 3 4 3 2 2 1 2 1 0 18

Difference -3 -2 1 0 2 2 -1 0 2 1

Rank 7 5 4 5 4 4 4 3 2 5
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Table 4.10: HV Ranking for 15-objective WFG (continue)

Algorithm Result 15-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

CDAS-

SMPSO

Wins 0 0 3 1 0 1 1 1 1 8

Losses 0 7 6 8 8 7 1 1 8 46

Difference 0 -7 -3 -7 -8 -6 0 0 -7 -38

Rank 4 9 7 9 9 8 3 3 9 9

KnEA

Wins 0 1 0 0 0 0 0 0 0 1

Losses 3 4 8 9 8 9 9 9 9 68

Difference -3 -3 -8 -9 -8 -9 -9 -9 -9 -67

Rank 7 8 9 10 9 10 10 10 10 10

MOEA/DD

Wins 0 0 0 2 2 1 7 1 2 15

Losses 0 8 8 0 1 7 0 0 1 25

Difference 0 -8 -8 2 1 -6 7 1 1 -10

Rank 4 10 9 4 6 8 2 2 8 8

NSGA-III

Wins 0 9 2 2 9 9 8 8 2 49

Losses 0 0 7 2 0 0 0 0 0 9

Difference 0 9 -5 0 9 9 8 8 2 40

Rank 4 1 8 5 1 1 1 1 2 1

Table 4.11: IGD Ranking for 3-objective DTLZ

Algorithm Result 3-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOSTD

Wins 1 2 2 0 0 4 2 11

Losses 4 6 6 7 6 3 7 39

Difference -3 -4 -4 -7 -6 1 -5 -28

Rank 6 7 7 8 8 4 8 9



CHAPTER 4. PARTIAL-DOMINANCE MULTI-GUIDE PARTICLE SWARM
OPTIMIZATION 109

Table 4.11: IGD Ranking for 3-objective DTLZ (continue)

Algorithm Result 3-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOR

Wins 8 0 5 0 0 4 0 17

Losses 0 8 3 7 7 3 8 36

Difference 8 -8 2 -7 -7 1 -8 -19

Rank 1 9 4 8 10 4 9 8

MGPSORI

Wins 8 0 5 0 0 4 0 17

Losses 0 8 3 7 6 3 8 35

Difference 8 -8 2 -7 -6 1 -8 -18

Rank 1 9 4 8 8 4 9 7

PMGPSOSTD

Wins 1 7 7 6 7 7 7 42

Losses 5 0 0 2 0 0 0 7

Difference -4 7 7 4 7 7 7 35

Rank 7 1 1 4 1 1 1 3

PMGPSOR

Wins 1 7 7 7 7 7 7 43

Losses 5 0 0 0 0 0 0 5

Difference -4 7 7 7 7 7 7 38

Rank 7 1 1 1 1 1 1 1

PMGPSORI

Wins 1 7 7 6 7 7 7 42

Losses 5 0 0 0 0 0 0 5

Difference -4 7 7 6 7 7 7 37

Rank 7 1 1 3 1 1 1 2

CDAS-

SMPSO

Wins 0 2 0 3 1 0 3 9

Losses 9 6 9 6 6 9 6 51

Difference -9 -4 -9 -3 -5 -9 -3 -42

Rank 10 7 10 7 7 10 7 10
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Table 4.11: IGD Ranking for 3-objective DTLZ (continue)

Algorithm Result 3-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

KnEA

Wins 4 4 1 4 4 1 5 23

Losses 4 5 8 4 5 8 4 38

Difference 0 -1 -7 0 -1 -7 1 -15

Rank 5 6 9 5 6 9 5 6

MOEA/DD

Wins 7 6 4 7 6 3 4 37

Losses 2 3 5 0 3 6 5 24

Difference 5 3 -1 7 3 -3 -1 13

Rank 3 4 6 1 4 7 6 4

NSGA-III

Wins 6 5 2 4 5 2 6 30

Losses 3 4 6 4 4 7 3 31

Difference 3 1 -4 0 1 -5 3 -1

Rank 4 5 7 5 5 8 4 5

Table 4.12: IGD Ranking for 5-objective DTLZ

Algorithm Result 5-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOSTD

Wins 6 3 4 0 2 4 0 19

Losses 2 5 5 3 5 0 6 26

Difference 4 -2 -1 -3 -3 4 -6 -7

Rank 3 6 6 9 6 1 9 8

MGPSOR

Wins 5 2 5 0 2 4 1 19

Losses 3 5 3 2 5 0 5 23

Difference 2 -3 2 -2 -3 4 -4 -4

Rank 5 7 4 4 6 1 7 6
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Table 4.12: IGD Ranking for 5-objective DTLZ (continue)

Algorithm Result 5-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSORI

Wins 5 2 5 0 2 4 0 18

Losses 2 6 3 2 5 0 5 23

Difference 3 -4 2 -2 -3 4 -5 -5

Rank 4 8 4 4 6 1 8 7

PMGPSOSTD

Wins 1 7 7 0 7 4 7 33

Losses 6 0 0 2 0 0 0 8

Difference -5 7 7 -2 7 4 7 25

Rank 7 1 1 4 1 1 1 1

PMGPSOR

Wins 1 7 7 0 7 4 7 33

Losses 6 0 0 3 0 0 0 9

Difference -5 7 7 -3 7 4 7 24

Rank 7 1 1 9 1 1 1 3

PMGPSORI

Wins 1 7 7 0 7 4 7 33

Losses 6 0 0 2 0 0 0 8

Difference -5 7 7 -2 7 4 7 25

Rank 7 1 1 4 1 1 1 1

CDAS-

SMPSO

Wins 4 0 0 2 1 0 0 7

Losses 5 9 9 2 8 8 7 48

Difference -1 -9 -9 0 -7 -8 -7 -41

Rank 6 10 10 3 9 9 10 10

KnEA

Wins 0 1 1 0 0 0 5 7

Losses 9 8 8 2 9 8 4 48

Difference -9 -7 -7 -2 -9 -8 1 -41

Rank 10 9 9 4 10 9 5 10
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Table 4.12: IGD Ranking for 5-objective DTLZ (continue)

Algorithm Result 5-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MOEA/DD

Wins 9 5 2 8 5 3 2 34

Losses 0 4 7 0 4 6 5 26

Difference 9 1 -5 8 1 -3 -3 8

Rank 1 5 8 1 5 7 6 5

NSGA-III

Wins 8 6 3 8 6 2 6 39

Losses 1 3 6 0 3 7 3 23

Difference 7 3 -3 8 3 -5 3 16

Rank 2 4 7 1 4 8 4 4

Table 4.13: IGD Ranking for 8-objective DTLZ

Algorithm Result 8-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOSTD

Wins 3 2 4 6 2 4 2 23

Losses 4 3 3 2 5 0 7 24

Difference -1 -1 1 4 -3 4 -5 -1

Rank 5 4 4 3 6 1 8 6

MGPSOR

Wins 3 2 4 1 2 4 3 19

Losses 4 3 3 4 5 0 4 23

Difference -1 -1 1 -3 -3 4 -1 -4

Rank 5 4 4 6 6 1 5 7

MGPSORI

Wins 3 2 4 1 2 4 3 19

Losses 4 3 3 4 5 0 4 23

Difference -1 -1 1 -3 -3 4 -1 -4

Rank 5 4 4 6 6 1 5 7
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Table 4.13: IGD Ranking for 8-objective DTLZ (continue)

Algorithm Result 8-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

PMGPSOSTD

Wins 0 7 7 2 7 4 6 33

Losses 7 0 0 4 0 0 1 12

Difference -7 7 7 -2 7 4 5 21

Rank 8 1 1 5 1 1 2 1

PMGPSOR

Wins 0 7 7 1 7 4 6 32

Losses 7 0 0 4 0 0 1 12

Difference -7 7 7 -3 7 4 5 20

Rank 8 1 1 6 1 1 2 2

PMGPSORI

Wins 0 7 7 1 7 4 6 32

Losses 7 0 0 5 0 0 1 13

Difference -7 7 7 -4 7 4 5 19

Rank 8 1 1 9 1 1 2 3

CDAS-

SMPSO

Wins 6 1 0 6 1 0 0 14

Losses 2 8 9 2 8 8 9 46

Difference 4 -7 -9 4 -7 -8 -9 -32

Rank 3 9 10 3 9 9 10 9

KnEA

Wins 8 0 1 0 0 0 3 12

Losses 1 9 8 9 9 8 4 48

Difference 7 -9 -7 -9 -9 -8 -1 -36

Rank 2 10 9 10 10 9 5 10

MOEA/DD

Wins 9 2 2 8 5 2 1 29

Losses 0 3 6 0 4 6 8 27

Difference 9 -1 -4 8 1 -4 -7 2

Rank 1 4 7 1 5 7 9 5



CHAPTER 4. PARTIAL-DOMINANCE MULTI-GUIDE PARTICLE SWARM
OPTIMIZATION 114

Table 4.13: IGD Ranking for 8-objective DTLZ (continue)

Algorithm Result 8-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

NSGA-III

Wins 6 2 2 8 6 2 9 35

Losses 2 3 6 0 3 6 0 20

Difference 4 -1 -4 8 3 -4 9 15

Rank 3 4 7 1 4 7 1 4

Table 4.14: IGD Ranking for 10-objective DTLZ

Algorithm Result 10-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOSTD

Wins 3 4 4 5 4 4 4 28

Losses 3 3 3 2 3 0 5 19

Difference 0 1 1 3 1 4 -1 9

Rank 5 4 4 3 4 1 6 4

MGPSOR

Wins 3 4 4 0 4 4 5 24

Losses 3 3 3 4 3 0 3 19

Difference 0 1 1 -4 1 4 2 5

Rank 5 4 4 6 4 1 4 5

MGPSORI

Wins 3 4 4 0 4 4 5 24

Losses 3 3 3 4 3 0 3 19

Difference 0 1 1 -4 1 4 2 5

Rank 5 4 4 6 4 1 4 5

PMGPSOSTD

Wins 0 7 7 5 7 4 7 37

Losses 7 0 0 2 0 0 0 9

Difference -7 7 7 3 7 4 7 28

Rank 8 1 1 3 1 1 1 1
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Table 4.14: IGD Ranking for 10-objective DTLZ (continue)

Algorithm Result 10-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

PMGPSOR

Wins 0 7 7 0 7 4 7 32

Losses 7 0 0 4 0 0 0 11

Difference -7 7 7 -4 7 4 7 21

Rank 8 1 1 6 1 1 1 2

PMGPSORI

Wins 0 7 7 0 7 4 7 32

Losses 7 0 0 4 0 0 0 11

Difference -7 7 7 -4 7 4 7 21

Rank 8 1 1 6 1 1 1 2

CDAS-

SMPSO

Wins 3 1 0 0 1 0 0 5

Losses 2 7 9 2 8 8 9 45

Difference 1 -6 -9 -2 -7 -8 -9 -40

Rank 4 8 10 5 9 10 10 10

KnEA

Wins 8 0 1 0 0 0 2 11

Losses 0 7 8 4 9 7 6 41

Difference 8 -7 -7 -4 -9 -7 -4 -30

Rank 1 9 9 6 10 9 7 9

MOEA/DD

Wins 8 0 2 8 2 1 1 22

Losses 0 8 7 0 6 6 8 35

Difference 8 -8 -5 8 -4 -5 -7 -13

Rank 1 10 8 1 7 8 9 8

NSGA-III

Wins 6 3 3 8 2 2 2 26

Losses 2 6 6 0 6 6 6 32

Difference 4 -3 -3 8 -4 -4 -4 -6

Rank 3 7 7 1 7 7 7 7
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Table 4.15: IGD Ranking for 15-objective DTLZ

Algorithm Result 15-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOSTD

Wins 3 4 3 5 3 4 2 24

Losses 4 0 4 0 3 0 5 16

Difference -1 4 -1 5 0 4 -3 8

Rank 5 1 5 1 5 1 6 4

MGPSOR

Wins 3 4 3 0 3 4 5 22

Losses 4 0 4 2 3 0 3 16

Difference -1 4 -1 -2 0 4 2 6

Rank 5 1 5 7 5 1 4 6

MGPSORI

Wins 3 4 3 0 4 4 5 23

Losses 4 0 4 2 3 0 3 16

Difference -1 4 -1 -2 1 4 2 7

Rank 5 1 5 7 4 1 4 5

PMGPSOSTD

Wins 0 4 6 5 7 4 7 33

Losses 7 0 1 0 0 0 0 8

Difference -7 4 5 5 7 4 7 25

Rank 8 1 2 1 1 1 1 1

PMGPSOR

Wins 0 4 6 1 7 4 7 29

Losses 7 0 1 2 0 0 0 10

Difference -7 4 5 -1 7 4 7 19

Rank 8 1 2 6 1 1 1 2

PMGPSORI

Wins 0 4 6 0 7 4 7 28

Losses 7 0 1 2 0 0 0 10

Difference -7 4 5 -2 7 4 7 18

Rank 8 1 2 7 1 1 1 3



CHAPTER 4. PARTIAL-DOMINANCE MULTI-GUIDE PARTICLE SWARM
OPTIMIZATION 117

Table 4.15: IGD Ranking for 15-objective DTLZ (continue)

Algorithm Result 15-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

CDAS-

SMPSO

Wins 7 2 0 0 1 0 0 10

Losses 1 6 9 0 8 7 9 40

Difference 6 -4 -9 0 -7 -7 -9 -30

Rank 2 7 10 3 9 9 10 9

KnEA

Wins 7 0 1 0 0 0 2 10

Losses 1 8 8 3 9 7 5 41

Difference 6 -8 -7 -3 -9 -7 -3 -31

Rank 2 9 9 10 10 9 6 10

MOEA/DD

Wins 9 0 2 0 2 0 1 14

Losses 0 8 7 0 7 6 8 36

Difference 9 -8 -5 0 -5 -6 -7 -22

Rank 1 9 8 3 8 8 9 8

NSGA-III

Wins 6 2 9 0 3 2 2 24

Losses 3 6 0 0 4 6 5 24

Difference 3 -4 9 0 -1 -4 -3 0

Rank 4 7 1 3 7 7 6 7

Table 4.16: IGD Ranking for 3-objective WFG

Algorithm Result 3-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOSTD

Wins 2 0 5 0 2 2 1 0 1 13

Losses 4 7 4 7 3 7 7 7 7 53

Difference -2 -7 1 -7 -1 -5 -6 -7 -6 -40

Rank 5 8 5 8 4 8 8 8 8 8
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Table 4.16: IGD Ranking for 3-objective WFG (continue)

Algorithm Result 3-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOR

Wins 0 0 3 0 1 0 0 0 0 4

Losses 8 7 5 7 3 8 8 7 7 60

Difference -8 -7 -2 -7 -2 -8 -8 -7 -7 -56

Rank 9 8 6 8 7 9 10 8 9 9

MGPSORI

Wins 0 0 3 0 1 0 0 0 0 4

Losses 8 7 5 7 3 8 7 7 8 60

Difference -8 -7 -2 -7 -2 -8 -7 -7 -8 -56

Rank 9 8 6 8 7 9 9 8 10 9

PMGPSOSTD

Wins 2 5 7 3 9 5 3 7 8 49

Losses 4 0 0 1 0 0 6 0 0 11

Difference -2 5 7 2 9 5 -3 7 8 38

Rank 5 1 1 4 1 1 7 1 1 2

PMGPSOR

Wins 2 5 7 3 7 5 5 7 7 48

Losses 4 0 0 1 1 0 2 0 2 10

Difference -2 5 7 2 6 5 3 7 5 38

Rank 5 1 1 4 2 1 3 1 3 2

PMGPSORI

Wins 2 5 7 4 7 5 4 7 8 49

Losses 4 0 0 1 1 0 2 0 0 8

Difference -2 5 7 3 6 5 2 7 8 41

Rank 5 1 1 2 2 1 4 1 1 1

CDAS-

SMPSO

Wins 7 3 1 4 1 4 4 4 3 31

Losses 0 5 7 1 6 5 3 3 6 36

Difference 7 -2 -6 3 -5 -1 1 1 -3 -5

Rank 1 7 8 2 9 6 6 4 7 6
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Table 4.16: IGD Ranking for 3-objective WFG (continue)

Algorithm Result 3-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

KnEA

Wins 6 3 0 3 0 3 4 3 4 26

Losses 3 4 9 3 9 6 2 6 5 47

Difference 3 -1 -9 0 -9 -3 2 -3 -1 -21

Rank 4 6 10 7 10 7 4 7 6 7

MOEA/DD

Wins 7 4 1 3 2 5 8 4 6 40

Losses 0 0 7 1 3 0 0 3 3 17

Difference 7 4 -6 2 -1 5 8 1 3 23

Rank 1 5 8 4 4 1 1 4 4 5

NSGA-III

Wins 7 5 6 9 2 5 8 4 5 51

Losses 0 0 3 0 3 0 0 3 4 13

Difference 7 5 3 9 -1 5 8 1 1 38

Rank 1 1 4 1 4 1 1 4 5 2

Table 4.17: IGD Ranking for 5-objective WFG

Algorithm Result 5-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOSTD

Wins 0 0 4 0 4 2 0 0 0 10

Losses 4 5 4 7 3 7 7 7 7 51

Difference -4 -5 0 -7 1 -5 -7 -7 -7 -41

Rank 5 6 5 8 4 8 8 8 8 8

MGPSOR

Wins 0 0 2 0 3 0 0 0 0 5

Losses 4 5 6 7 3 8 7 7 7 54

Difference -4 -5 -4 -7 0 -8 -7 -7 -7 -49

Rank 5 6 7 8 6 9 8 8 8 10
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Table 4.17: IGD Ranking for 5-objective WFG (continue)

Algorithm Result 5-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSORI

Wins 0 0 2 0 4 0 0 0 0 6

Losses 4 5 6 7 3 8 7 7 7 54

Difference -4 -5 -4 -7 1 -8 -7 -7 -7 -48

Rank 5 6 7 8 4 9 8 8 8 9

PMGPSOSTD

Wins 0 6 7 3 7 4 3 3 7 40

Losses 4 0 0 4 0 4 4 4 0 20

Difference -4 6 7 -1 7 0 -1 -1 7 20

Rank 5 1 1 5 1 5 5 5 1 3

PMGPSOR

Wins 0 6 7 3 7 3 3 3 7 39

Losses 4 0 0 4 0 4 4 4 0 20

Difference -4 6 7 -1 7 -1 -1 -1 7 19

Rank 5 1 1 5 1 6 5 5 1 4

PMGPSORI

Wins 0 6 7 3 7 3 3 3 7 39

Losses 4 0 0 4 0 5 4 4 0 21

Difference -4 6 7 -1 7 -2 -1 -1 7 18

Rank 5 1 1 5 1 7 5 5 1 5

CDAS-

SMPSO

Wins 8 6 4 8 3 8 8 6 4 55

Losses 0 0 4 0 5 1 1 2 5 18

Difference 8 6 0 8 -2 7 7 4 -1 37

Rank 1 1 5 1 7 2 2 3 6 2

KnEA

Wins 6 0 0 6 1 6 6 6 3 34

Losses 3 5 9 3 8 2 2 2 6 40

Difference 3 -5 -9 3 -7 4 4 4 -3 -6

Rank 4 6 10 4 9 3 3 3 7 7
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Table 4.17: IGD Ranking for 5-objective WFG (continue)

Algorithm Result 5-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MOEA/DD

Wins 7 0 1 7 0 6 6 8 5 40

Losses 1 5 8 2 9 2 2 1 4 34

Difference 6 -5 -7 5 -9 4 4 7 1 6

Rank 3 6 9 3 10 3 3 2 5 6

NSGA-III

Wins 7 5 6 8 2 9 9 9 6 61

Losses 0 4 3 0 7 0 0 0 3 17

Difference 7 1 3 8 -5 9 9 9 3 44

Rank 2 5 4 1 8 1 1 1 4 1

Table 4.18: IGD Ranking for 8-objective WFG

Algorithm Result 8-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOSTD

Wins 0 1 3 0 3 1 1 1 1 11

Losses 3 5 4 7 3 6 6 6 5 45

Difference -3 -4 -1 -7 0 -5 -5 -5 -4 -34

Rank 4 7 5 8 4 7 7 7 6 7

MGPSOR

Wins 0 1 3 0 3 1 1 1 1 11

Losses 3 5 4 7 3 6 6 6 5 45

Difference -3 -4 -1 -7 0 -5 -5 -5 -4 -34

Rank 4 7 5 8 4 7 7 7 6 7

MGPSORI

Wins 0 1 3 0 3 1 1 1 1 11

Losses 3 5 4 7 3 6 6 6 5 45

Difference -3 -4 -1 -7 0 -5 -5 -5 -4 -34

Rank 4 7 5 8 4 7 7 7 6 7
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Table 4.18: IGD Ranking for 8-objective WFG (continue)

Algorithm Result 8-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

PMGPSOSTD

Wins 0 7 6 3 7 4 4 4 7 42

Losses 3 0 2 4 0 3 3 3 0 18

Difference -3 7 4 -1 7 1 1 1 7 24

Rank 4 1 4 5 1 4 4 4 1 4

PMGPSOR

Wins 0 6 7 3 7 4 4 4 7 42

Losses 3 0 0 4 0 3 3 3 0 16

Difference -3 6 7 -1 7 1 1 1 7 26

Rank 4 3 1 5 1 4 4 4 1 3

PMGPSORI

Wins 0 7 7 3 7 4 4 4 7 43

Losses 3 0 0 4 0 3 3 3 0 16

Difference -3 7 7 -1 7 1 1 1 7 27

Rank 4 1 1 5 1 4 4 4 1 2

CDAS-

SMPSO

Wins 8 0 6 9 1 7 7 7 1 46

Losses 0 9 0 0 7 1 2 0 5 24

Difference 8 -9 6 9 -6 6 5 7 -4 22

Rank 1 10 3 1 8 2 3 1 6 5

KnEA

Wins 7 4 0 6 0 0 0 0 0 17

Losses 1 4 8 3 9 9 9 9 9 61

Difference 6 0 -8 3 -9 -9 -9 -9 -9 -44

Rank 3 5 10 4 10 10 10 10 10 10

MOEA/DD

Wins 0 1 0 7 1 7 8 7 5 36

Losses 3 4 7 1 7 1 0 0 3 26

Difference -3 -3 -7 6 -6 6 8 7 2 10

Rank 4 6 9 2 8 2 1 1 4 6
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Table 4.18: IGD Ranking for 8-objective WFG (continue)

Algorithm Result 8-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

NSGA-III

Wins 7 6 1 7 3 9 8 7 5 53

Losses 0 2 7 1 3 0 0 0 3 16

Difference 7 4 -6 6 0 9 8 7 2 37

Rank 2 4 8 2 4 1 1 1 4 1

Table 4.19: IGD Ranking for 10-objective WFG

Algorithm Result 10-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOSTD

Wins 0 2 3 0 4 2 0 0 4 15

Losses 3 5 3 5 3 5 6 6 3 39

Difference -3 -3 0 -5 1 -3 -6 -6 1 -24

Rank 4 6 5 9 4 6 8 10 4 9

MGPSOR

Wins 0 2 3 0 4 2 0 0 4 15

Losses 3 5 3 5 3 5 6 5 3 38

Difference -3 -3 0 -5 1 -3 -6 -5 1 -23

Rank 4 6 5 9 4 6 8 9 4 7

MGPSORI

Wins 0 2 3 0 4 2 0 1 4 16

Losses 3 5 3 4 3 5 6 5 3 37

Difference -3 -3 0 -4 1 -3 -6 -4 1 -21

Rank 4 6 5 6 4 6 8 8 4 6

PMGPSOSTD

Wins 0 6 6 2 7 5 3 3 7 39

Losses 3 0 0 4 0 2 3 3 0 15

Difference -3 6 6 -2 7 3 0 0 7 24

Rank 4 3 1 5 1 3 4 5 1 3



CHAPTER 4. PARTIAL-DOMINANCE MULTI-GUIDE PARTICLE SWARM
OPTIMIZATION 124

Table 4.19: IGD Ranking for 10-objective WFG (continue)

Algorithm Result 10-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

PMGPSOR

Wins 0 7 6 0 7 5 3 4 7 39

Losses 3 0 0 4 0 2 3 2 0 14

Difference -3 7 6 -4 7 3 0 2 7 25

Rank 4 1 1 6 1 3 4 3 1 2

PMGPSORI

Wins 0 7 6 0 7 5 3 3 7 38

Losses 3 0 0 4 0 2 3 2 0 14

Difference -3 7 6 -4 7 3 0 1 7 24

Rank 4 1 1 6 1 3 4 4 1 3

CDAS-

SMPSO

Wins 8 0 3 9 2 8 9 8 0 47

Losses 0 8 0 0 6 0 0 0 7 21

Difference 8 -8 3 9 -4 8 9 8 -7 26

Rank 1 9 4 1 7 1 1 1 9 1

KnEA

Wins 7 5 0 6 1 0 0 0 0 19

Losses 1 4 7 1 8 8 3 2 8 42

Difference 6 1 -7 5 -7 -8 -3 -2 -8 -23

Rank 3 5 9 2 9 9 7 6 10 7

MOEA/DD

Wins 0 0 0 6 0 0 7 0 2 15

Losses 3 8 8 1 9 8 2 2 6 47

Difference -3 -8 -8 5 -9 -8 5 -2 -4 -32

Rank 4 9 10 2 10 9 3 6 7 10

NSGA-III

Wins 7 6 1 6 2 8 8 8 1 47

Losses 0 2 7 1 6 0 1 0 6 23

Difference 7 4 -6 5 -4 8 7 8 -5 24

Rank 2 4 8 2 7 1 2 1 8 3
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Table 4.20: IGD Ranking for 15-objective WFG

Algorithm Result 15-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOSTD

Wins 0 1 3 0 4 0 0 0 4 12

Losses 1 5 1 7 3 5 6 7 3 38

Difference -1 -4 2 -7 1 -5 -6 -7 1 -26

Rank 5 7 5 8 4 10 9 10 4 10

MGPSOR

Wins 0 1 3 0 4 0 0 0 4 12

Losses 1 5 1 7 3 3 5 6 3 34

Difference -1 -4 2 -7 1 -3 -5 -6 1 -22

Rank 5 7 5 8 4 8 8 8 4 8

MGPSORI

Wins 0 1 3 0 4 0 0 0 4 12

Losses 1 5 1 7 3 3 6 6 3 35

Difference -1 -4 2 -7 1 -3 -6 -6 1 -23

Rank 5 7 5 8 4 8 9 8 4 9

PMGPSOSTD

Wins 0 6 3 3 7 1 0 1 7 28

Losses 1 0 0 4 0 2 4 4 0 15

Difference -1 6 3 -1 7 -1 -4 -3 7 13

Rank 5 1 2 5 1 4 7 7 1 4

PMGPSOR

Wins 0 6 6 3 7 1 2 3 7 35

Losses 1 0 0 4 0 2 4 4 0 15

Difference -1 6 6 -1 7 -1 -2 -1 7 20

Rank 5 1 1 5 1 4 6 5 1 2

PMGPSORI

Wins 0 6 3 3 7 3 3 3 7 35

Losses 1 0 0 4 0 2 4 4 0 15

Difference -1 6 3 -1 7 1 -1 -1 7 20

Rank 5 1 2 5 1 3 5 5 1 2
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Table 4.20: IGD Ranking for 15-objective WFG (continue)

Algorithm Result 15-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

CDAS-

SMPSO

Wins 0 0 3 9 2 9 9 9 2 43

Losses 0 9 0 0 6 0 0 0 6 21

Difference 0 -9 3 9 -4 9 9 9 -4 22

Rank 2 10 2 1 7 1 1 1 7 1

KnEA

Wins 6 1 0 6 1 0 7 6 2 29

Losses 0 4 7 1 8 2 1 1 6 30

Difference 6 -3 -7 5 -7 -2 6 5 -4 -1

Rank 1 6 8 3 9 6 2 3 7 6

MOEA/DD

Wins 0 4 0 6 0 0 6 6 0 22

Losses 0 4 7 2 9 2 2 2 8 36

Difference 0 0 -7 4 -9 -2 4 4 -8 -14

Rank 2 5 8 4 10 6 4 4 9 7

NSGA-III

Wins 0 6 0 7 2 8 6 7 0 36

Losses 0 0 7 1 6 1 1 1 8 25

Difference 0 6 -7 6 -4 7 5 6 -8 11

Rank 2 1 8 2 7 2 3 2 9 5

4.4.1 Hypervolume Discussion

The overall HV rankings for each algorithm, shown in tables 4.1 to 4.10, are
analyzed and discussed next.

The MGPSOSTD ranked first overall four times with regards to HV – more
than any other algorithm investigated in this chapter. The MGPSOSTD ranked
first overall only with respect to HV, for the 3-, 8-, 10-, and the 15-objective
DTLZ benchmark problems (tables 4.1 and 4.3 to 4.5). The MGPSOSTD also
ranked top-three overall eight times with respect to HV, for the DTLZ and
WFG problems (tables 4.1 to 4.5, and 4.8 to 4.10). That is, the most top-three
overall ranks with respect to HV obtained by any algorithm investigated in this
chapter. The worst overall rank obtained by the MGPSOSTD with respect to
HV was seven, for the 5-objective WFG problems (table 4.7). Therefore, the
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HV rankings indicate that the MGPSOSTD is very competitive, even compared
to algorithms developed specifically to solve MaOPs.

The MGPSOR was the only algorithm that did not rank first overall even
once with respect to both HV and IGD. However, the MGPSOR ranked top-
three overall seven times with respect to HV, for the DTLZ and WFG problems
(tables 4.1, 4.4, 4.5, and 4.7 to 4.10). That is, the second-most top-three overall
ranked algorithm with respect to HV. The best overall rank obtained by the
MGPSOR with respect to HV was two, for the 15-objective DTLZ and 8-,
10-, and 15-objective WFG problems (tables 4.5 and 4.8 to 4.10). The worst
overall HV ranking obtained by the MGPSOR was five, for the 8-objective
DTLZ problems (table 4.3). Therefore, the MGPSOR performed and scaled
competitively with respect to HV.

The MGPSORI ranked first overall twice in terms of HV; that is, for the 8-
and 10-objective WFG problems (tables 4.8 and 4.9). The MGPSORI ranked
top-three overall six times with respect to HV for the DTLZ and WFG prob-
lems (tables 4.2, 4.4 to 4.6, 4.8, and 4.9). The worst overall HV ranking for the
MGPSORI was five, for the 5-objective WFG problems (table 4.7). Therefore,
the MGPSORI performed and scaled very competitively with respect to HV.
The performance of the MGPSOR and the MGPSORI was comparable with
respect to HV.

The best overall HV rank received by the PMGPSOSTD was four, for the
15-objective DTLZ problems (table 4.5) and the 10-objective WFG problems
(table 4.9). The PMGPSOSTD was the only algorithm that did not rank worst
overall even once (for both performance measures). The worst overall HV
ranking for the PMGPSOSTD was seven, for the 3-objective DTLZ problems
(table 4.1). The PMGPSOSTD ranked toward the middle overall often with
respect to HV. Therefore, relative to the other investigated algorithms, the
PMGPSOSTD did not perform competitively with regards to HV.

The best overall HV rank obtained by the PMGPSOR was five, for
the 15-objective DTLZ problems and the 10-objective WFG problems (ta-
bles 4.5 and 4.9). The PMGPSOR ranked worst overall twice in terms of HV;
that is, for the 3- and 5-objective WFG problems (tables 4.6 and 4.7). The
PMGPSOR ranked toward the end overall often with respect to HV. Therefore,
the PMGPSOR did not perform competitively with regards to HV.

The best overall HV ranking for the PMGPSORI was five, for the 15-
objective DTLZ and WFG problems (tables 4.5 and 4.10). The PMGPSORI

only received the worst overall rank once in terms of HV, for the 3-objective
WFG problems (table 4.6). The PMGPSOR ranked toward the end overall
often with respect to HV. Therefore, the PMGPSORI did not perform com-
petitively with respect to HV. The performance of the PMGPSORI and the
PMGPSOR was similar in terms of HV. The PMGPSORI and the PMGPSOR

performed marginally worse than the PMGPSOSTD in terms of HV.
The best overall rank obtained by the CDAS-SMPSO algorithm in terms

of HV was two, for the 3- and 5-objective WFG problems (tables 4.6 and 4.7).
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That is, the only two top-three overall ranks obtained by the CDAS-SMPSO
algorithm with respect to HV. The CDAS-SMPSO algorithm ranked worst
overall with respect to HV once. That is, for the 3-objective DTLZ problems
(table 4.1). Therefore, the CDAS-SMPSO algorithm performed inconsistently
with regards to HV.

The KnEA performed best overall twice in terms of HV; i.e., for the 3-
and 5-objective WFG problems (tables 4.6 and 4.7). The KnEA only ranked
top-three overall three times, for the DTLZ problems with respect to HV (ta-
bles 4.1, 4.6 and 4.7). The KnEA ranked last overall more than any other
algorithm. The KnEA ranked worst overall four times with respect to HV;
that is, for the 5- and 8-objective DTLZ and 8- and 15-objective WFG prob-
lems (tables 4.2, 4.3, 4.8, and 4.10). The few cases for which the KnEA did
perform best or top-three overall with respect to HV were for problems with
few objectives. The KnEA also performed inconsistently in terms of HV.
Therefore, the KnEA performed worst overall with regards to HV.

The MOEA/DD received the top overall rank only once, for the 5-objective
DTLZ problems with respect to HV (table 4.2). The MOEA/DD only ranked
among the top-three overall one other time; i.e., for the 8-objective DTLZ
problems in terms of HV (table 4.3). The MOEA/DD had the worst overall
rank associated with it twice with respect to HV; that is, for the 10-objective
DTLZ and WFG problems (tables 4.4 and 4.9). Therefore, the MOEA/DD
performed inconsistently with respect to HV.

The NSGA-III ranked first overall once in terms of HV, for the 15-objective
WFG problems (table 4.10). The NSGA-III ranked in the top-three over-
all three times with respect to HV; that is, for the WFG problems (ta-
bles 4.7, 4.8, and 4.10. The NSGA-III received the worst overall rank with
respect to HV for only the 15-objective DTLZ problems (table 4.5). There-
fore, the NSGA-III performed somewhat competitively with regards to HV.

4.4.2 Inverted Generational Distance Discussion

The overall IGD rankings for each algorithm, shown in tables 4.11 to 4.20, are
analyzed and discussed next.

The best overall rank obtained by the MGPSOSTD in terms of IGD was
four, for the 10- and 15-objective DTLZ problems (tables 4.14 and 4.15). The
MGPSOSTD ranked worst overall only once; that is, for the 15-objective WFG
problems with respect to IGD (table 4.20). The MGPSOSTD ranked towards
the middle and bottom overall often with regards to IGD. Therefore, the
MGPSOSTD did not scale to many-objectives competitively with respect to
IGD.

The MGPSOR was the only algorithm that did not rank first overall even
once. The best overall rank obtained by the MGPSOR with respect to IGD was
five, for the 10-objective DTLZ problems (table 4.14). The MGPSOR ranked
worst overall two times in terms of IGD; that is, for the 3- and 5-objective
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WFG problems (tables 4.16 and 4.17). The MGPSOR ranked towards the
middle and bottom overall often with regards to IGD. Therefore, in terms of
IGD, the MGPSOR did not perform competitively.

The best overall rank received by the MGPSORI in terms of IGD was five,
for the 10-objective DTLZ problems (table 4.14). The MGPSORI received
the worst overall ranking in terms of IGD for the 3-objective WFG problems
only (table 4.16). The MGPSORI ranked towards the middle and bottom
overall often with regards to IGD. Therefore, the MGPSORI did not scale
competitively in terms of the IGD. The performance of the MGPSOSTD, the
MGPSOR, and the MGPSORI was similar with respect to IGD.

The PMGPSOSTD ranked first overall three times with respect to IGD;
that is, the most compared to any other algorithm investigated in this chap-
ter. The PMGPSOSTD ranked first overall with respect to IGD, for the DTLZ
problems with 8, 10, and 15 objectives (tables 4.13 to 4.15). The PMGPSOSTD

ranked top-three overall eight times with respect to IGD, for the DTLZ and
WFG problems (tables 4.11 to 4.17, and 4.19). That is, the second-most
top-three overall ranked algorithm with respect to IGD. Note again that the
PMGPSOSTD was the only algorithm that did not rank worst overall even
once for both performance measures. The worst overall IGD ranking for the
PMGPSOSTD was only four, for the 8- and 15-objective WFG problems (ta-
bles 4.18 and 4.20). Therefore, the PMGPSOSTD scaled to many-objectives
best with regards to IGD.

The PMGPSOR ranked first overall only once; that is, for the 3-objective
DTLZ problems with respect to IGD (table 4.11). However, the PMGPSOR

ranked top-three overall nine times in terms of IGD, for the DTLZ and WFG
problems; that is, the most top-three overall ranks obtained by any of the
algorithms (tables 4.11 to 4.16, and 4.18 to 4.20). The worst overall IGD
ranking for the PMGPSOR was only four, the 5-objective WFG problems
(table 4.17). Therefore, the PMGPSOR scaled to many-objectives well with
respect to IGD.

The PMGPSORI ranked first overall twice with respect to IGD, for
the 5-objective DTLZ problems (table 4.12) and the 3-objective WFG
problems (table 4.16). The PMGPSORI also ranked top-three overall
nine times with respect to IGD, for the WFG and DTLZ problems (ta-
bles 4.11 to 4.16 and 4.18 to 4.20). That is, the most top-three overall ranks
received by any of the algorithms (together with the PMGPSOR). The worst
overall IGD ranking for the PMGPSORI was five, for the 5-objective WFG
problems (table 4.17). Therefore, the PMGPSORI scaled to many-objectives
very competitively with respect to IGD. The performance of the PMGPSOSTD,
the PMGPSOR, and the PMGPSORI was comparable in terms of IGD.

The CDAS-SMPSO algorithm ranked first overall twice with regards to
IGD; that is, for the 10- and 15-objective WFG problems (tables 4.19 and 4.20).
The CDAS-SMPSO algorithm ranked top-three overall three times with re-
spect to IGD, for the WFG problems (tables 4.17, 4.19, and 4.20). The CDAS-
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SMPSO algorithm ranked worst overall with respect to IGD three times. That
is, for the 3-, 5-, and 10-objective DTLZ problems (tables 4.11, 4.12, and 4.14).
Therefore, even with a few promising ranks, the CDAS-SMPSO algorithm per-
formed very inconsistently in terms of IGD.

The best overall rank received by the KnEA with respect to IGD was six,
for the 3-objective DTLZ problems and the 15-objective WFG problems (ta-
bles 4.11 and 4.20). The KnEA ranked worst overall more than any other
algorithm. The KnEA ranked worst overall four times with respect to IGD;
that is, for the 5-, 8-, and 15-objective DTLZ and the 8-objective WFG prob-
lems (tables 4.12, 4.13, 4.15, and 4.18). Therefore, the KnEA scaled the worst
overall in terms of IGD.

The best overall IGD rank received by the MOEA/DD was four, obtained
for the 3-objective DTLZ problems (table 4.11). The MOEA/DD had the
worst overall rank associated with it once with respect to IGD; that is, for
the 10-objective WFG problems (table 4.19). The MOEA/DD ranked toward
the middle overall often with respect to IGD. Therefore, relative to the other
investigated algorithms, the MOEA/DD did not perform competitively with
respect to IGD.

The NSGA-III ranked first overall twice in terms of IGD, for the 5- and
8-objective WFG problems (tables 4.17 and 4.18). The NSGA-III ranked in
the top-three overall four times with respect to IGD; that is, for the WFG
problems (tables 4.16 to 4.19). The worst overall rank obtained by the NSGA-
III with respect to IGD was seven, for the 10- and 15-objective DTLZ problems
(tables 4.14 and 4.15). Therefore, the NSGA-III performed competitively in
terms of IGD.

4.4.3 General Discussion

Some general findings with regards to tables 4.1 to 4.20 are discussed next.
The partial-dominance approach (the PMGPSO algorithm) improved the

scalability of the MGPSO algorithm in terms of IGD, but not in terms of
HV. Remember that the PMGPSO algorithm randomly selects three objec-
tives each time the partial-dominance relation is applied; that is, whenever
an insert into the archive is attempted. Sato et al. [133] showed that the in-
terval at which new objectives are chosen for the partial-dominance relation
has a significant impact on the resulting HV. Note, however, that benchmark
MaOPs of a different kind was solved in [133]. Helbig and Engelbrecht [52, 69]
also investigated larger intervals with some success for GAs and to a lesser
extent for PSO algorithms. Also, note that the HV performance measure was
not included in [52, 69]. Therefore, future research is required to investigate
whether randomly selecting three objectives at different iteration intervals will
lead to better PMGPSO algorithm performance (especially with regards to
HV).
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The MGPSOSTD scaled to many-objectives surprisingly well in terms of
HV, despite using the struggling Pareto-dominance relation. Recall from
Chapter 3 that each particle in the MGPSO algorithm utilizes a personal
best guide, a neighbourhood best guide, and an archive guide to help guide
the swarm towards the POF. The personal best and neighbourhood best posi-
tions are updated using the corresponding objective function fitness value as a
result of the multi-swarm approach employed by the MGPSO algorithm. The
archive guide is selected as the least crowded solution from a random tourna-
ment of size three. Therefore, the multi-swarm approach may be an implicit
mechanism to help overcome the degrading Pareto-dominance relation since
each subswarm focuses on optimizing a specific objective which in turn pro-
motes exploitation for each objective individually. It is also possible that the
MGPSO algorithm scaled decently because the Pareto-dominance relation is
only used to update the archive and does not have that strong of an effect on
the selection of the search guides.

The use of different dynamic archive balance coefficient update strategies
did not improve the performance (i.e. scalability) of the MGPSO algorithm nor
the PMGPSO algorithm. The original STD approach was deemed the superior
option for both the MGPSO algorithm and the PMGPSO algorithm. Future
research will investigate combining the MGPSOSTD and the PMGPSOSTD in
some way because the former performed best with respect to HV and the latter
with respect to IGD. Note, however, that the MGPSO algorithm and PMG-
PSO algorithm variants, using the R and the RI, were still very competitive.

The results, discussed in the sections above, are summarized in ta-
bles 4.21 and 4.22. The tables contain the number of overall best, overall
top-three, and overall worst ranks obtained by each algorithm with respect
to either HV or IGD. Tables 4.23 and 4.24 contain the average overall rank
obtained by each algorithm for each benchmark problem suite for each number
of objectives with respect to either HV or IGD.

4.5 Summary
This chapter discussed the partial-dominance approach and introduced the
partial-dominance multi-guide particle swarm optimization (PMGPSO) algo-
rithm. The PMGPSO algorithm uses the partial-dominance relation, which
modifies the Pareto-dominance relation in order to increase the selection pres-
sure towards the POF during MaOO. The scalability of the multi-guide parti-
cle swarm optimization (MGPSO) algorithm [137], the PMGPSO algorithm,
and a number of benchmark algorithms were empirically investigated on a
set of benchmark problems by calculating, and statistically analyzing, the
inverted generational distance (IGD) [25, 128] and hypervolume (HV) [181]
performance measure values that were calculated on the normalized solu-
tions without outliers. The benchmark algorithms included the controlling
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Table 4.21: HV Ranking Summary

Algorithm
Number of

overall best HV ranks

Number of

overall HV ranks ≤ 3

Number of

overall worst HV ranks

MGPSOSTD 4 8 0

MGPSOR 0 7 0

MGPSORI 2 6 0

PMGPSOSTD 0 0 0

PMGPSOR 0 0 2

PMGPSORI 0 0 1

CDAS-SMPSO 0 2 1

KnEA 2 3 4

MOEA/DD 1 2 2

NSGA-III 1 3 1

Table 4.22: IGD Ranking Summary

Algorithm
Number of

overall best IGD ranks

Number of

overall IGD ranks ≤ 3

Number of

overall worst IGD ranks

MGPSOSTD 0 0 1

MGPSOR 0 0 2

MGPSORI 0 0 1

PMGPSOSTD 3 8 0

PMGPSOR 1 9 0

PMGPSORI 2 9 0

CDAS-SMPSO 2 3 3

KnEA 0 0 4

MOEA/DD 0 0 1

NSGA-III 2 4 0

dominance area of solutions speed constraint multi-objective particle swarm
optimization (CDAS-SMPSO) [33] algorithm, the knee-point driven evolu-
tionary algorithm (KnEA) [174], the many-objective evolutionary algorithm
based on dominance and decomposition (MOEA/DD) [95], and the reference-
point based many-objective non-dominated sorting genetic algorithm (NSGA-
III) [38]. The benchmark functions were configured with 3, 5, 8, 10, and 15
objectives to test algorithm scalability. The number of decision variables was
fixed at 30. Three different archive balance coefficient update strategies were
also investigated with the aim of improving scalability. These included the
standard static archive balance coefficient update strategy (STD), the random
dynamic archive balance coefficient update strategy (R), and the random per
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Table 4.23: HV Ranking Averages

Algorithm Benchmark

Problems

nm Average
3 5 8 10 15

MGPSOSTD

DTLZ 1 3 1 1 1 1.4

WFG 5 7 3 2 3 4

Average Rank 3 5 2 1.5 2 2.7

MGPSOR

DTLZ 3 4 5 3 2 3.4

WFG 4 3 2 2 2 2.6

Average Rank 3.5 3.5 3.5 2.5 2 3

MGPSORI

DTLZ 4 2 4 2 4 3.2

WFG 3 5 1 1 4 2.8

Average Rank 3.5 3.5 2.5 1.5 4 3

PMGPSOSTD

DTLZ 7 6 6 5 4 5.6

WFG 8 8 5 4 5 6

Average Rank 7.5 7 5.5 4.5 4.5 5.8

PMGPSOR

DTLZ 8 8 8 8 5 7.4

WFG 9 10 8 5 7 7.8

Average Rank 8.5 9 8 6.5 6 7.6

PMGPSORI

DTLZ 9 7 9 9 5 7.8

WFG 9 9 7 6 5 7.2

Average Rank 9 8 8 7.5 5 7.5

CDAS-SMPSO
DTLZ 10 9 7 6 9 8.2

WFG 2 2 4 7 9 4.8

Average Rank 6 5.5 5.5 6.5 9 6.5

KnEA
DTLZ 2 10 10 7 8 7.4

WFG 1 1 10 9 10 6.2

Average Rank 1.5 5.5 10 8 9 6.8

MOEA/DD
DTLZ 5 1 2 10 7 5

WFG 7 6 9 10 8 8

Average Rank 6 3.5 5.5 10 7.5 6.5

NSGA-III
DTLZ 6 5 3 4 10 5.6

WFG 6 3 6 8 1 4.8

Average Rank 6 4 4.5 6 5.5 5.2
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Table 4.24: IGD Ranking Averages

Algorithm Benchmark

Problems

nm Average
3 5 8 10 15

MGPSOSTD

DTLZ 9 8 6 4 4 6.2

WFG 8 8 7 9 10 8.4

Average Rank 8.5 8 6.5 6.5 7 7.3

MGPSOR

DTLZ 8 6 7 5 6 6.4

WFG 9 10 7 7 8 8.2

Average Rank 8.5 8 7 6 7 7.3

MGPSORI

DTLZ 7 7 7 5 5 6.2

WFG 9 9 7 6 9 8

Average Rank 8 8 7 5.5 7 7.1

PMGPSOSTD

DTLZ 3 1 1 1 1 1.4

WFG 2 3 4 3 4 3.2

Average Rank 2.5 2 2.5 2 2.5 2.3

PMGPSOR

DTLZ 1 3 2 2 2 2

WFG 2 4 3 2 2 2.6

Average Rank 1.5 3.5 2.5 2 2 2.3

PMGPSORI

DTLZ 2 1 3 2 3 2.2

WFG 1 5 2 3 2 2.6

Average Rank 1.5 3 2.5 2.5 2.5 2.4

CDAS-SMPSO
DTLZ 10 10 9 10 9 9.6

WFG 6 2 5 1 1 3

Average Rank 8 6 7 5.5 5 6.3

KnEA
DTLZ 6 10 10 9 10 9

WFG 7 7 10 7 6 7.4

Average Rank 6.5 8.5 10 8 8 8.2

MOEA/DD
DTLZ 4 5 5 8 8 6

WFG 5 6 6 10 7 6.8

Average Rank 4.5 5.5 5.5 9 7.5 6.4

NSGA-III
DTLZ 5 4 4 7 7 5.4

WFG 2 1 1 3 5 2.4

Average Rank 3.5 2.5 2.5 5 6 3.9
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particle dynamic archive balance coefficient update strategy (RI) [53]. The
results were presented in tables and discussed.

The MGPSO algorithm using the STD (MGPSOSTD) scaled better in terms
of HV than any other algorithm investigated in this chapter. The MGPSO al-
gorithm using the R (MGPSOR) and the MGPSO algorithm using the RI
(MGPSORI) performed competitively in terms of HV, ranking top-three over-
all often. The PMGPSO algorithm using the STD (PMGPSOSTD) scaled best
overall with regards to IGD. The PMGPSOSTD also never performed worst.
The PMGPSO algorithm using the R (PMGPSOR) and the PMGPSO algo-
rithm using the RI (PMGPSORI) performed competitively in terms of IGD,
ranking top-three overall most often. The dynamic archive balance coefficient
update strategies did not improve the scalability of MGPSO algorithm or the
PMGPSO algorithm.

The partial-dominance approach used by the PMGPSO algorithm did
improve the scalability of the MGPSO algorithm but only with regards to
IGD when considering the number of top-three overall ranks. The partial-
dominance approach slightly deteriorated algorithm scalability in terms of HV.
This may be attributed to the interval size at which new objectives were ran-
domly selected to be considered for the partial-dominance relation [52, 69, 133].
That is, the PMGPSO algorithm randomly reselects three objectives every
time an insert into the archive is attempted. Randomly reselecting objectives
at each iteration or after a certain number of iterations may improve algorithm
performance [52, 69], especially with respect to HV [133].

In terms of the benchmark algorithms, the CDAS-SMPSO algorithm, the
KnEA, and the MOEA/DD ranked worst overall more often compared to the
other algorithms. The KnEA, however, scaled to many-objective optimization
problems (MaOPs) the worst. The NSGA-III was the only algorithm that
obtained top overall ranks both in terms of HV and IGD. The NSGA-III was
very competitive compared to the other benchmark algorithms.



Chapter 5

Knee-point driven Multi-guide
Particle Swarm Optimization

“You are the most influential person you will talk to all day.”
— Zig Ziglar

This chapter proposes another new variation of the MGPSO algorithm, i.e.,
the knee-point driven multi-guide particle swarm optimization (KnMGPSO)
algorithm. As sub-objectives, this chapter aims to evaluate the performance of
the KnMGPSO algorithm in comparison with other algorithms; and to evalu-
ate the effect of different archive balance coefficient update strategies for the
KnMGPSO algorithm. This chapter also empirically compares the scalability
of the KnMGPSO algorithm with that of the MGPSO algorithm and several
other benchmark MaOO algorithms. More specifically, section 5.1 proposes
knee-points as another approach to attempt to improve the scalability of the
MGPSO algorithm. The KnMGPSO algorithm is presented in section 5.2, the
empirical process followed is presented in section 5.3, and section 5.4 presents
the results and discusses the findings. Finally, section 5.5 gives a summary of
this chapter.

5.1 Knee-points Approach
A number of approaches have been proposed to enable algorithms to find
regions or points of interest in the POF [109, 130, 152]. Oftentimes points
referred to as knee-points are considered to be of interest. Knee-points within
the current found front represent the solutions that are converging best within
their immediate neighbourhood and are therefore useful for increasing the se-
lection pressure to converge towards the POF [105]. Intuitively, a knee-point
is a Pareto-optimal solution with maximum marginal rates of return, which
means that a small improvement in one objective of such a solution is ac-
companied by a severe deterioration in at least one other objective. That is,

136
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minimally improving some objective while extremely degrading others cannot
be justified in the absence of a decision-maker where all of the objectives are
considered to be equally important. It can be said that knee-points represent
the naturally preferable solutions within the POF when no domain knowledge
is available.

Zhang et. al. [174] noted that the incorporation of knee-points during
optimization results in a bias towards a higher HV. Maltese et. al. [105] stated
that since the hypervolume metric is maximized if, and only if, the solution
set consists entirely of all Pareto-optimal points [57], prioritizing hypervolume
via knee-points should theoretically aid convergence towards the true Pareto
front. Both Zhang et. al. [174] and Maltese et. al. [105] have successfully used
knee-points for MaOO. For this reason, this study proposes knee-points as the
second main viable solution to help the MGPSO algorithm scale to MaOPs.
This work uses the same adaptive knee-points identification approach as [174]
and [105]. Note that this approach was thoroughly discussed in section 3.1.2.1.

It is noted in [174] that, in some cases, the weighted distance between solu-
tions can be superior to crowding distance for diversity purposes. Figure 5.1,
taken from [174], illustrates a situation where if the crowding distance is used,
neither solution B nor solution C will have the chance to win against other so-
lutions. However, from the diversity (i.e. exploration) point of view, it would
be helpful if either B or C can have a chance to win in the tournament for
reproduction. By using the weighted distance operator, such solutions stand
a chance to be considered. Note, however, that this thesis focusses on im-
proving the lack of selection pressure experienced when primarily using the
Pareto-dominance relation and not on improving diversity. In other words,
the crowding distance operator has been sufficient so far in terms of solution
diversity management and preservation for the MGPSO algorithm [136]. Fu-
ture research will investigate the impact that weighted distance has on the
performance of the MGPSO algorithm. Note, however, that the weighted dis-
tance approach has the drawback of introducing a parameter for the k-nearest
neighbours [56] component, that ideally needs to be tuned since it determines
how many of the closest solutions, in objective space, should be considered for
the weighted distance calculation. In [174], three-nearest neighbours were used
without stating whether other values were tested. In a more recent paper [105],
no detail is given about the parameter setting for the number of neighbours
considered for the weighted distance calculation.

5.2 Knee-point driven Multi-guide Particle
Swarm Optimization

The Pareto-dominance relation breaks down as the number of objectives in-
creases due to a lack of selection pressure in larger-dimensional objective
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Figure 5.1: An illustrative example where weighted distance may be advanta-
geous over crowding distance.

spaces [77, 106, 141]. The crowding distance operator breaks down as the
number of objectives increases due to a bias towards dominance-resistant so-
lutions [77, 91, 105]. Dominance-resistant solutions are undesirable because
these non-dominated solutions appear to be desirable, but upon closer ex-
amination translate to poor objective function values for the majority of the
objectives. When solving MaOPs using the Pareto-dominance relation as the
only convergence-related mechanism and the crowding distance operator as
the only diversity-related mechanism, non-dominated dominance-resistant so-
lutions will guide the search into sub-optimal areas of the search space. This
is, unfortunately, often the case for the original MGPSO algorithm.

The KnMGPSO algorithm is the same as the original MGPSO algorithm
except for the differences discussed next. The KnMGPSO algorithm, another
adaptation of the original MGPSO algorithm, utilizes knee-points as an ad-
ditional convergence-related metric to help distinguish desirable solutions for
MaOPs. The KnMGPSO identifies a knee-point as follows: for each particle x,
x is considered to be a knee-point if, and only if, x possesses the maximum ob-
jective space distance to the extremal hyperplane H within its neighbourhood
(refer to section 3.1.2.1).

Note again that solutions identified as knee-points during the search are
often not knee-points of the true POF, since the current found front (i.e. the
archive) is simply an approximation of the true POF. Instead, knee-points of
the current archive represent particles that are converging best within their
neighbourhood and are therefore useful for increasing the selection pressure
to converge towards the POF [105]. The KnMGPSO algorithm also aims
to find a set of diverse solutions by using the same diversity management
and preservation approach already utilized by the original MGPSO; that is,
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the crowding distance operator. Diversity is further promoted by the knee-
points approach that is used since the use of adaptive neighbourhoods (refer
to section 3.1.2.1) result in exactly one knee-point per neighbourhood.

Instead of only using crowding distance to determine the archive guide, the
KnMGPSO algorithm uses the knee-points identification approach presented
in section 3.1.2.1 instead. More specifically, in line 19 of Algorithm 8, the
KnMGPSO algorithm first uses knee-points, instead of crowding distance, to
determine the winner of the tournament (i.e. the archive guide). If the knee-
point identification approach fails to distinguish between solutions, the archive
guide is determined as in the original MGPSO algorithm. That is, the least
crowded solution of the current tournament will be chosen as the archive guide.
By doing this, the KnMGPSO algorithm essentially guides the search around
the best converging non-dominated solutions while also taking diversity into
account. A tournament size of three, identical to that of the MGPSO algorithm
and the PMGPSO algorithm, is used for the archive guide selection. Note that
the KnMGPSO algorithm, like the original MGPSO algorithm, also removes
dominated solutions from the archive after inserting a new non-dominated
solution (lines 4 and 9 of Algorithm 7).

5.3 Empirical Process
Note that this chapter uses the same empirical proces as in section 4.3. Sec-
tion 5.3.1 discusses the algorithms and parameter tuning approach.

5.3.1 Algorithms and Parameter Tuning Approach

For this part of the study, the following algorithms were investigated:

1. MGPSOSTD [53, 136]. Refer to section 3.2.2.2 for detail.

2. MGPSOR [53, 136]. Refer to sections 3.2.2.2 and 3.17 for detail.

3. MGPSORI [53, 136]. Refer to sections 3.2.2.2 and 3.18 for detail.

4. The knee-point driven multi-guide particle swarm optimization algo-
rithm with the standard static archive balance coefficient update strategy
(KnMGPSOSTD). Refer to sections 3.2.2.2 and 5.2 for detail.

5. The knee-point driven multi-guide particle swarm optimization algorithm
with the random dynamic archive balance coefficient update strategy
(KnMGPSOR). Refer to sections 3.2.2.2 and 5.2 for detail.

6. The knee-point driven multi-guide particle swarm optimization algorithm
with the random per particle dynamic archive balance coefficient update
strategy (KnMGPSORI). Refer to sections 3.2.2.2 and 5.2 for detail.
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7. CDAS-SMPSO [33]. Refer to section 3.2.2.1 for detail.

8. KnEA [174]. Refer to section 3.1.2.1 for detail.

9. MOEA/DD [95]. Refer to section 3.1.2.2 for detail.

10. NSGA-III [38]. Refer to section 3.1.2.3 for detail.

Note that the PMGPSO algorithm was not investigated in this part of the
study. The PMGPSO algorithm and the KnMGPSO algorithm are compared
in the following chapter.

A summary of the control parameter configurations for the KnMGPSO
algorithm is listed below. Note that all of the other control parameter
configurations for the KnMGPSO algorithm was kept identical to that of the
MGPSO and PMGPSO algorithms (as discussed in section 4.3).

KnMGPSOSTD, KnMGPSOR, KnMGPSORI
The control parameter configurations for the KnMGPSO algorithm were as
follows. As the number of objectives increases for MaOPs, Zhang et al. [174]
suggests increasingly small values for κ, the desired ratio of knee-points to
non-dominated solutions. Therefore, κ was set to 0.5 for 3 objectives, 0.4 for 5
objectives, 0.3 for 8 objectives, 0.2 for 10 objectives, and 0.1 for 15 objectives.

Note that the remaining algorithms have already been tuned in Chap-
ter 4. The algorithm control parameter configurations for these algorithms
(MGPSOSTD, MGPSOR, MGPSORI, CDAS-SMPSO, KnEA, MOEA/DD, and
NSGA-III) can be viewed in section 4.3.2 and Appendix C.

5.4 Results and Discussion
The results of the statistical analysis are shown in tables 5.1 to 5.20, which are
then thoroughly analyzed and discussed. The tables contain the overall wins,
losses, difference, and rank across the problems for each algorithm. Note that
the top-three best overall ranks are highlighted for each table. The HV and
IGD performance measure values can be viewed in Appendix E. Sections 5.4.1
and 5.4.2 discuss the findings with respect to HV and IGD respectively. Finally,
section 5.4.3 provides some general comments and summarizes the findings.
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Table 5.1: HV Ranking for 3-objective DTLZ

Algorithm Result 3-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOSTD

Wins 7 4 7 0 5 0 4 27

Losses 0 2 0 0 3 6 0 11

Difference 7 2 7 0 2 -6 4 16

Rank 1 6 1 3 5 9 1 1

MGPSOR

Wins 1 5 1 0 7 2 4 20

Losses 5 0 4 0 0 4 0 13

Difference -4 5 -3 0 7 -2 4 7

Rank 7 2 5 3 1 5 1 4

MGPSORI

Wins 1 6 1 0 7 2 4 21

Losses 6 0 4 0 0 4 0 14

Difference -5 6 -3 0 7 -2 4 7

Rank 9 1 5 3 1 5 1 4

KnMGPSOSTD

Wins 7 4 6 0 4 0 4 25

Losses 0 1 0 0 5 8 0 14

Difference 7 3 6 0 -1 -8 4 11

Rank 1 5 3 3 6 10 1 3

KnMGPSOR

Wins 1 4 1 0 5 1 4 16

Losses 5 0 4 0 2 4 0 15

Difference -4 4 -3 0 3 -3 4 1

Rank 7 3 5 3 4 7 1 7

KnMGPSORI

Wins 2 4 1 0 6 1 4 18

Losses 5 0 4 0 0 4 0 13

Difference -3 4 -3 0 6 -3 4 5

Rank 6 3 5 3 3 7 1 6
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Table 5.1: HV Ranking for 3-objective DTLZ (continue)

Algorithm Result 3-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

CDAS-

SMPSO

Wins 0 0 0 0 0 6 0 6

Losses 9 7 9 2 7 2 9 45

Difference -9 -7 -9 -2 -7 4 -9 -39

Rank 10 9 10 9 9 3 10 10

KnEA

Wins 7 3 7 2 0 9 2 30

Losses 0 6 0 0 6 0 6 18

Difference 7 -3 7 2 -6 9 -4 12

Rank 1 7 1 1 8 1 7 2

MOEA/DD

Wins 5 1 1 2 2 8 2 21

Losses 3 7 4 0 6 1 6 27

Difference 2 -6 -3 2 -4 7 -4 -6

Rank 4 8 5 1 7 2 7 8

NSGA-III

Wins 5 0 6 0 0 6 1 18

Losses 3 8 2 2 7 2 8 32

Difference 2 -8 4 -2 -7 4 -7 -14

Rank 4 10 4 9 9 3 9 9

Table 5.2: HV Ranking for 5-objective DTLZ

Algorithm Result 5-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOSTD

Wins 4 1 5 1 4 1 4 20

Losses 2 1 2 4 0 2 0 11

Difference 2 0 3 -3 4 -1 4 9

Rank 3 6 3 9 2 3 1 2
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Table 5.2: HV Ranking for 5-objective DTLZ (continue)

Algorithm Result 5-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOR

Wins 2 2 1 1 4 1 4 15

Losses 3 1 4 1 0 2 0 11

Difference -1 1 -3 0 4 -1 4 4

Rank 7 2 8 5 2 3 1 7

MGPSORI

Wins 2 2 1 2 5 1 4 17

Losses 2 1 4 1 0 2 0 10

Difference 0 1 -3 1 5 -1 4 7

Rank 5 2 8 2 1 3 1 5

KnMGPSOSTD

Wins 3 1 3 1 4 1 4 17

Losses 2 1 2 1 0 2 0 8

Difference 1 0 1 0 4 -1 4 9

Rank 4 6 4 5 2 3 1 2

KnMGPSOR

Wins 2 2 1 2 4 1 4 16

Losses 2 1 3 1 0 2 0 9

Difference 0 1 -2 1 4 -1 4 7

Rank 5 2 5 2 2 3 1 5

KnMGPSORI

Wins 2 2 1 1 4 1 4 15

Losses 4 1 3 1 1 2 0 12

Difference -2 1 -2 0 3 -1 4 3

Rank 8 2 5 5 6 3 1 8

CDAS-

SMPSO

Wins 1 0 0 1 1 1 0 4

Losses 8 8 8 1 7 2 9 43

Difference -7 -8 -8 0 -6 -1 -9 -39

Rank 9 10 10 5 8 3 10 9
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Table 5.2: HV Ranking for 5-objective DTLZ (continue)

Algorithm Result 5-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

KnEA

Wins 0 0 0 0 0 0 2 2

Losses 9 1 2 9 9 9 6 45

Difference -9 -1 -2 -9 -9 -9 -4 -43

Rank 10 8 5 10 10 10 7 10

MOEA/DD

Wins 8 9 8 9 3 9 1 47

Losses 0 0 1 0 6 0 6 13

Difference 8 9 7 9 -3 9 -5 34

Rank 1 1 2 1 7 1 8 1

NSGA-III

Wins 8 1 9 2 1 8 1 30

Losses 0 5 0 1 7 1 7 21

Difference 8 -4 9 1 -6 7 -6 9

Rank 1 9 1 2 8 2 9 2

Table 5.3: HV Ranking for 8-objective DTLZ

Algorithm Result 8-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOSTD

Wins 5 3 4 6 5 2 8 33

Losses 3 0 2 3 0 3 0 11

Difference 2 3 2 3 5 -1 8 22

Rank 4 2 3 4 1 4 1 2

MGPSOR

Wins 2 3 1 1 5 1 4 17

Losses 4 0 3 5 0 3 2 17

Difference -2 3 -2 -4 5 -2 2 0

Rank 6 2 6 6 1 5 3 5
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Table 5.3: HV Ranking for 8-objective DTLZ (continue)

Algorithm Result 8-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSORI

Wins 1 4 1 1 4 1 4 16

Losses 4 0 2 5 0 3 2 16

Difference -3 4 -1 -4 4 -2 2 0

Rank 7 1 4 6 4 5 3 5

KnMGPSOSTD

Wins 2 3 1 5 5 1 8 25

Losses 3 0 2 4 0 3 0 12

Difference -1 3 -1 1 5 -2 8 13

Rank 5 2 4 5 1 5 1 4

KnMGPSOR

Wins 1 3 1 1 4 1 4 15

Losses 4 1 3 5 3 4 2 22

Difference -3 2 -2 -4 1 -3 2 -7

Rank 7 7 6 6 6 9 3 8

KnMGPSORI

Wins 1 3 1 1 4 1 4 15

Losses 6 0 3 5 0 3 2 19

Difference -5 3 -2 -4 4 -2 2 -4

Rank 9 2 6 6 4 5 3 7

CDAS-

SMPSO

Wins 0 1 0 7 1 7 0 16

Losses 9 8 8 2 6 1 9 43

Difference -9 -7 -8 5 -5 6 -9 -27

Rank 10 9 10 3 7 2 10 9

KnEA

Wins 8 0 0 0 0 0 2 10

Losses 0 9 2 9 9 9 6 44

Difference 8 -9 -2 -9 -9 -9 -4 -34

Rank 1 10 6 10 10 10 7 10
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Table 5.3: HV Ranking for 8-objective DTLZ (continue)

Algorithm Result 8-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MOEA/DD

Wins 7 3 8 9 1 9 1 38

Losses 1 0 0 0 6 0 8 15

Difference 6 3 8 9 -5 9 -7 23

Rank 3 2 1 1 7 1 9 1

NSGA-III

Wins 7 2 8 8 1 7 2 35

Losses 0 7 0 1 6 1 6 21

Difference 7 -5 8 7 -5 6 -4 14

Rank 2 8 1 2 7 2 7 3

Table 5.4: HV Ranking for 10-objective DTLZ

Algorithm Result 10-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOSTD

Wins 1 4 0 5 4 4 8 26

Losses 1 0 2 3 0 1 0 7

Difference 0 4 -2 2 4 3 8 19

Rank 2 2 5 5 1 2 1 1

MGPSOR

Wins 1 4 0 0 4 2 4 15

Losses 1 1 2 5 0 1 2 12

Difference 0 3 -2 -5 4 1 2 3

Rank 2 3 5 6 1 3 3 4

MGPSORI

Wins 1 8 0 0 4 2 4 19

Losses 1 0 2 5 0 1 2 11

Difference 0 8 -2 -5 4 1 2 8

Rank 2 1 5 6 1 3 3 3
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Table 5.4: HV Ranking for 10-objective DTLZ (continue)

Algorithm Result 10-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

KnMGPSOSTD

Wins 1 4 0 5 4 2 8 24

Losses 1 1 2 2 0 1 0 7

Difference 0 3 -2 3 4 1 8 17

Rank 2 3 5 4 1 3 1 2

KnMGPSOR

Wins 1 4 0 0 4 2 4 15

Losses 1 1 2 5 0 3 2 14

Difference 0 3 -2 -5 4 -1 2 1

Rank 2 3 5 6 1 8 3 6

KnMGPSORI

Wins 1 4 0 0 4 2 4 15

Losses 1 1 2 5 0 2 2 13

Difference 0 3 -2 -5 4 0 2 2

Rank 2 3 5 6 1 7 3 5

CDAS-

SMPSO

Wins 0 1 0 6 3 9 0 19

Losses 9 6 1 0 6 0 9 31

Difference -9 -5 -1 6 -3 9 -9 -12

Rank 10 7 3 3 7 1 10 8

KnEA

Wins 9 1 0 0 1 0 2 13

Losses 0 6 1 5 7 8 7 34

Difference 9 -5 -1 -5 -6 -8 -5 -21

Rank 1 7 3 6 8 10 8 10

MOEA/DD

Wins 1 0 6 7 1 0 1 16

Losses 1 9 0 0 7 7 8 32

Difference 0 -9 6 7 -6 -7 -7 -16

Rank 2 10 2 1 8 9 9 9
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Table 5.4: HV Ranking for 10-objective DTLZ (continue)

Algorithm Result 10-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

NSGA-III

Wins 1 1 8 7 0 2 3 22

Losses 1 6 0 0 9 1 6 23

Difference 0 -5 8 7 -9 1 -3 -1

Rank 2 7 1 1 10 3 7 7

Table 5.5: HV Ranking for 15-objective DTLZ

Algorithm Result 15-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOSTD

Wins 2 4 1 5 4 0 8 24

Losses 2 0 2 0 0 1 0 5

Difference 0 4 -1 5 4 -1 8 19

Rank 3 1 4 1 1 5 1 1

MGPSOR

Wins 1 4 0 0 4 1 4 14

Losses 2 0 3 2 0 1 2 10

Difference -1 4 -3 -2 4 0 2 4

Rank 4 1 6 8 1 2 3 4

MGPSORI

Wins 1 4 1 0 4 0 4 14

Losses 2 0 2 2 0 1 2 9

Difference -1 4 -1 -2 4 -1 2 5

Rank 4 1 4 8 1 5 3 3

KnMGPSOSTD

Wins 1 4 0 5 4 1 8 23

Losses 2 0 3 0 0 1 0 6

Difference -1 4 -3 5 4 0 8 17

Rank 4 1 6 1 1 2 1 2
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Table 5.5: HV Ranking for 15-objective DTLZ (continue)

Algorithm Result 15-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

KnMGPSOR

Wins 1 4 0 1 4 0 4 14

Losses 2 0 3 2 0 1 2 10

Difference -1 4 -3 -1 4 -1 2 4

Rank 4 1 6 6 1 5 3 4

KnMGPSORI

Wins 1 4 0 1 4 0 4 14

Losses 2 0 5 2 0 1 2 12

Difference -1 4 -5 -1 4 -1 2 2

Rank 4 1 10 6 1 5 3 6

CDAS-

SMPSO

Wins 0 3 0 0 3 8 0 14

Losses 8 6 3 0 6 0 9 32

Difference -8 -3 -3 0 -3 8 -9 -18

Rank 10 7 6 3 7 1 10 10

KnEA

Wins 8 0 5 0 1 0 2 16

Losses 0 7 0 4 7 1 7 26

Difference 8 -7 5 -4 -6 -1 -5 -10

Rank 1 9 3 10 8 5 8 8

MOEA/DD

Wins 8 0 7 0 1 0 1 17

Losses 0 8 0 0 7 0 8 23

Difference 8 -8 7 0 -6 0 -7 -6

Rank 1 10 1 3 8 2 9 7

NSGA-III

Wins 0 1 7 0 0 0 3 11

Losses 3 7 0 0 9 3 6 28

Difference -3 -6 7 0 -9 -3 -3 -17

Rank 9 8 1 3 10 10 7 9
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Table 5.6: HV Ranking for 3-objective WFG

Algorithm Result 3-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOSTD

Wins 0 0 3 2 0 2 0 0 4 11

Losses 8 5 4 3 1 5 4 5 1 36

Difference -8 -5 -1 -1 -1 -3 -4 -5 3 -25

Rank 9 9 6 6 4 7 5 10 5 9

MGPSOR

Wins 2 0 5 2 0 5 0 1 4 19

Losses 4 3 0 3 1 1 4 4 0 20

Difference -2 -3 5 -1 -1 4 -4 -3 4 -1

Rank 5 6 4 6 4 2 5 5 4 6

MGPSORI

Wins 2 2 6 2 0 5 0 0 5 22

Losses 4 3 0 2 1 1 4 4 0 19

Difference -2 -1 6 0 -1 4 -4 -4 5 3

Rank 5 4 1 5 4 2 5 6 2 5

KnMGPSOSTD

Wins 0 0 4 2 0 2 0 0 4 12

Losses 8 5 3 1 3 6 4 4 3 37

Difference -8 -5 1 1 -3 -4 -4 -4 1 -25

Rank 9 9 5 4 8 8 5 6 6 9

KnMGPSOR

Wins 2 0 6 5 0 5 0 0 6 24

Losses 4 3 0 1 3 1 4 4 0 20

Difference -2 -3 6 4 -3 4 -4 -4 6 4

Rank 5 6 1 3 8 2 5 6 1 4

KnMGPSORI

Wins 2 2 6 6 0 5 0 0 5 26

Losses 4 3 0 0 4 1 4 4 0 20

Difference -2 -1 6 6 -4 4 -4 -4 5 6

Rank 5 4 1 2 10 2 5 6 2 3
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Table 5.6: HV Ranking for 3-objective WFG (continue)

Algorithm Result 3-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

CDAS-

SMPSO

Wins 7 8 3 2 4 3 8 8 3 46

Losses 0 0 5 3 1 5 1 1 6 22

Difference 7 8 -2 -1 3 -2 7 7 -3 24

Rank 1 1 7 6 2 6 2 2 7 2

KnEA

Wins 6 8 1 8 9 9 9 9 2 61

Losses 3 0 8 0 0 0 0 0 7 18

Difference 3 8 -7 8 9 9 9 9 -5 43

Rank 4 1 9 1 1 1 1 1 8 1

MOEA/DD

Wins 7 7 0 0 1 0 6 6 0 27

Losses 0 2 9 9 3 8 3 3 8 45

Difference 7 5 -9 -9 -2 -8 3 3 -8 -18

Rank 1 3 10 10 7 9 4 4 9 8

NSGA-III

Wins 7 0 2 1 4 0 7 7 0 28

Losses 0 3 7 8 1 8 2 2 8 39

Difference 7 -3 -5 -7 3 -8 5 5 -8 -11

Rank 1 6 8 9 2 9 3 3 9 7

Table 5.7: HV Ranking for 5-objective WFG

Algorithm Result 5-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOSTD

Wins 0 1 4 0 2 0 0 0 4 11

Losses 8 2 4 6 4 7 4 4 0 39

Difference -8 -1 0 -6 -2 -7 -4 -4 4 -28

Rank 9 7 5 10 6 9 5 5 1 9
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Table 5.7: HV Ranking for 5-objective WFG (continue)

Algorithm Result 5-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOR

Wins 2 2 6 0 3 2 0 0 4 19

Losses 4 1 0 5 4 3 4 4 0 25

Difference -2 1 6 -5 -1 -1 -4 -4 4 -6

Rank 5 3 1 8 5 5 5 5 1 5

MGPSORI

Wins 2 1 6 0 2 2 0 0 4 17

Losses 4 1 0 5 4 3 4 4 0 25

Difference -2 0 6 -5 -2 -1 -4 -4 4 -8

Rank 5 6 1 8 6 5 5 5 1 7

KnMGPSOSTD

Wins 0 1 4 0 0 0 0 0 4 9

Losses 8 2 4 4 5 8 4 4 0 39

Difference -8 -1 0 -4 -5 -8 -4 -4 4 -30

Rank 9 7 5 7 8 10 5 5 1 10

KnMGPSOR

Wins 2 4 6 3 0 2 0 0 4 21

Losses 4 1 0 3 7 4 4 4 0 27

Difference -2 3 6 0 -7 -2 -4 -4 4 -6

Rank 5 2 1 5 9 7 5 5 1 5

KnMGPSORI

Wins 2 2 6 1 0 1 0 0 4 16

Losses 4 1 0 4 7 4 4 4 0 28

Difference -2 1 6 -3 -7 -3 -4 -4 4 -12

Rank 5 3 1 6 9 8 5 5 1 8

CDAS-

SMPSO

Wins 7 8 3 7 6 4 6 6 2 49

Losses 0 0 6 1 3 2 1 3 6 22

Difference 7 8 -3 6 3 2 5 3 -4 27

Rank 1 1 7 2 4 4 2 4 7 2
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Table 5.7: HV Ranking for 5-objective WFG (continue)

Algorithm Result 5-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

KnEA

Wins 6 1 1 9 9 9 9 9 2 55

Losses 3 0 8 0 0 0 0 0 6 17

Difference 3 1 -7 9 9 9 9 9 -4 38

Rank 4 3 9 1 1 1 1 1 7 1

MOEA/DD

Wins 7 0 0 7 7 7 6 7 0 41

Losses 0 8 9 1 1 1 1 1 8 30

Difference 7 -8 -9 6 6 6 5 6 -8 11

Rank 1 10 10 2 2 2 2 2 9 4

NSGA-III

Wins 7 0 2 5 7 6 6 7 0 40

Losses 0 4 7 3 1 1 1 1 8 26

Difference 7 -4 -5 2 6 5 5 6 -8 14

Rank 1 9 8 4 2 3 2 2 9 3

Table 5.8: HV Ranking for 8-objective WFG

Algorithm Result 8-objective WFG
O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOSTD

Wins 0 4 4 3 5 4 1 1 4 26

Losses 4 0 0 0 2 0 3 3 0 12

Difference -4 4 4 3 3 4 -2 -2 4 14

Rank 7 1 2 2 4 3 5 5 1 4

MGPSOR

Wins 4 4 4 3 2 5 1 1 4 28

Losses 0 0 1 0 5 0 4 3 0 13

Difference 4 4 3 3 -3 5 -3 -2 4 15

Rank 1 1 3 2 7 1 7 5 1 3
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Table 5.8: HV Ranking for 8-objective WFG (continue)

Algorithm Result 8-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSORI

Wins 4 4 4 3 3 5 1 1 4 29

Losses 0 0 1 0 4 0 4 3 0 12

Difference 4 4 3 3 -1 5 -3 -2 4 17

Rank 1 1 3 2 6 1 7 5 1 2

KnMGPSOSTD

Wins 0 4 8 3 4 4 4 3 4 34

Losses 4 0 0 0 3 2 2 3 0 14

Difference -4 4 8 3 1 2 2 0 4 20

Rank 7 1 1 2 5 6 4 4 1 1

KnMGPSOR

Wins 4 4 4 4 1 4 1 1 4 27

Losses 0 0 1 0 6 0 4 4 0 15

Difference 4 4 3 4 -5 4 -3 -3 4 12

Rank 1 1 3 1 8 3 7 8 1 5

KnMGPSORI

Wins 4 4 4 3 1 4 1 1 4 26

Losses 0 0 1 0 7 0 3 4 0 15

Difference 4 4 3 3 -6 4 -2 -3 4 11

Rank 1 1 3 2 9 3 5 8 1 6

CDAS-

SMPSO

Wins 0 1 3 3 9 1 8 7 2 34

Losses 4 6 6 1 0 6 0 0 6 29

Difference -4 -5 -3 2 9 -5 8 7 -4 5

Rank 7 7 7 7 1 7 1 2 7 7

KnEA

Wins 0 1 0 0 0 0 0 0 0 1

Losses 0 6 8 9 9 9 9 9 9 68

Difference 0 -5 -8 -9 -9 -9 -9 -9 -9 -67

Rank 5 7 9 10 10 10 10 10 10 10
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Table 5.8: HV Ranking for 8-objective WFG (continue)

Algorithm Result 8-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MOEA/DD

Wins 0 0 0 1 6 1 6 7 1 22

Losses 4 9 8 7 2 6 2 1 8 47

Difference -4 -9 -8 -6 4 -5 4 6 -7 -25

Rank 7 10 9 8 3 7 3 3 9 9

NSGA-III

Wins 0 1 2 1 8 1 8 8 2 31

Losses 0 6 7 7 1 6 0 0 6 33

Difference 0 -5 -5 -6 7 -5 8 8 -4 -2

Rank 5 7 8 8 2 7 1 1 7 8

Table 5.9: HV Ranking for 10-objective WFG

Algorithm Result 10-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOSTD

Wins 0 4 4 4 7 4 2 7 4 36

Losses 5 0 1 2 0 1 0 0 0 9

Difference -5 4 3 2 7 3 2 7 4 27

Rank 9 1 3 5 1 6 2 1 1 6

MGPSOR

Wins 5 4 4 5 2 4 2 4 4 34

Losses 0 0 2 0 2 0 0 1 0 5

Difference 5 4 2 5 0 4 2 3 4 29

Rank 1 1 6 3 4 2 2 4 1 3

MGPSORI

Wins 3 4 4 6 2 5 2 3 4 33

Losses 0 0 1 0 2 0 0 1 0 4

Difference 3 4 3 6 0 5 2 2 4 29

Rank 3 1 3 1 4 1 2 5 1 3
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Table 5.9: HV Ranking for 10-objective WFG (continue)

Algorithm Result 10-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

KnMGPSOSTD

Wins 1 4 8 3 7 4 3 4 4 38

Losses 4 0 0 4 0 0 0 0 0 8

Difference -3 4 8 -1 7 4 3 4 4 30

Rank 8 1 1 6 1 2 1 2 1 1

KnMGPSOR

Wins 4 4 4 6 2 4 2 3 4 33

Losses 0 0 1 0 2 0 0 1 0 4

Difference 4 4 3 6 0 4 2 2 4 29

Rank 2 1 3 1 4 2 2 5 1 3

KnMGPSORI

Wins 3 4 5 5 2 4 2 4 4 33

Losses 0 0 0 0 2 0 1 0 0 3

Difference 3 4 5 5 0 4 1 4 4 30

Rank 3 1 2 3 4 2 8 2 1 1

CDAS-

SMPSO

Wins 0 1 3 3 2 2 2 2 0 15

Losses 7 8 6 5 2 6 0 4 6 44

Difference -7 -7 -3 -2 0 -4 2 -2 -6 -29

Rank 10 9 7 7 4 7 2 7 7 7

KnEA

Wins 2 2 1 0 2 2 0 0 0 9

Losses 0 6 8 7 0 6 8 8 6 49

Difference 2 -4 -7 -7 2 -4 -8 -8 -6 -40

Rank 5 7 9 8 3 7 9 9 7 8

MOEA/DD

Wins 1 0 0 0 0 0 0 0 0 1

Losses 1 9 9 7 9 9 8 8 6 66

Difference 0 -9 -9 -7 -9 -9 -8 -8 -6 -65

Rank 6 10 10 8 10 10 9 9 7 10
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Table 5.9: HV Ranking for 10-objective WFG (continue)

Algorithm Result 10-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

NSGA-III

Wins 0 2 2 0 1 1 2 2 0 10

Losses 2 6 7 7 8 8 0 6 6 50

Difference -2 -4 -5 -7 -7 -7 2 -4 -6 -40

Rank 7 7 8 8 9 9 2 8 7 8

Table 5.10: HV Ranking for 15-objective WFG

Algorithm Result 15-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOSTD

Wins 1 3 4 2 6 3 1 1 2 23

Losses 0 0 0 0 1 3 2 1 0 7

Difference 1 3 4 2 5 0 -1 0 2 16

Rank 1 1 1 3 2 7 4 3 2 3

MGPSOR

Wins 1 3 4 3 2 4 1 1 3 22

Losses 0 0 0 0 3 1 2 1 0 7

Difference 1 3 4 3 -1 3 -1 0 3 15

Rank 1 1 1 1 5 2 4 3 1 4

MGPSORI

Wins 1 3 4 3 2 3 1 1 2 20

Losses 0 0 0 0 3 1 2 1 0 7

Difference 1 3 4 3 -1 2 -1 0 2 13

Rank 1 1 1 1 5 4 4 3 2 5

KnMGPSOSTD

Wins 1 3 4 2 6 3 1 1 2 23

Losses 0 0 0 0 1 1 2 1 0 5

Difference 1 3 4 2 5 2 -1 0 2 18

Rank 1 1 1 3 2 4 4 3 2 2
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Table 5.10: HV Ranking for 15-objective WFG (continue)

Algorithm Result 15-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

KnMGPSOR

Wins 1 3 4 2 2 4 1 1 2 20

Losses 0 0 0 0 3 1 2 1 0 7

Difference 1 3 4 2 -1 3 -1 0 2 13

Rank 1 1 1 3 5 2 4 3 2 5

KnMGPSORI

Wins 1 3 4 2 2 3 1 1 2 19

Losses 0 0 0 0 3 1 2 1 0 7

Difference 1 3 4 2 -1 2 -1 0 2 12

Rank 1 1 1 3 5 4 4 3 2 7

CDAS-

SMPSO

Wins 0 0 3 1 0 1 1 1 1 8

Losses 0 7 6 8 8 7 1 1 8 46

Difference 0 -7 -3 -7 -8 -6 0 0 -7 -38

Rank 7 9 7 9 9 8 3 3 9 9

KnEA

Wins 0 1 0 0 0 0 0 0 0 1

Losses 6 7 8 9 8 9 9 9 9 74

Difference -6 -6 -8 -9 -8 -9 -9 -9 -9 -73

Rank 10 8 9 10 9 10 10 10 10 10

MOEA/DD

Wins 0 0 0 2 2 1 7 1 2 15

Losses 0 8 8 0 1 7 0 0 1 25

Difference 0 -8 -8 2 1 -6 7 1 1 -10

Rank 7 10 9 3 4 8 2 2 8 8

NSGA-III

Wins 0 3 2 2 9 9 8 8 2 43

Losses 0 0 7 2 0 0 0 0 0 9

Difference 0 3 -5 0 9 9 8 8 2 34

Rank 7 1 8 8 1 1 1 1 2 1
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Table 5.11: IGD Ranking for 3-objective DTLZ

Algorithm Result 3-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOSTD

Wins 1 1 2 0 0 4 3 11

Losses 7 3 5 4 3 0 4 26

Difference -6 -2 -3 -4 -3 4 -1 -15

Rank 8 5 6 8 6 2 5 9

MGPSOR

Wins 4 0 6 0 0 4 0 14

Losses 2 4 0 4 5 0 6 21

Difference 2 -4 6 -4 -5 4 -6 -7

Rank 3 8 1 8 9 2 8 7

MGPSORI

Wins 4 0 6 0 0 4 0 14

Losses 2 4 0 4 3 0 6 19

Difference 2 -4 6 -4 -3 4 -6 -5

Rank 3 8 1 8 6 2 8 5

KnMGPSOSTD

Wins 1 0 1 0 2 5 3 12

Losses 7 3 5 3 3 0 4 25

Difference -6 -3 -4 -3 -1 5 -1 -13

Rank 8 6 8 5 4 1 5 8

KnMGPSOR

Wins 4 0 6 0 0 4 0 14

Losses 2 3 0 3 3 0 6 17

Difference 2 -3 6 -3 -3 4 -6 -3

Rank 3 6 1 5 6 2 8 4

KnMGPSORI

Wins 4 0 6 0 0 4 0 14

Losses 2 5 0 3 5 1 4 20

Difference 2 -5 6 -3 -5 3 -4 -6

Rank 3 10 1 5 9 6 7 6
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Table 5.11: IGD Ranking for 3-objective DTLZ (continue)

Algorithm Result 3-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

CDAS-

SMPSO

Wins 0 3 0 3 2 0 6 14

Losses 9 3 9 3 3 9 3 39

Difference -9 0 -9 0 -1 -9 3 -25

Rank 10 4 10 4 4 10 4 10

KnEA

Wins 3 7 1 7 7 1 8 34

Losses 6 2 7 1 2 8 1 27

Difference -3 5 -6 6 5 -7 7 7

Rank 7 3 9 2 3 9 2 3

MOEA/DD

Wins 9 9 5 9 9 3 7 51

Losses 0 0 4 0 0 6 2 12

Difference 9 9 1 9 9 -3 5 39

Rank 1 1 5 1 1 7 3 1

NSGA-III

Wins 8 8 2 7 8 2 9 44

Losses 1 1 5 1 1 7 0 16

Difference 7 7 -3 6 7 -5 9 28

Rank 2 2 6 2 2 8 1 2

Table 5.12: IGD Ranking for 5-objective DTLZ

Algorithm Result 5-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOSTD

Wins 3 3 4 0 2 4 0 16

Losses 2 2 4 4 2 0 5 19

Difference 1 1 0 -4 0 4 -5 -3

Rank 3 3 6 10 3 1 9 8
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Table 5.12: IGD Ranking for 5-objective DTLZ (continue)

Algorithm Result 5-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOR

Wins 1 2 5 0 2 4 1 15

Losses 3 2 0 2 2 0 4 13

Difference -2 0 5 -2 0 4 -3 2

Rank 8 6 1 5 3 1 6 6

MGPSORI

Wins 1 2 5 0 2 4 0 14

Losses 2 5 0 2 2 0 4 15

Difference -1 -3 5 -2 0 4 -4 -1

Rank 4 8 1 5 3 1 8 7

KnMGPSOSTD

Wins 1 3 4 0 2 4 1 15

Losses 2 2 0 2 2 0 4 12

Difference -1 1 4 -2 0 4 -3 3

Rank 4 3 5 5 3 1 6 5

KnMGPSOR

Wins 1 2 5 1 2 4 6 21

Losses 3 2 0 2 2 0 2 11

Difference -2 0 5 -1 0 4 4 10

Rank 8 6 1 3 3 1 3 4

KnMGPSORI

Wins 1 3 5 0 2 4 6 21

Losses 2 2 0 2 2 0 2 10

Difference -1 1 5 -2 0 4 4 11

Rank 4 3 1 5 3 1 3 3

CDAS-

SMPSO

Wins 1 0 0 1 1 0 0 3

Losses 2 9 9 2 8 8 7 45

Difference -1 -9 -9 -1 -7 -8 -7 -42

Rank 4 10 10 3 9 9 10 10
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Table 5.12: IGD Ranking for 5-objective DTLZ (continue)

Algorithm Result 5-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

KnEA

Wins 0 1 1 0 0 0 8 10

Losses 9 8 8 2 9 8 1 45

Difference -9 -7 -7 -2 -9 -8 7 -35

Rank 10 9 9 5 10 9 2 9

MOEA/DD

Wins 9 8 2 8 8 3 2 40

Losses 0 1 7 0 1 6 4 19

Difference 9 7 -5 8 7 -3 -2 21

Rank 1 2 8 1 2 7 5 2

NSGA-III

Wins 8 9 3 8 9 2 9 48

Losses 1 0 6 0 0 7 0 14

Difference 7 9 -3 8 9 -5 9 34

Rank 2 1 7 1 1 8 1 1

Table 5.13: IGD Ranking for 8-objective DTLZ

Algorithm Result 8-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOSTD

Wins 0 2 4 5 2 4 2 19

Losses 4 1 3 3 2 0 5 18

Difference -4 1 1 2 0 4 -3 1

Rank 5 5 6 4 3 1 7 8

MGPSOR

Wins 0 2 4 1 2 4 6 19

Losses 4 2 1 4 2 0 1 14

Difference -4 0 3 -3 0 4 5 5

Rank 5 6 4 6 3 1 2 5
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Table 5.13: IGD Ranking for 8-objective DTLZ (continue)

Algorithm Result 8-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSORI

Wins 0 2 4 1 2 4 6 19

Losses 4 3 1 4 2 0 1 15

Difference -4 -1 3 -3 0 4 5 4

Rank 5 7 4 6 3 1 2 7

KnMGPSOSTD

Wins 0 6 5 3 2 4 2 22

Losses 4 0 0 3 2 0 6 15

Difference -4 6 5 0 0 4 -4 7

Rank 5 1 2 5 3 1 8 3

KnMGPSOR

Wins 0 5 7 1 2 4 3 22

Losses 4 0 0 5 2 0 4 15

Difference -4 5 7 -4 0 4 -1 7

Rank 5 2 1 8 3 1 6 3

KnMGPSORI

Wins 0 4 5 1 2 4 4 20

Losses 4 0 0 5 2 0 4 15

Difference -4 4 5 -4 0 4 0 5

Rank 5 3 2 8 3 1 5 5

CDAS-

SMPSO

Wins 6 1 0 7 1 0 0 15

Losses 2 8 9 2 8 8 9 46

Difference 4 -7 -9 5 -7 -8 -9 -31

Rank 3 9 10 3 9 9 10 10

KnEA

Wins 8 0 1 0 0 0 6 15

Losses 1 9 8 9 9 8 1 45

Difference 7 -9 -7 -9 -9 -8 5 -30

Rank 2 10 9 10 10 9 2 9
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Table 5.13: IGD Ranking for 8-objective DTLZ (continue)

Algorithm Result 8-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MOEA/DD

Wins 9 2 2 8 8 2 1 32

Losses 0 3 6 0 1 6 8 24

Difference 9 -1 -4 8 7 -4 -7 8

Rank 1 7 7 1 2 7 9 2

NSGA-III

Wins 6 2 2 8 9 2 9 38

Losses 2 0 6 0 0 6 0 14

Difference 4 2 -4 8 9 -4 9 24

Rank 3 4 7 1 1 7 1 1

Table 5.14: IGD Ranking for 10-objective DTLZ

Algorithm Result 10-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOSTD

Wins 0 4 4 5 4 4 4 25

Losses 4 0 1 3 0 0 3 11

Difference -4 4 3 2 4 4 1 14

Rank 5 4 4 4 1 1 5 2

MGPSOR

Wins 0 4 4 0 4 4 6 22

Losses 4 0 1 5 0 0 0 10

Difference -4 4 3 -5 4 4 6 12

Rank 5 4 4 6 1 1 2 5

MGPSORI

Wins 0 4 4 0 4 4 8 24

Losses 4 3 2 5 0 0 0 14

Difference -4 1 2 -5 4 4 8 10

Rank 5 6 6 6 1 1 1 6
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Table 5.14: IGD Ranking for 10-objective DTLZ (continue)

Algorithm Result 10-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

KnMGPSOSTD

Wins 0 5 5 5 4 4 2 25

Losses 4 0 0 3 0 0 4 11

Difference -4 5 5 2 4 4 -2 14

Rank 5 1 2 4 1 1 6 2

KnMGPSOR

Wins 0 5 7 0 4 4 5 25

Losses 4 0 0 5 0 0 1 10

Difference -4 5 7 -5 4 4 4 15

Rank 5 1 1 6 1 1 4 1

KnMGPSORI

Wins 0 5 4 0 4 4 6 23

Losses 4 0 0 5 0 0 1 10

Difference -4 5 4 -5 4 4 5 13

Rank 5 1 3 6 1 1 3 4

CDAS-

SMPSO

Wins 6 1 0 7 1 0 0 15

Losses 2 7 9 2 7 8 9 44

Difference 4 -6 -9 5 -6 -8 -9 -29

Rank 3 8 10 3 9 10 10 9

KnEA

Wins 8 0 1 0 0 0 2 11

Losses 0 7 8 5 9 7 5 41

Difference 8 -7 -7 -5 -9 -7 -3 -30

Rank 1 9 9 6 10 9 7 10

MOEA/DD

Wins 8 0 2 8 2 1 1 22

Losses 0 8 7 0 6 6 8 35

Difference 8 -8 -5 8 -4 -5 -7 -13

Rank 1 10 8 1 7 8 9 8
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Table 5.14: IGD Ranking for 10-objective DTLZ (continue)

Algorithm Result 10-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

NSGA-III

Wins 6 3 3 8 1 2 2 25

Losses 2 6 6 0 6 6 5 31

Difference 4 -3 -3 8 -5 -4 -3 -6

Rank 3 7 7 1 8 7 7 7

Table 5.15: IGD Ranking for 15-objective DTLZ

Algorithm Result 15-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

MGPSOSTD

Wins 0 3 3 4 4 3 2 19

Losses 4 2 4 0 0 0 4 14

Difference -4 1 -1 4 4 3 -2 5

Rank 5 6 5 2 1 1 5 6

MGPSOR

Wins 0 3 3 0 4 3 6 19

Losses 4 1 4 3 0 0 0 12

Difference -4 2 -1 -3 4 3 6 7

Rank 5 4 5 9 1 1 1 5

MGPSORI

Wins 0 3 3 0 4 3 6 19

Losses 4 1 4 2 0 0 0 11

Difference -4 2 -1 -2 4 3 6 8

Rank 5 4 5 8 1 1 1 4

KnMGPSOSTD

Wins 0 4 6 5 4 3 2 24

Losses 4 0 1 0 0 0 4 9

Difference -4 4 5 5 4 3 -2 15

Rank 5 3 2 1 1 1 5 3
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Table 5.15: IGD Ranking for 15-objective DTLZ (continue)

Algorithm Result 15-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

KnMGPSOR

Wins 0 5 6 1 4 3 6 25

Losses 4 0 1 2 0 0 0 7

Difference -4 5 5 -1 4 3 6 18

Rank 5 2 2 7 1 1 1 2

KnMGPSORI

Wins 0 7 6 2 4 3 6 28

Losses 4 0 1 1 0 0 0 6

Difference -4 7 5 1 4 3 6 22

Rank 5 1 2 3 1 1 1 1

CDAS-

SMPSO

Wins 7 3 0 0 1 0 0 11

Losses 1 3 9 0 8 7 9 37

Difference 6 0 -9 0 -7 -7 -9 -26

Rank 2 7 10 4 9 10 10 9

KnEA

Wins 7 0 1 0 0 0 2 10

Losses 1 9 8 4 9 6 4 41

Difference 6 -9 -7 -4 -9 -6 -2 -31

Rank 2 10 9 10 10 9 5 10

MOEA/DD

Wins 9 1 2 0 2 0 1 15

Losses 0 8 7 0 7 0 8 30

Difference 9 -7 -5 0 -5 0 -7 -15

Rank 1 9 8 4 8 7 9 8

NSGA-III

Wins 6 2 9 0 3 1 2 23

Losses 3 7 0 0 6 6 4 26

Difference 3 -5 9 0 -3 -5 -2 -3

Rank 4 8 1 4 7 8 5 7
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Table 5.16: IGD Ranking for 3-objective WFG

Algorithm Result 3-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOSTD

Wins 4 0 5 0 1 3 0 0 2 15

Losses 4 5 1 7 0 5 4 4 4 34

Difference 0 -5 4 -7 1 -2 -4 -4 -2 -19

Rank 5 9 3 10 4 6 8 5 6 7

MGPSOR

Wins 0 0 3 0 1 0 0 0 0 4

Losses 8 4 3 6 1 8 7 4 4 45

Difference -8 -4 0 -6 0 -8 -7 -4 -4 -41

Rank 9 7 6 8 5 9 9 5 7 9

MGPSORI

Wins 0 0 3 0 1 0 0 0 0 4

Losses 8 6 3 6 1 8 7 4 6 49

Difference -8 -6 0 -6 0 -8 -7 -4 -6 -45

Rank 9 10 6 8 5 9 9 5 9 10

KnMGPSOSTD

Wins 4 1 6 1 6 5 2 0 3 28

Losses 4 4 1 4 0 4 4 4 4 29

Difference 0 -3 5 -3 6 1 -2 -4 -1 -1

Rank 5 6 2 7 1 5 5 5 5 5

KnMGPSOR

Wins 2 0 3 3 2 2 2 0 0 14

Losses 6 4 2 4 0 6 4 4 6 36

Difference -4 -4 1 -1 2 -4 -2 -4 -6 -22

Rank 7 7 5 5 3 8 5 5 9 8

KnMGPSORI

Wins 2 2 3 3 4 2 2 0 0 18

Losses 6 4 1 4 0 5 4 4 5 33

Difference -4 -2 2 -1 4 -3 -2 -4 -5 -15

Rank 7 5 4 5 2 7 5 5 8 6
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Table 5.16: IGD Ranking for 3-objective WFG (continue)

Algorithm Result 3-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

CDAS-

SMPSO

Wins 7 6 1 7 1 7 6 7 6 48

Losses 0 2 7 1 5 2 2 0 3 22

Difference 7 4 -6 6 -4 5 4 7 3 26

Rank 1 4 8 2 9 3 3 1 4 3

KnEA

Wins 6 6 0 6 0 6 6 6 7 43

Losses 3 1 8 2 9 3 2 3 2 33

Difference 3 5 -8 4 -9 3 4 3 5 10

Rank 4 3 10 4 10 4 3 4 3 4

MOEA/DD

Wins 7 7 0 6 2 8 8 7 9 54

Losses 0 0 7 1 2 0 0 0 0 10

Difference 7 7 -7 5 0 8 8 7 9 44

Rank 1 2 9 3 5 1 1 1 1 2

NSGA-III

Wins 7 8 9 9 2 8 8 7 8 66

Losses 0 0 0 0 2 0 0 0 1 3

Difference 7 8 9 9 0 8 8 7 7 63

Rank 1 1 1 1 5 1 1 1 2 1

Table 5.17: IGD Ranking for 5-objective WFG

Algorithm Result 5-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOSTD

Wins 0 0 2 0 4 2 0 0 0 8

Losses 4 2 1 7 3 5 6 4 4 36

Difference -4 -2 1 -7 1 -3 -6 -4 -4 -28

Rank 5 5 3 8 5 6 10 7 6 8
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Table 5.17: IGD Ranking for 5-objective WFG (continue)

Algorithm Result 5-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOR

Wins 0 0 2 0 3 0 0 0 0 5

Losses 4 3 2 7 3 8 5 6 5 43

Difference -4 -3 0 -7 0 -8 -5 -6 -5 -38

Rank 5 8 5 8 6 9 8 10 10 10

MGPSORI

Wins 0 0 2 0 4 0 0 0 0 6

Losses 4 3 2 7 2 8 5 4 4 39

Difference -4 -3 0 -7 2 -8 -5 -4 -4 -33

Rank 5 8 5 8 4 9 8 7 6 9

KnMGPSOSTD

Wins 0 3 6 3 7 5 0 1 0 25

Losses 4 2 1 4 0 4 4 4 4 27

Difference -4 1 5 -1 7 1 -4 -3 -4 -2

Rank 5 3 2 5 1 5 7 5 6 5

KnMGPSOR

Wins 0 0 2 3 6 2 3 1 1 18

Losses 4 2 2 4 0 5 4 4 4 29

Difference -4 -2 0 -1 6 -3 -1 -3 -3 -11

Rank 5 5 5 5 3 6 5 5 5 6

KnMGPSORI

Wins 0 1 2 3 7 2 1 0 0 16

Losses 4 2 2 4 0 5 4 4 4 29

Difference -4 -1 0 -1 7 -3 -3 -4 -4 -13

Rank 5 4 5 5 1 6 6 7 6 7

CDAS-

SMPSO

Wins 8 9 2 8 2 8 8 6 7 58

Losses 0 0 1 0 5 1 1 2 2 12

Difference 8 9 1 8 -3 7 7 4 5 46

Rank 1 1 3 1 7 2 2 3 3 2
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Table 5.17: IGD Ranking for 5-objective WFG (continue)

Algorithm Result 5-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

KnEA

Wins 6 0 0 6 0 6 6 6 6 36

Losses 3 2 9 3 8 2 2 2 3 34

Difference 3 -2 -9 3 -8 4 4 4 3 2

Rank 4 5 10 4 9 3 3 3 4 4

MOEA/DD

Wins 7 0 1 7 0 6 6 8 8 43

Losses 1 4 8 2 8 2 2 1 1 29

Difference 6 -4 -7 5 -8 4 4 7 7 14

Rank 3 10 9 3 9 3 3 2 2 3

NSGA-III

Wins 7 8 9 8 2 9 9 9 9 70

Losses 0 1 0 0 6 0 0 0 0 7

Difference 7 7 9 8 -4 9 9 9 9 63

Rank 2 2 1 1 8 1 1 1 1 1

Table 5.18: IGD Ranking for 8-objective WFG

Algorithm Result 8-objective WFG
O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOSTD

Wins 0 1 3 0 3 1 1 1 1 11

Losses 4 5 2 7 1 3 3 5 3 33

Difference -4 -4 1 -7 2 -2 -2 -4 -2 -22

Rank 8 7 5 8 4 6 4 8 7 8

MGPSOR

Wins 0 1 3 0 3 1 1 1 1 11

Losses 4 5 2 7 2 4 3 5 3 35

Difference -4 -4 1 -7 1 -3 -2 -4 -2 -24

Rank 8 7 5 8 6 8 4 8 7 9
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Table 5.18: IGD Ranking for 8-objective WFG (continue)

Algorithm Result 8-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSORI

Wins 0 1 3 0 3 1 1 1 1 11

Losses 4 5 2 7 1 4 3 4 2 32

Difference -4 -4 1 -7 2 -3 -2 -3 -1 -21

Rank 8 7 5 8 4 8 4 7 5 7

KnMGPSOSTD

Wins 0 4 3 3 7 2 1 1 4 25

Losses 3 1 1 4 0 3 3 3 1 19

Difference -3 3 2 -1 7 -1 -2 -2 3 6

Rank 5 2 3 5 1 4 4 6 3 4

KnMGPSOR

Wins 3 4 3 3 5 1 1 3 1 24

Losses 3 1 1 4 0 3 3 3 2 20

Difference 0 3 2 -1 5 -2 -2 0 -1 4

Rank 4 2 3 5 2 6 4 5 5 6

KnMGPSORI

Wins 0 4 6 3 3 2 1 4 2 25

Losses 3 1 1 4 0 3 3 3 1 19

Difference -3 3 5 -1 3 -1 -2 1 1 6

Rank 5 2 2 5 3 4 4 4 4 4

CDAS-

SMPSO

Wins 8 0 9 9 1 7 7 7 1 49

Losses 0 9 0 0 7 1 1 0 4 22

Difference 8 -9 9 9 -6 6 6 7 -3 27

Rank 1 10 1 1 8 2 3 1 9 2

KnEA

Wins 7 4 0 6 0 0 0 0 0 17

Losses 1 1 8 3 9 9 9 9 9 58

Difference 6 3 -8 3 -9 -9 -9 -9 -9 -41

Rank 3 2 10 4 10 10 10 10 10 10
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Table 5.18: IGD Ranking for 8-objective WFG (continue)

Algorithm Result 8-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MOEA/DD

Wins 0 1 0 7 1 7 7 7 6 36

Losses 3 1 7 1 7 1 0 0 0 20

Difference -3 0 -7 6 -6 6 7 7 6 16

Rank 5 6 9 2 8 2 2 1 2 3

NSGA-III

Wins 7 9 1 7 3 9 8 7 8 59

Losses 0 0 7 1 2 0 0 0 0 10

Difference 7 9 -6 6 1 9 8 7 8 49

Rank 2 1 8 2 6 1 1 1 1 1

Table 5.19: IGD Ranking for 10-objective WFG

Algorithm Result 10-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOSTD

Wins 0 2 3 0 4 2 0 0 4 15

Losses 5 3 0 5 0 2 3 6 0 24

Difference -5 -1 3 -5 4 0 -3 -6 4 -9

Rank 9 6 1 9 1 3 5 10 1 8

MGPSOR

Wins 0 2 3 0 4 2 0 0 4 15

Losses 3 3 0 6 0 2 3 4 0 21

Difference -3 -1 3 -6 4 0 -3 -4 4 -6

Rank 6 6 1 10 1 3 5 9 1 7

MGPSORI

Wins 0 2 3 0 4 2 0 1 4 16

Losses 3 3 0 4 0 2 3 2 0 17

Difference -3 -1 3 -4 4 0 -3 -1 4 -1

Rank 6 6 1 7 1 3 5 5 1 6
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Table 5.19: IGD Ranking for 10-objective WFG (continue)

Algorithm Result 10-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

KnMGPSOSTD

Wins 0 5 3 0 4 2 0 1 4 19

Losses 5 1 0 4 0 2 3 2 0 17

Difference -5 4 3 -4 4 0 -3 -1 4 2

Rank 9 3 1 7 1 3 5 5 1 5

KnMGPSOR

Wins 2 2 3 2 4 2 0 2 4 21

Losses 3 2 0 4 0 2 3 2 0 16

Difference -1 0 3 -2 4 0 -3 0 4 5

Rank 4 4 1 5 1 3 5 3 1 3

KnMGPSORI

Wins 2 2 3 1 4 2 0 2 4 20

Losses 3 2 0 4 0 2 3 2 0 16

Difference -1 0 3 -3 4 0 -3 0 4 4

Rank 4 4 1 6 1 3 5 3 1 4

CDAS-

SMPSO

Wins 8 0 3 9 2 8 8 8 0 46

Losses 0 8 0 0 6 0 0 0 6 20

Difference 8 -8 3 9 -4 8 8 8 -6 26

Rank 1 9 1 1 7 1 1 1 9 2

KnEA

Wins 7 7 0 6 1 0 0 0 0 21

Losses 1 1 7 1 8 8 2 2 8 38

Difference 6 6 -7 5 -7 -8 -2 -2 -8 -17

Rank 3 2 9 2 9 9 4 7 10 9

MOEA/DD

Wins 0 0 0 6 0 0 6 0 1 13

Losses 3 8 8 1 9 8 2 2 6 47

Difference -3 -8 -8 5 -9 -8 4 -2 -5 -34

Rank 6 9 10 2 10 9 3 7 7 10
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Table 5.19: IGD Ranking for 10-objective WFG (continue)

Algorithm Result 10-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

NSGA-III

Wins 7 9 1 6 2 8 8 8 1 50

Losses 0 0 7 1 6 0 0 0 6 20

Difference 7 9 -6 5 -4 8 8 8 -5 30

Rank 2 1 8 2 7 1 1 1 7 1

Table 5.20: IGD Ranking for 15-objective WFG

Algorithm Result 15-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

MGPSOSTD

Wins 0 1 3 0 4 0 0 0 4 12

Losses 1 1 0 4 0 2 4 4 0 16

Difference -1 0 3 -4 4 -2 -4 -4 4 -4

Rank 5 3 1 6 1 3 5 5 1 5

MGPSOR

Wins 0 1 3 0 4 0 0 0 4 12

Losses 1 2 0 5 0 2 4 4 0 18

Difference -1 -1 3 -5 4 -2 -4 -4 4 -6

Rank 5 9 1 10 1 3 5 5 1 9

MGPSORI

Wins 0 1 3 0 4 0 0 0 4 12

Losses 1 1 0 4 0 2 4 4 0 16

Difference -1 0 3 -4 4 -2 -4 -4 4 -4

Rank 5 3 1 6 1 3 5 5 1 5

KnMGPSOSTD

Wins 0 2 3 1 4 0 0 0 4 14

Losses 1 1 0 4 0 2 4 4 0 16

Difference -1 1 3 -3 4 -2 -4 -4 4 -2

Rank 5 2 1 5 1 3 5 5 1 4
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Table 5.20: IGD Ranking for 15-objective WFG (continue)

Algorithm Result 15-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

KnMGPSOR

Wins 0 1 3 0 4 0 0 0 4 12

Losses 1 1 0 4 0 2 4 4 0 16

Difference -1 0 3 -4 4 -2 -4 -4 4 -4

Rank 5 3 1 6 1 3 5 5 1 5

KnMGPSORI

Wins 0 1 3 0 4 0 0 0 4 12

Losses 1 1 0 4 0 2 4 4 0 16

Difference -1 0 3 -4 4 -2 -4 -4 4 -4

Rank 5 3 1 6 1 3 5 5 1 5

CDAS-

SMPSO

Wins 0 0 3 9 2 9 9 9 2 43

Losses 0 9 0 0 6 0 0 0 6 21

Difference 0 -9 3 9 -4 9 9 9 -4 22

Rank 2 10 1 1 7 1 1 1 7 1

KnEA

Wins 6 1 0 6 1 0 6 6 2 28

Losses 0 1 7 1 8 2 1 1 6 27

Difference 6 0 -7 5 -7 -2 5 5 -4 1

Rank 1 3 8 3 9 3 2 3 7 3

MOEA/DD

Wins 0 1 0 6 0 0 6 6 0 19

Losses 0 1 7 2 9 2 1 2 8 32

Difference 0 0 -7 4 -9 -2 5 4 -8 -13

Rank 2 3 8 4 10 3 2 4 9 10

NSGA-III

Wins 0 9 0 7 2 8 6 7 0 39

Losses 0 0 7 1 6 1 1 1 8 25

Difference 0 9 -7 6 -4 7 5 6 -8 14

Rank 2 1 8 2 7 2 2 2 9 2
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5.4.1 Hypervolume Discussion

The overall HV rankings for each algorithm, shown in tables 5.1 to 5.10, are
analyzed and discussed next.

The MGPSOSTD ranked best overall three times with respect to HV. The
MGPSOSTD received the best overall rank for the 3-, 10-, and 15-objective
DTLZ problems (tables 5.1, 5.4, and 5.5). The MGPSOSTD ranked top-three
overall six times in terms of HV (tables 5.1 to 5.5, and 5.10). The MGPSOSTD

ranked worst overall in terms of HV only for the 3-objective WFG problems
(table 5.6). Therefore, the MGPSOSTD scaled and performed very competi-
tively with respect to HV, even compared to the MaOO benchmark algorithms.

The MGPSOR never performed best overall. The MGPSOR ranked third
overall only twice in terms of HV, for the 8- and 10-objective WFG problems
(tables 5.8 and 5.9). The worst overall rank received by the MGPSOR consider-
ing HV was seven, for the 5-objective DTLZ problems (table 5.2). The overall
performance of the MGPSOR with respect to HV was medial. Therefore, the
MGPSOR did not scale to many-objectives competitively with respect to HV.

The MGPSORI also never received the best overall rank. The best overall
rank received by the MGPSORI in terms of HV was two, achieved for the 8-
objective WFG problems (table 5.8). The MGPSORI ranked top-three overall
four times in terms of HV (tables 5.4, 5.5, 5.8, and 5.9). The worst overall
rank obtained by the MGPSORI with respect to HV was seven, obtained for
the 5-objective DTLZ and WFG problems (tables 5.2 and 5.7). The overall
performance of the MGPSORI in terms of HV was also medial. Therefore, the
MGPSORI did not scale to many-objectives competitively with respect to HV.
The MGPSORI outperformed the MGPSOR, ranking top-three overall twice
as much in terms of HV.

The KnMGPSOSTD ranked best overall twice in terms of HV, for the 8-
and 10-objective WFG problems (tables 5.8 and 5.9). The KnMGPSOSTD

ranked top-three overall seven times with respect to HV; that is, the most
compared to the other algorithms (tables 5.1, 5.2, 5.4, 5.5, and 5.8 to 5.10).
The KnMGPSOSTD obtained the worst overall rank twice with regards to HV,
for the 3- and 5-objective WFG problems (tables 5.6 and 5.7). Therefore, the
KnMGPSOSTD scaled and performed very competitively in terms of HV.

The best and only top-three overall rank obtained by the KnMGPSOR with
respect to HV was three, for the 10-objective WFG problems (table 5.9). The
KnMGPSOR never ranked worst overall. The worst overall rank obtained by
the KnMGPSOR in terms of HV was eight, for the 8-objective DTLZ prob-
lems (table 5.3). The KnMGPSOR performed towards the middle overall with
respect to HV. Therefore, the KnMGPSOR did not scale to many-objectives
competitively with respect to HV.

The KnMGPSORI performed best overall once with respect to HV, for the
10-objective WFG problems (table 5.9). The KnMGPSORI obtained top-three
overall ranks with respect to HV twice (tables 5.6 and 5.9). The KnMGPSORI,
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like the KnMGPSOR, also never ranked worst overall. The worst overall rank
obtained by the KnMGPSORI in terms of HV was eight, for the 5-objective
DTLZ and WFG problems (tables 5.2 and 5.7). Therefore, the KnMGPSORI

did not perform competitively with regards to HV.
The best overall rank obtained by the CDAS-SMPSO algorithm with

respect to HV was two, for the 3- and 5-objective WFG problems (ta-
bles 5.6 and 5.7). The CDAS-SMPSO algorithm ranked top-three overall twice
in terms of HV (tables 5.6 and 5.7). The CDAS-SMPSO algorithm performed
worst overall twice in terms of HV, for the 3- and 15-objective DTLZ prob-
lems (tables 5.1 and 5.5). The CDAS-SMPSO algorithm ranked towards the
bottom overall in terms of HV often. Therefore, the CDAS-SMPSO algorithm
did not scale well with regards to HV.

The KnEA ranked first overall twice in terms of HV, for the 3- and 5-
objective WFG problems (tables 5.6 and 5.7). The KnEA ranked top-three
overall three times with respect to HV (tables 5.1, 5.6 and 5.7). The KnEA
performed worst overall more often than any other algorithm in terms of HV.
That is, five times for the 5-, 8-, and 10-objective DTLZ problems and the
8- and 15-objective WFG problems (tables 5.2 to 5.4, 5.8, and 5.10). There-
fore, the KnEA scaled and performed the worst in terms of HV. Also note
that the KnMGPSO algorithm variants, which used suggested values for κ,
outperformed the KnEA which used optimized (tuned) values for κ.

The MOEA/DD performed best overall twice in terms of HV, for the 5-
and 8-objective DTLZ problems (tables 5.2 and 5.3). That is, the only two
times that the MOEA/DD ranked top-three overall with respect to HV. The
MOEA/DD obtained the worst overall rank once with respect to HV, for the
10-objective WFG problems (table 5.9). The MOEA/DD ranked near the
bottom overall often with respect to HV. Therefore, the MOEA/DD did not
perform or scale competitively with respect to HV.

The NSGA-III received the best overall rank in terms of HV once, for
the 15-objective WFG problems (table 5.10). The NSGA-III ranked top-three
overall four times with respect to HV (tables 5.2, 5.3, 5.7, and 5.10). The
NSGA-III never performed worst overall. The worst overall rank obtained by
the NSGA-III in terms of HV was nine, for the 3- and 15-objective DTLZ
problems (tables 5.1 and 5.5). Therefore, the NSGA-III performed and scaled
competitively in terms of HV, especially compared to the other MaOO algo-
rithms.

5.4.2 Inverted Generational Distance Discussion

The overall IGD rankings for each algorithm, shown in tables 5.11 to 5.20, are
analyzed and discussed next.

The best overall rank obtained by the MGPSOSTD in terms of IGD was
two, for the 10-objective DTLZ problems (table 5.14). That is, the only time
the MGPSOSTD ranked top-three overall in terms of IGD. The worst overall
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rank received by the MGPSOSTD in terms of IGD was nine, for the 3-objective
DTLZ problems (table 5.11). The MGPSOSTD ranked in the bottom-half
overall often in terms of IGD. Therefore, the MGPSOSTD did not perform
competitively with respect to IGD.

The MGPSOR never performed best overall. The best overall IGD rank
obtained by the MGPSOR was five, for the 8-, 10-, and 15-objective DTLZ
problems (tables 5.13 to 5.15). The MGPSOR performed worst overall only
once in terms of IGD, for the 5-objective WFG problems (table 5.17). There-
fore, the MGPSOR did not perform competitively with respect to IGD.

The MGPSORI also never received the best overall rank. The best overall
rank received by the MGPSORI in terms of IGD was four, obtained for the 15-
objective DTLZ problems (table 5.15). The MGPSORI performed worst overall
only once in terms of IGD for the 3-objective WFG problems (table 5.16).
Therefore, the MGPSORI did not perform competitively with respect to IGD.
The overall performance of the MGPSOSTD, the MGPSOR, and the MGPSORI

was comparable with respect to IGD.
The best overall rank obtained by the KnMGPSOSTD with respect to IGD

was two, for the 10-objective DTLZ problems (table 5.14). The KnMGPSOSTD

ranked top-three overall three times with respect to IGD (tables 5.13 to 5.15).
The worst overall rank obtained by the KnMGPSOSTD with respect to IGD was
eight, for the 3-objective DTLZ problems (table 5.11). The KnMGPSOSTD,
however, ranked in the top-half overall for all other problems with regards to
IGD. Therefore, the KnMGPSOSTD did not perform competitively although
consistently.

The KnMGPSOR only performed best overall once with respect to
IGD, that is, for the 10-objective DTLZ problems (table 5.14). The
KnMGPSOR ranked top-three overall four times with respect to IGD (ta-
bles 5.18, 5.19, 5.14, and 5.15). The KnMGPSOR never ranked worst overall.
The worst overall rank obtained by the KnMGPSOR in terms of IGD was eight,
for the 3-objective WFG problems (table 5.16). Therefore, the KnMGPSOR

scaled and performed somewhat competitively with respect to IGD.
The KnMGPSORI received the best overall rank once with respect to IGD,

for the 15-objective DTLZ problems (table 5.15). The KnMGPSORI obtained
top-three overall ranks with respect to IGD twice (tables 5.12, and 5.15). The
KnMGPSORI, like the KnMGPSOR, also never performed worst overall. The
worst overall rank obtained by the KnMGPSORI in terms of IGD was seven,
for the 5-objective WFG problems (table 5.17). The KnMGPSORI ranked near
the middle overall often in terms of IGD. Therefore, the KnMGPSORI did not
perform competitively in terms of IGD.

The CDAS-SMPSO algorithm performed best overall only once in terms
of IGD, for the 15-objective WFG problems (table 5.20). The CDAS-
SMPSO algorithm ranked top-three overall five times in terms of IGD (ta-
bles 5.16 to 5.20). The CDAS-SMPSO algorithm performed worst overall most
often with respect to IGD; that is, three times for the 3-, 5-, and 8-objective
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DTLZ problems (tables 5.11 to 5.13). The CDAS-SMPSO algorithm ranked
near the bottom overall in terms of IGD several times. The CDAS-SMPSO
algorithm also ranked top-three overall often. Therefore, the CDAS-SMPSO
algorithm performed inconsistently with regards to IGD.

The best overall rank obtained by the KnEA with respect to IGD was
three, for the 3-objective DTLZ problems (table 5.11) and the 15-objective
WFG problems (table 5.20). That is, the only two times the KnEA ranked
top-three overall with respect to IGD. The KnEA performed worst overall most
often (together with the CDAS-SMPSO algorithm) in terms of IGD. That is,
three times for the 10- and 15-objective DTLZ problems and the 8-objective
WFG problems (tables 5.14, 5.15, and 5.18). Therefore, the KnEA scaled and
performed among the worst in terms of IGD. Also note that the KnMGPSO
algorithm variants, which used suggested values for κ, outperformed the KnEA
which used optimized (tuned) values for κ.

The MOEA/DD performed best overall once in terms of IGD, for the 3-
objective DTLZ problems (table 5.11). The MOEA/DD ranked top-three over-
all six times with respect to IGD (tables 5.11 to 5.13, and 5.16 to 5.18). The
MOEA/DD obtained the worst overall rank twice with respect to IGD, for
the 10- and 15-objective WFG problems (tables 5.19 and 5.20). Therefore,
the MOEA/DD performed and scaled somewhat competitively with respect to
IGD.

The NSGA-III received the best overall rank with respect to IGD six times
- more than any algorithm investigated in this chapter. That is, for the
5- and 8-objective DTLZ problems and the 3-, 5-, 8-, 10-, and 15-objective
WFG problems (tables 5.12, 5.13, and 5.16 to 5.20). The NSGA-III also
performed top-three overall the most in terms of IGD; that is, eight times
(tables 5.11 to 5.13 and 5.16 to 5.20). The NSGA-III never performed worst
overall. The worst overall rank obtained by the NSGA-III with regards to IGD
was seven, for the 10- and 15-objective DTLZ problems (tables 4.14 and 4.15).
Therefore, the NSGA-III was superior to all other algorithms investigated in
this chapter in terms of IGD.

5.4.3 General Discussion

Some general findings with regards to tables 5.1 to 5.20 are discussed next.
The knee-points approach (the KnMGPSO algorithm) slightly improved

the scalability of the MGPSO algorithm in terms of IGD, but not in terms of
HV. The KnMGPSOSTD was, however, very competitive in terms of HV. Also,
note that the KnEA, which also uses knee-points, performed worst overall
throughout this study (even with tuned control parameter values). Therefore,
the results suggest that the knee-points approach is not as competitive com-
pared to the mechanisms used by the other state-of-the-art MaOO algorithms.

The MGPSOSTD scaled to many-objectives well in terms of HV, despite
using the degrading Pareto-dominance relation. Recall that the Pareto-
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dominance relation struggles to distinguish solution desirability as the number
of objectives for the problem continues to increase. The Pareto-dominance
relation controls which solutions may be inserted into the archive but it is
not used to select the actual archive guide. Also, the archive guide is not
the only component in the MGPSO algorithm that guides the search. That
is, the personal best and neighbourhood best positions also help guide the
search. Therefore, the MGPSO algorithm is not affected that much by the
many-objective weakness associated with the Pareto-dominance relation.

The use of different dynamic archive balance coefficient update strategies
did not improve the performance of the MGPSO algorithm or the KnMGPSO
algorithm significantly. The original STD approach was deemed the superior
option in both the MGPSO algorithm and the KnMGPSO algorithm.

The results, discussed in the sections above, are summarized in ta-
bles 5.21 and 5.22. The tables contain the number of overall best, overall
top-three, and overall worst ranks obtained by each algorithm with respect
to either HV or IGD. Tables 5.23 and 5.24 contain the average overall rank
obtained by each algorithm for each benchmark problem suite for each number
of objectives with respect to either HV or IGD.

Table 5.21: HV Ranking Summary

Algorithm
Number of

overall best HV ranks

Number of

overall HV ranks ≤ 3

Number of

overall worst HV ranks

MGPSOSTD 3 6 1

MGPSOR 0 2 0

MGPSORI 0 4 0

KnMGPSOSTD 2 7 2

KnMGPSOR 0 1 0

KnMGPSORI 1 2 0

CDAS-SMPSO 0 2 2

KnEA 2 3 5

MOEA/DD 2 2 1

NSGA-III 1 4 0

5.5 Summary
This chapter discussed the knee-points approach and introduced the knee-
point driven multi-guide particle swarm optimization (KnMGPSO) algorithm.
The KnMGPSO algorithm uses knee-points as a convergence metric alongside
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Table 5.22: IGD Ranking Summary

Algorithm
Number of

overall best IGD ranks

Number of

overall IGD ranks ≤ 3

Number of

overall worst IGD ranks

MGPSOSTD 0 1 0

MGPSOR 0 0 1

MGPSORI 0 0 1

KnMGPSOSTD 0 3 0

KnMGPSOR 1 4 0

KnMGPSORI 1 2 0

CDAS-SMPSO 1 5 3

KnEA 0 2 3

MOEA/DD 1 6 2

NSGA-III 6 8 0

the Pareto-dominance relation in order to increase the selection pressure to-
wards the POF. This chapter empirically investigated the scalability of the
multi-guide particle swarm optimization (MGPSO) [137] algorithm, the Kn-
MGPSO algorithm, and benchmark algorithms on a set of benchmark prob-
lems by calculating, and statistically analyzing, the inverted generational dis-
tance (IGD) [25, 128] and hypervolume (HV) [181] performance measure values
that were calculated on the normalized solutions without outliers. The bench-
mark algorithms included the controlling dominance area of solutions speed
constraint multi-objective particle swarm optimization (CDAS-SMPSO) [33]
algorithm, the knee-point driven evolutionary algorithm (KnEA) [174], the
many-objective evolutionary algorithm based on dominance and decomposi-
tion (MOEA/DD) [95], and the reference-point based many-objective non-
dominated sorting genetic algorithm (NSGA-III) [38]. The benchmark prob-
lems with 3, 5, 8, 10, and 15 objectives were used to test the scalability of the
algorithms. Three different archive balance coefficient update strategies were
also investigated with the aim of improving scalability. These included the
standard static archive balance coefficient update strategy (STD), the random
dynamic archive balance coefficient update strategy (R), and the random per
particle dynamic archive balance coefficient update strategy (RI) [53]. The
results were presented in tables and discussed.

The MGPSO algorithm using the STD (MGPSOSTD) performed better
with respect to HV than any other algorithm investigated in this chapter. The
MGPSO algorithm using the R (MGPSOR) and the MGPSO algorithm using
the RI (MGPSORI) ranked in the middle overall in most cases. The KnMG-
PSO algorithm using the STD (KnMGPSOSTD) also performed competitively,
considering the number of top-three overall HV rankings. The KnMGPSO
algorithm using the R (KnMGPSOR) and the KnMGPSO algorithm using the
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Table 5.23: HV Ranking Averages

Algorithm Benchmark

Problems

nm Average
3 5 8 10 15

MGPSOSTD

DTLZ 1 2 2 1 1 1.4

WFG 9 9 4 6 3 6.2

Average Rank 5 5.5 3 3.5 2 3.8

MGPSOR

DTLZ 4 7 5 4 4 4.8

WFG 6 5 3 3 4 4.2

Average Rank 5 6 4 3.5 4 4.5

MGPSORI

DTLZ 4 5 5 3 3 4

WFG 5 7 2 3 5 4.4

Average Rank 4.5 6 3.5 3 4 4.2

KnMGPSOSTD

DTLZ 3 2 4 2 2 2.6

WFG 9 10 1 1 2 4.6

Average Rank 6 6 2.5 1.5 2 3.6

KnMGPSOR

DTLZ 7 5 8 6 4 6

WFG 4 5 5 3 5 4.4

Average Rank 5.5 5 6.5 4.5 4.5 5.2

KnMGPSORI

DTLZ 6 8 7 5 6 6.4

WFG 3 8 6 1 7 5

Average Rank 4.5 8 6.5 3 6.5 5.7

CDAS-SMPSO
DTLZ 10 9 9 8 10 9.2

WFG 2 2 7 7 9 5.4

Average Rank 6 5.5 8 7.5 9.5 7.3

KnEA
DTLZ 2 10 10 10 8 8

WFG 1 1 10 8 10 6

Average Rank 1.5 5.5 10 9 9 7

MOEA/DD
DTLZ 8 1 1 9 7 5.2

WFG 8 4 9 10 8 7.8

Average Rank 8 2.5 5 9.5 7.5 6.5

NSGA-III
DTLZ 9 2 3 7 9 6

WFG 7 3 8 8 1 5.4

Average Rank 8 2.5 5.5 7.5 5 5.7
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Table 5.24: IGD Ranking Averages

Algorithm Benchmark

Problems

nm Average
3 5 8 10 15

MGPSOSTD

DTLZ 9 8 8 2 6 6.6

WFG 7 8 8 8 5 7.2

Average Rank 8 8 8 5 5.5 6.9

MGPSOR

DTLZ 7 6 5 5 5 5.6

WFG 9 10 9 7 9 8.8

Average Rank 8 8 7 6 7 7.2

MGPSORI

DTLZ 5 7 7 6 4 5.8

WFG 10 9 7 6 5 7.4

Average Rank 7.5 8 7 6 4.5 6.6

KnMGPSOSTD

DTLZ 8 5 3 2 3 4.2

WFG 5 5 4 5 4 4.6

Average Rank 6.5 5 3.5 3.5 3.5 4.4

KnMGPSOR

DTLZ 4 4 3 1 2 2.8

WFG 8 6 6 3 5 5.6

Average Rank 6 5 4.5 2 3.5 4.2

KnMGPSORI

DTLZ 6 3 5 4 1 3.8

WFG 6 7 4 4 5 5.2

Average Rank 6 5 4.5 4 3 4.5

CDAS-SMPSO
DTLZ 10 10 10 9 9 9.6

WFG 3 2 2 2 1 2

Average Rank 6.5 6 6 5.5 5 5.8

KnEA
DTLZ 3 9 9 10 10 8.2

WFG 4 4 10 9 3 6

Average Rank 3.5 6.5 9.5 9.5 6.5 7.1

MOEA/DD
DTLZ 1 2 2 8 8 4.2

WFG 2 3 3 10 10 5.6

Average Rank 1.5 2.5 2.5 9 9 4.9

NSGA-III
DTLZ 2 1 1 7 7 3.6

WFG 1 1 1 1 2 1.2

Average Rank 1.5 1 1 4 4.5 2.4
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RI (KnMGPSORI) performed somewhat competitively in terms of IGD and
never ranked worst overall for both HV and IGD. The dynamic archive bal-
ance coefficient update strategies did not improve the scalability of MGPSO
algorithm or the KnMGPSO algorithm. However, the KnMGPSOR and the
KnMGPSORI did outperform the MGPSOR and the MGPSORI in terms of
IGD.

The knee-points approach used by the KnMGPSO algorithm did not signif-
icantly improve algorithm performance. The knee-points approach was only
able to barely improve the scalability of the MGPSO algorithm in terms of
IGD.

In terms of the benchmark algorithms, the CDAS-SMPSO algorithm did
not perform competitively, as it ranked inconsistently overall. The KnEA
performed worst overall, ranking last overall most-often compared to the other
algorithms. The MOEA/DD performed somewhat competitively in terms of
IGD but not in terms of HV. The NSGA-III outperformed all the investigated
algorithms in terms of IGD, ranking best overall and top-three overall more
than any other algorithm. The NSGA-III also never ranked worst overall.



Chapter 6

Partial-dominance versus
Knee-points

“The chief cause for failure and unhappiness is trading what you want most
for what you want right now.”

— Zig Ziglar

This chapter compares the scalability of the PMGPSO algorithm and the
KnMGPSO algorithm. That is, this chapter investigates whether either of
the MGPSO algorithm adaptations is best. The empirical process followed is
presented in section 6.1. Section 6.2 presents and discusses the results. Finally,
section 6.3 summarizes this chapter.

6.1 Empirical Process
Note that this chapter uses the same empirical proces as in sections 4.3 and 5.3.
The algorithms and parameter tuning approach is discussed in section 6.1.1.

6.1.1 Algorithms and Parameter Tuning Approach

For this part of the study, the following algorithms were investigated:

1. PMGPSOSTD

2. PMGPSOR

3. PMGPSORI

4. KnMGPSOSTD

5. KnMGPSOR

6. KnMGPSORI

Note that this chapter uses the same parameter settings for the PMGPSO
and KnMGPSO algorithms as in chapters 4 and 5.

186
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6.2 Results and Discussion
The results are shown in tables 6.1 to 6.20 containing the overall wins, losses,
difference, and rank across the problems for each algorithm. Note that the top-
three best overall ranks are highlighted for each table. The HV and IGD perfor-
mance measure values can be viewed in Appendix F. Sections 6.2.1 and 6.2.2
discuss the findings with respect to HV and IGD respectively. Finally, sec-
tion 6.2.3 provides some general remarks and summarizes the findings.

Table 6.1: HV Ranking for 3-objective DTLZ

Algorithm Result 3-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

PMGPSOSTD

Wins 2 2 2 0 2 0 0 8

Losses 3 3 3 0 3 3 3 18

Difference -1 -1 -1 0 -1 -3 -3 -10

Rank 4 4 4 3 4 4 4 4

PMGPSOR

Wins 0 0 0 1 0 0 0 1

Losses 4 4 4 0 4 3 3 22

Difference -4 -4 -4 1 -4 -3 -3 -21

Rank 5 5 5 1 5 4 4 5

PMGPSORI

Wins 0 0 0 1 0 0 0 1

Losses 4 4 4 0 4 3 3 22

Difference -4 -4 -4 1 -4 -3 -3 -21

Rank 5 5 5 1 5 4 4 5

KnMGPSOSTD

Wins 5 3 5 0 3 3 3 22

Losses 0 0 0 0 2 2 0 4

Difference 5 3 5 0 1 1 3 18

Rank 1 1 1 3 3 3 1 1

KnMGPSOR

Wins 3 3 3 0 4 4 3 20

Losses 1 0 1 0 0 0 0 2

Difference 2 3 2 0 4 4 3 18

Rank 2 1 2 3 1 1 1 1
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Table 6.1: HV Ranking for 3-objective DTLZ (continue)

Algorithm Result 3-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

KnMGPSORI

Wins 3 3 3 0 4 4 3 20

Losses 1 0 1 2 0 0 0 4

Difference 2 3 2 -2 4 4 3 16

Rank 2 1 2 6 1 1 1 3

Table 6.2: HV Ranking for 5-objective DTLZ

Algorithm Result 5-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

PMGPSOSTD

Wins 0 0 2 2 0 0 0 4

Losses 3 3 3 3 3 3 3 21

Difference -3 -3 -1 -1 -3 -3 -3 -17

Rank 4 4 4 4 4 4 4 4

PMGPSOR

Wins 0 0 0 0 0 0 0 0

Losses 3 3 4 4 3 3 3 23

Difference -3 -3 -4 -4 -3 -3 -3 -23

Rank 4 4 5 5 4 4 4 5

PMGPSORI

Wins 0 0 0 0 0 0 0 0

Losses 3 3 4 4 3 3 3 23

Difference -3 -3 -4 -4 -3 -3 -3 -23

Rank 4 4 5 5 4 4 4 5

KnMGPSOSTD

Wins 5 3 5 3 3 3 4 26

Losses 0 0 0 0 0 0 0 0

Difference 5 3 5 3 3 3 4 26

Rank 1 1 1 1 1 1 1 1
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Table 6.2: HV Ranking for 5-objective DTLZ (continue)

Algorithm Result 5-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

KnMGPSOR

Wins 3 3 3 3 3 3 3 21

Losses 1 0 1 0 0 0 1 3

Difference 2 3 2 3 3 3 2 18

Rank 2 1 2 1 1 1 3 3

KnMGPSORI

Wins 3 3 3 3 3 3 3 21

Losses 1 0 1 0 0 0 0 2

Difference 2 3 2 3 3 3 3 19

Rank 2 1 2 1 1 1 2 2

Table 6.3: HV Ranking for 8-objective DTLZ

Algorithm Result 8-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

PMGPSOSTD

Wins 0 0 0 2 2 2 0 6

Losses 3 3 3 1 3 0 0 13

Difference -3 -3 -3 1 -1 2 0 -7

Rank 4 4 4 2 4 1 2 4

PMGPSOR

Wins 0 0 0 0 0 0 0 0

Losses 3 3 3 4 4 0 1 18

Difference -3 -3 -3 -4 -4 0 -1 -18

Rank 4 4 4 5 5 2 3 5

PMGPSORI

Wins 0 0 0 0 0 0 0 0

Losses 3 3 3 4 4 0 1 18

Difference -3 -3 -3 -4 -4 0 -1 -18

Rank 4 4 4 5 5 2 3 5
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Table 6.3: HV Ranking for 8-objective DTLZ (continue)

Algorithm Result 8-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

KnMGPSOSTD

Wins 4 3 3 5 5 0 4 24

Losses 0 0 0 0 0 0 0 0

Difference 4 3 3 5 5 0 4 24

Rank 1 1 1 1 1 2 1 1

KnMGPSOR

Wins 3 3 3 2 3 0 0 14

Losses 0 0 0 1 1 1 1 4

Difference 3 3 3 1 2 -1 -1 10

Rank 2 1 1 2 2 5 3 2

KnMGPSORI

Wins 3 3 3 2 3 0 0 14

Losses 1 0 0 1 1 1 1 5

Difference 2 3 3 1 2 -1 -1 9

Rank 3 1 1 2 2 5 3 3

Table 6.4: HV Ranking for 10-objective DTLZ

Algorithm Result 10-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

PMGPSOSTD

Wins 0 0 0 2 0 1 4 7

Losses 3 3 3 1 3 0 0 13

Difference -3 -3 -3 1 -3 1 4 -6

Rank 4 4 4 2 4 2 1 4

PMGPSOR

Wins 0 0 0 0 0 2 0 2

Losses 3 3 3 3 3 0 2 17

Difference -3 -3 -3 -3 -3 2 -2 -15

Rank 4 4 4 6 4 1 3 5
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Table 6.4: HV Ranking for 10-objective DTLZ (continue)

Algorithm Result 10-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

PMGPSORI

Wins 0 0 0 0 0 0 0 0

Losses 3 3 3 2 3 0 2 16

Difference -3 -3 -3 -2 -3 0 -2 -16

Rank 4 4 4 5 4 3 3 6

KnMGPSOSTD

Wins 3 3 3 5 4 0 4 22

Losses 0 0 0 0 0 0 0 0

Difference 3 3 3 5 4 0 4 22

Rank 1 1 1 1 1 3 1 1

KnMGPSOR

Wins 3 3 3 0 3 0 0 12

Losses 0 0 0 1 0 1 2 4

Difference 3 3 3 -1 3 -1 -2 8

Rank 1 1 1 4 2 5 3 2

KnMGPSORI

Wins 3 3 3 1 3 0 0 13

Losses 0 0 0 1 1 2 2 6

Difference 3 3 3 0 2 -2 -2 7

Rank 1 1 1 3 3 6 3 3

Table 6.5: HV Ranking for 15-objective DTLZ

Algorithm Result 15-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

PMGPSOSTD

Wins 0 0 0 4 0 2 4 10

Losses 3 3 3 1 3 0 0 13

Difference -3 -3 -3 3 -3 2 4 -3

Rank 4 4 4 2 4 1 1 4
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Table 6.5: HV Ranking for 15-objective DTLZ (continue)

Algorithm Result 15-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

PMGPSOR

Wins 0 0 0 0 0 2 0 2

Losses 3 3 3 2 3 0 2 16

Difference -3 -3 -3 -2 -3 2 -2 -14

Rank 4 4 4 5 4 1 3 5

PMGPSORI

Wins 0 0 0 0 0 0 0 0

Losses 3 3 3 4 3 0 2 18

Difference -3 -3 -3 -4 -3 0 -2 -18

Rank 4 4 4 6 4 3 3 6

KnMGPSOSTD

Wins 3 3 3 5 3 0 4 21

Losses 0 0 0 0 0 0 0 0

Difference 3 3 3 5 3 0 4 21

Rank 1 1 1 1 1 3 1 1

KnMGPSOR

Wins 3 3 3 1 3 0 0 13

Losses 0 0 0 2 0 2 2 6

Difference 3 3 3 -1 3 -2 -2 7

Rank 1 1 1 3 1 5 3 2

KnMGPSORI

Wins 3 3 3 1 3 0 0 13

Losses 0 0 0 2 0 2 2 6

Difference 3 3 3 -1 3 -2 -2 7

Rank 1 1 1 3 1 5 3 2
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Table 6.6: HV Ranking for 3-objective WFG

Algorithm Result 3-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

PMGPSOSTD

Wins 0 0 0 0 0 0 2 0 0 2

Losses 3 3 3 3 3 3 0 3 3 24

Difference -3 -3 -3 -3 -3 -3 2 -3 -3 -22

Rank 4 4 4 4 4 4 1 4 4 4

PMGPSOR

Wins 0 0 0 0 0 0 0 0 0 0

Losses 3 3 3 3 3 3 4 3 3 28

Difference -3 -3 -3 -3 -3 -3 -4 -3 -3 -28

Rank 4 4 4 4 4 4 5 4 4 5

PMGPSORI

Wins 0 0 0 0 0 0 0 0 0 0

Losses 3 3 3 3 3 3 4 3 3 28

Difference -3 -3 -3 -3 -3 -3 -4 -3 -3 -28

Rank 4 4 4 4 4 4 5 4 4 5

KnMGPSOSTD

Wins 3 3 3 3 3 3 2 3 3 26

Losses 2 1 2 0 0 2 0 0 2 9

Difference 1 2 1 3 3 1 2 3 1 17

Rank 3 3 3 1 1 3 1 1 3 3

KnMGPSOR

Wins 4 3 4 3 3 4 2 3 4 30

Losses 0 0 0 0 0 0 0 0 0 0

Difference 4 3 4 3 3 4 2 3 4 30

Rank 1 2 1 1 1 1 1 1 1 2

KnMGPSORI

Wins 4 4 4 3 3 4 2 3 4 31

Losses 0 0 0 0 0 0 0 0 0 0

Difference 4 4 4 3 3 4 2 3 4 31

Rank 1 1 1 1 1 1 1 1 1 1
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Table 6.7: HV Ranking for 5-objective WFG

Algorithm Result 5-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

PMGPSOSTD

Wins 0 2 2 0 0 0 0 0 0 4

Losses 3 3 3 3 0 3 0 3 3 21

Difference -3 -1 -1 -3 0 -3 0 -3 -3 -17

Rank 4 4 4 4 1 4 4 4 4 4

PMGPSOR

Wins 0 0 0 0 0 0 0 0 0 0

Losses 3 4 4 3 0 3 3 3 3 26

Difference -3 -4 -4 -3 0 -3 -3 -3 -3 -26

Rank 4 5 5 4 1 4 5 4 4 5

PMGPSORI

Wins 0 0 0 0 0 0 0 0 0 0

Losses 3 4 4 3 0 3 3 3 3 26

Difference -3 -4 -4 -3 0 -3 -3 -3 -3 -26

Rank 4 5 5 4 1 4 5 4 4 5

KnMGPSOSTD

Wins 3 3 3 3 0 3 2 3 3 23

Losses 2 2 2 0 0 2 0 0 0 8

Difference 1 1 1 3 0 1 2 3 3 15

Rank 3 3 3 1 1 3 1 1 1 3

KnMGPSOR

Wins 4 4 4 3 0 4 2 3 3 27

Losses 0 0 0 0 0 0 0 0 0 0

Difference 4 4 4 3 0 4 2 3 3 27

Rank 1 1 1 1 1 1 1 1 1 1

KnMGPSORI

Wins 4 4 4 3 0 4 2 3 3 27

Losses 0 0 0 0 0 0 0 0 0 0

Difference 4 4 4 3 0 4 2 3 3 27

Rank 1 1 1 1 1 1 1 1 1 1
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Table 6.8: HV Ranking for 8-objective WFG

Algorithm Result 8-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

PMGPSOSTD

Wins 0 2 1 0 4 0 0 0 0 7

Losses 3 3 3 0 0 3 1 1 3 17

Difference -3 -1 -2 0 4 -3 -1 -1 -3 -10

Rank 4 4 4 2 1 4 4 4 4 4

PMGPSOR

Wins 0 0 0 0 2 0 0 0 0 2

Losses 3 4 4 1 1 3 2 3 3 24

Difference -3 -4 -4 -1 1 -3 -2 -3 -3 -22

Rank 4 5 6 5 3 4 6 5 4 6

PMGPSORI

Wins 0 0 0 0 2 0 0 0 0 2

Losses 3 4 3 1 1 3 1 3 3 22

Difference -3 -4 -3 -1 1 -3 -1 -3 -3 -20

Rank 4 5 5 5 3 4 4 5 4 5

KnMGPSOSTD

Wins 3 3 5 2 2 3 3 5 3 29

Losses 2 1 0 0 0 0 0 0 0 3

Difference 1 2 5 2 2 3 3 5 3 26

Rank 3 3 1 1 2 1 1 1 1 1

KnMGPSOR

Wins 4 3 3 0 0 3 1 2 3 19

Losses 0 0 1 0 4 0 0 1 0 6

Difference 4 3 2 0 -4 3 1 1 3 13

Rank 1 2 2 2 5 1 2 2 1 2

KnMGPSORI

Wins 4 4 3 0 0 3 0 2 3 19

Losses 0 0 1 0 4 0 0 1 0 6

Difference 4 4 2 0 -4 3 0 1 3 13

Rank 1 1 2 2 5 1 3 2 1 2
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Table 6.9: HV Ranking for 10-objective WFG

Algorithm Result 10-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

PMGPSOSTD

Wins 0 0 2 0 4 0 0 2 0 8

Losses 5 3 3 0 0 1 1 0 2 15

Difference -5 -3 -1 0 4 -1 -1 2 -2 -7

Rank 6 4 4 1 1 4 3 2 4 4

PMGPSOR

Wins 1 0 0 0 1 0 0 0 0 2

Losses 3 3 4 0 2 2 2 4 2 22

Difference -2 -3 -4 0 -1 -2 -2 -4 -2 -20

Rank 4 4 5 1 4 5 6 5 4 6

PMGPSORI

Wins 1 0 0 0 2 0 0 0 0 3

Losses 3 3 4 0 2 3 1 4 2 22

Difference -2 -3 -4 0 0 -3 -1 -4 -2 -19

Rank 4 4 5 1 3 6 3 5 4 5

KnMGPSOSTD

Wins 3 3 5 0 4 1 4 3 0 23

Losses 2 0 0 0 0 0 0 0 0 2

Difference 1 3 5 0 4 1 4 3 0 21

Rank 3 1 1 1 1 3 1 1 3 1

KnMGPSOR

Wins 4 3 3 0 0 2 1 2 3 18

Losses 0 0 1 0 3 0 0 1 0 5

Difference 4 3 2 0 -3 2 1 1 3 13

Rank 1 1 2 1 5 2 2 4 1 2

KnMGPSORI

Wins 4 3 3 0 0 3 0 2 3 18

Losses 0 0 1 0 4 0 1 0 0 6

Difference 4 3 2 0 -4 3 -1 2 3 12

Rank 1 1 2 1 6 1 3 2 1 3
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Table 6.10: HV Ranking for 15-objective WFG

Algorithm Result 15-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

PMGPSOSTD

Wins 0 0 0 0 4 0 0 0 0 4

Losses 3 3 3 3 0 3 0 0 0 15

Difference -3 -3 -3 -3 4 -3 0 0 0 -11

Rank 4 4 4 4 1 5 2 4 1 4

PMGPSOR

Wins 0 0 0 0 2 0 0 0 0 2

Losses 3 3 3 3 1 3 1 3 0 20

Difference -3 -3 -3 -3 1 -3 -1 -3 0 -18

Rank 4 4 4 4 3 5 5 6 1 6

PMGPSORI

Wins 0 0 0 0 1 0 0 0 0 1

Losses 3 3 3 3 1 1 1 2 0 17

Difference -3 -3 -3 -3 0 -1 -1 -2 0 -16

Rank 4 4 4 4 4 4 5 5 1 5

KnMGPSOSTD

Wins 3 3 3 3 2 2 0 2 0 18

Losses 2 0 0 0 0 0 0 0 0 2

Difference 1 3 3 3 2 2 0 2 0 16

Rank 3 1 1 1 2 2 2 1 1 1

KnMGPSOR

Wins 4 3 3 3 0 3 0 2 0 18

Losses 0 0 0 0 3 0 0 0 0 3

Difference 4 3 3 3 -3 3 0 2 0 15

Rank 1 1 1 1 5 1 2 1 1 2

KnMGPSORI

Wins 4 3 3 3 0 2 2 1 0 18

Losses 0 0 0 0 4 0 0 0 0 4

Difference 4 3 3 3 -4 2 2 1 0 14

Rank 1 1 1 1 6 2 1 3 1 3
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Table 6.11: IGD Ranking for 3-objective DTLZ

Algorithm Result 3-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

PMGPSOSTD

Wins 0 3 3 3 3 3 3 18

Losses 2 0 0 1 0 0 0 3

Difference -2 3 3 2 3 3 3 15

Rank 3 1 1 3 1 1 1 3

PMGPSOR

Wins 0 3 3 4 3 3 3 19

Losses 2 0 0 0 0 0 0 2

Difference -2 3 3 4 3 3 3 17

Rank 3 1 1 1 1 1 1 1

PMGPSORI

Wins 0 3 3 3 3 3 3 18

Losses 2 0 0 0 0 0 0 2

Difference -2 3 3 3 3 3 3 16

Rank 3 1 1 2 1 1 1 2

KnMGPSOSTD

Wins 0 0 0 0 1 2 1 4

Losses 2 3 5 3 3 3 3 22

Difference -2 -3 -5 -3 -2 -1 -2 -18

Rank 3 4 6 4 4 4 4 6

KnMGPSOR

Wins 4 0 1 0 0 0 0 5

Losses 0 3 3 3 3 4 4 20

Difference 4 -3 -2 -3 -3 -4 -4 -15

Rank 1 4 4 4 5 5 6 4

KnMGPSORI

Wins 4 0 1 0 0 0 0 5

Losses 0 3 3 3 4 4 3 20

Difference 4 -3 -2 -3 -4 -4 -3 -15

Rank 1 4 4 4 6 5 5 4
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Table 6.12: IGD Ranking for 5-objective DTLZ

Algorithm Result 5-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

PMGPSOSTD

Wins 0 3 3 0 3 0 3 12

Losses 3 0 0 0 0 0 1 4

Difference -3 3 3 0 3 0 2 8

Rank 4 1 1 1 1 1 3 3

PMGPSOR

Wins 0 3 3 0 3 0 3 12

Losses 3 0 0 0 0 0 0 3

Difference -3 3 3 0 3 0 3 9

Rank 4 1 1 1 1 1 2 2

PMGPSORI

Wins 0 3 3 0 3 0 4 13

Losses 3 0 0 0 0 0 0 3

Difference -3 3 3 0 3 0 4 10

Rank 4 1 1 1 1 1 1 1

KnMGPSOSTD

Wins 3 0 0 0 0 0 0 3

Losses 0 3 3 0 3 0 5 14

Difference 3 -3 -3 0 -3 0 -5 -11

Rank 1 4 4 1 4 1 6 6

KnMGPSOR

Wins 3 0 0 0 0 0 1 4

Losses 0 3 3 0 3 0 3 12

Difference 3 -3 -3 0 -3 0 -2 -8

Rank 1 4 4 1 4 1 4 4

KnMGPSORI

Wins 3 0 0 0 0 0 1 4

Losses 0 3 3 0 3 0 3 12

Difference 3 -3 -3 0 -3 0 -2 -8

Rank 1 4 4 1 4 1 4 4
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Table 6.13: IGD Ranking for 8-objective DTLZ

Algorithm Result 8-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

PMGPSOSTD

Wins 0 3 3 0 3 0 3 12

Losses 3 0 0 0 0 0 0 3

Difference -3 3 3 0 3 0 3 9

Rank 4 1 1 2 1 1 1 1

PMGPSOR

Wins 0 3 3 0 3 0 3 12

Losses 3 0 0 0 0 0 0 3

Difference -3 3 3 0 3 0 3 9

Rank 4 1 1 2 1 1 1 1

PMGPSORI

Wins 0 3 3 0 3 0 3 12

Losses 3 0 0 1 0 0 0 4

Difference -3 3 3 -1 3 0 3 8

Rank 4 1 1 4 1 1 1 3

KnMGPSOSTD

Wins 3 0 0 3 0 0 0 6

Losses 0 3 3 0 3 0 5 14

Difference 3 -3 -3 3 -3 0 -5 -8

Rank 1 4 4 1 4 1 6 4

KnMGPSOR

Wins 3 0 0 0 0 0 1 4

Losses 0 3 3 1 3 0 3 13

Difference 3 -3 -3 -1 -3 0 -2 -9

Rank 1 4 4 4 4 1 4 5

KnMGPSORI

Wins 3 0 0 0 0 0 1 4

Losses 0 3 3 1 3 0 3 13

Difference 3 -3 -3 -1 -3 0 -2 -9

Rank 1 4 4 4 4 1 4 5



CHAPTER 6. PARTIAL-DOMINANCE VERSUS KNEE-POINTS 201

Table 6.14: IGD Ranking for 10-objective DTLZ

Algorithm Result 10-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

PMGPSOSTD

Wins 0 0 3 3 3 0 3 12

Losses 3 0 0 0 0 0 0 3

Difference -3 0 3 3 3 0 3 9

Rank 4 3 1 1 1 1 1 3

PMGPSOR

Wins 0 3 3 3 3 0 3 15

Losses 3 0 0 0 0 0 0 3

Difference -3 3 3 3 3 0 3 12

Rank 4 1 1 1 1 1 1 1

PMGPSORI

Wins 0 2 3 3 3 0 3 14

Losses 3 0 0 0 0 0 0 3

Difference -3 2 3 3 3 0 3 11

Rank 4 2 1 1 1 1 1 2

KnMGPSOSTD

Wins 3 0 0 0 0 0 0 3

Losses 0 2 3 3 3 0 5 16

Difference 3 -2 -3 -3 -3 0 -5 -13

Rank 1 5 4 4 4 1 6 6

KnMGPSOR

Wins 3 0 0 0 0 0 1 4

Losses 0 2 3 3 3 0 3 14

Difference 3 -2 -3 -3 -3 0 -2 -10

Rank 1 5 4 4 4 1 4 5

KnMGPSORI

Wins 3 0 0 0 0 0 1 4

Losses 0 1 3 3 3 0 3 13

Difference 3 -1 -3 -3 -3 0 -2 -9

Rank 1 4 4 4 4 1 4 4
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Table 6.15: IGD Ranking for 15-objective DTLZ

Algorithm Result 15-objective DTLZ

O
ve
ra
ll

1 2 3 4 5 6 7

PMGPSOSTD

Wins 0 0 0 2 3 0 3 8

Losses 3 3 0 0 0 0 0 6

Difference -3 -3 0 2 3 0 3 2

Rank 4 4 1 3 1 3 1 3

PMGPSOR

Wins 0 0 0 3 3 1 3 10

Losses 3 3 0 0 0 0 0 6

Difference -3 -3 0 3 3 1 3 4

Rank 4 4 1 1 1 1 1 1

PMGPSORI

Wins 0 0 0 3 3 1 3 10

Losses 3 3 0 0 0 0 0 6

Difference -3 -3 0 3 3 1 3 4

Rank 4 4 1 1 1 1 1 1

KnMGPSOSTD

Wins 3 3 0 0 0 0 0 6

Losses 0 0 0 3 3 0 5 11

Difference 3 3 0 -3 -3 0 -5 -5

Rank 1 1 1 5 4 3 6 6

KnMGPSOR

Wins 3 3 0 0 0 0 1 7

Losses 0 0 0 2 3 2 3 10

Difference 3 3 0 -2 -3 -2 -2 -3

Rank 1 1 1 4 4 6 4 5

KnMGPSORI

Wins 3 3 0 0 0 0 1 7

Losses 0 0 0 3 3 0 3 9

Difference 3 3 0 -3 -3 0 -2 -2

Rank 1 1 1 5 4 3 4 4
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Table 6.16: IGD Ranking for 3-objective WFG

Algorithm Result 3-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

PMGPSOSTD

Wins 3 3 3 3 5 3 3 3 4 30

Losses 0 0 0 0 0 0 2 0 0 2

Difference 3 3 3 3 5 3 1 3 4 28

Rank 1 1 1 1 1 1 3 1 1 1

PMGPSOR

Wins 3 3 3 3 3 3 4 3 3 28

Losses 0 0 0 0 1 0 0 0 2 3

Difference 3 3 3 3 2 3 4 3 1 25

Rank 1 1 1 1 2 1 1 1 3 3

PMGPSORI

Wins 3 3 3 3 3 3 4 3 4 29

Losses 0 0 0 0 1 0 0 0 0 1

Difference 3 3 3 3 2 3 4 3 4 28

Rank 1 1 1 1 2 1 1 1 1 1

KnMGPSOSTD

Wins 2 0 2 0 1 2 0 0 2 9

Losses 3 3 3 3 3 3 3 3 3 27

Difference -1 -3 -1 -3 -2 -1 -3 -3 -1 -18

Rank 4 4 4 4 4 4 4 4 4 4

KnMGPSOR

Wins 0 0 0 0 0 0 0 0 0 0

Losses 4 3 4 3 4 4 3 3 4 32

Difference -4 -3 -4 -3 -4 -4 -3 -3 -4 -32

Rank 5 4 5 4 6 5 4 4 5 6

KnMGPSORI

Wins 0 0 0 0 0 0 0 0 0 0

Losses 4 3 4 3 3 4 3 3 4 31

Difference -4 -3 -4 -3 -3 -4 -3 -3 -4 -31

Rank 5 4 5 4 5 5 4 4 5 5
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Table 6.17: IGD Ranking for 5-objective WFG

Algorithm Result 5-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

PMGPSOSTD

Wins 0 3 3 1 2 4 3 3 3 22

Losses 0 0 1 0 0 0 0 0 0 1

Difference 0 3 2 1 2 4 3 3 3 21

Rank 1 1 3 1 1 1 1 1 1 1

PMGPSOR

Wins 0 3 4 0 2 3 3 3 3 21

Losses 0 0 0 0 0 0 0 0 0 0

Difference 0 3 4 0 2 3 3 3 3 21

Rank 1 1 1 2 1 2 1 1 1 1

PMGPSORI

Wins 0 3 3 0 0 3 3 3 3 18

Losses 0 0 0 0 0 1 0 0 0 1

Difference 0 3 3 0 0 2 3 3 3 17

Rank 1 1 2 2 3 3 1 1 1 3

KnMGPSOSTD

Wins 0 0 1 0 0 2 0 0 0 3

Losses 0 3 3 1 0 3 3 3 3 19

Difference 0 -3 -2 -1 0 -1 -3 -3 -3 -16

Rank 1 4 4 6 3 4 4 4 4 4

KnMGPSOR

Wins 0 0 0 0 0 0 0 0 0 0

Losses 0 3 4 0 2 4 3 3 3 22

Difference 0 -3 -4 0 -2 -4 -3 -3 -3 -22

Rank 1 4 6 2 5 5 4 4 4 6

KnMGPSORI

Wins 0 0 0 0 0 0 0 0 0 0

Losses 0 3 3 0 2 4 3 3 3 21

Difference 0 -3 -3 0 -2 -4 -3 -3 -3 -21

Rank 1 4 5 2 5 5 4 4 4 5
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Table 6.18: IGD Ranking for 8-objective WFG

Algorithm Result 8-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

PMGPSOSTD

Wins 0 3 3 0 0 3 3 3 3 18

Losses 4 0 2 0 0 0 0 0 0 6

Difference -4 3 1 0 0 3 3 3 3 12

Rank 6 1 3 1 1 1 1 1 1 3

PMGPSOR

Wins 1 3 4 0 0 3 3 3 3 20

Losses 3 0 0 0 0 0 0 0 0 3

Difference -2 3 4 0 0 3 3 3 3 17

Rank 4 1 1 1 1 1 1 1 1 1

PMGPSORI

Wins 0 3 4 0 0 3 3 3 3 19

Losses 3 0 0 0 0 0 0 0 0 3

Difference -3 3 4 0 0 3 3 3 3 16

Rank 5 1 1 1 1 1 1 1 1 2

KnMGPSOSTD

Wins 3 1 0 0 0 0 0 0 1 5

Losses 0 3 5 0 0 3 3 3 3 20

Difference 3 -2 -5 0 0 -3 -3 -3 -2 -15

Rank 1 4 6 1 1 4 4 4 4 5

KnMGPSOR

Wins 3 0 1 0 0 0 0 0 0 4

Losses 0 5 3 0 0 3 3 3 4 21

Difference 3 -5 -2 0 0 -3 -3 -3 -4 -17

Rank 1 6 4 1 1 4 4 4 6 6

KnMGPSORI

Wins 3 1 1 0 0 0 0 0 0 5

Losses 0 3 3 0 0 3 3 3 3 18

Difference 3 -2 -2 0 0 -3 -3 -3 -3 -13

Rank 1 4 4 1 1 4 4 4 5 4
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Table 6.19: IGD Ranking for 10-objective WFG

Algorithm Result 10-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

PMGPSOSTD

Wins 0 3 3 0 3 0 1 3 3 16

Losses 5 0 1 0 0 0 0 0 0 6

Difference -5 3 2 0 3 0 1 3 3 10

Rank 6 1 3 1 1 3 3 1 1 3

PMGPSOR

Wins 1 3 3 0 3 1 2 3 3 19

Losses 3 0 0 0 0 0 0 0 0 3

Difference -2 3 3 0 3 1 2 3 3 16

Rank 4 1 2 1 1 2 1 1 1 2

PMGPSORI

Wins 1 3 4 0 3 3 2 3 3 22

Losses 3 0 0 0 0 0 0 0 0 3

Difference -2 3 4 0 3 3 2 3 3 19

Rank 4 1 1 1 1 1 1 1 1 1

KnMGPSOSTD

Wins 3 2 0 0 0 0 0 0 0 5

Losses 2 3 3 0 3 1 0 3 3 18

Difference 1 -1 -3 0 -3 -1 0 -3 -3 -13

Rank 3 4 4 1 4 4 4 4 4 4

KnMGPSOR

Wins 4 0 0 0 0 0 0 0 0 4

Losses 0 4 3 0 3 2 3 3 3 21

Difference 4 -4 -3 0 -3 -2 -3 -3 -3 -17

Rank 1 5 4 1 4 6 6 4 4 6

KnMGPSORI

Wins 4 0 0 0 0 0 0 0 0 4

Losses 0 4 3 0 3 1 2 3 3 19

Difference 4 -4 -3 0 -3 -1 -2 -3 -3 -15

Rank 1 5 4 1 4 4 5 4 4 5
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Table 6.20: IGD Ranking for 15-objective WFG

Algorithm Result 15-objective WFG

O
ve
ra
ll

1 2 3 4 5 6 7 8 9

PMGPSOSTD

Wins 0 3 3 3 3 0 0 0 3 15

Losses 3 0 0 0 0 0 0 0 0 3

Difference -3 3 3 3 3 0 0 0 3 12

Rank 4 1 1 1 1 1 1 1 1 1

PMGPSOR

Wins 0 3 3 3 3 0 0 0 3 15

Losses 3 0 0 0 0 0 0 0 0 3

Difference -3 3 3 3 3 0 0 0 3 12

Rank 4 1 1 1 1 1 1 1 1 1

PMGPSORI

Wins 0 3 3 3 3 0 0 0 3 15

Losses 3 0 0 0 0 0 0 0 0 3

Difference -3 3 3 3 3 0 0 0 3 12

Rank 4 1 1 1 1 1 1 1 1 1

KnMGPSOSTD

Wins 3 0 0 1 0 0 0 0 0 4

Losses 0 3 3 3 3 0 0 0 3 15

Difference 3 -3 -3 -2 -3 0 0 0 -3 -11

Rank 1 4 4 4 4 1 1 1 4 4

KnMGPSOR

Wins 3 0 0 0 0 0 0 0 0 3

Losses 0 3 3 4 3 0 0 0 3 16

Difference 3 -3 -3 -4 -3 0 0 0 -3 -13

Rank 1 4 4 6 4 1 1 1 4 6

KnMGPSORI

Wins 3 0 0 0 0 0 0 0 0 3

Losses 0 3 3 3 3 0 0 0 3 15

Difference 3 -3 -3 -3 -3 0 0 0 -3 -12

Rank 1 4 4 5 4 1 1 1 4 5
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6.2.1 Hypervolume Discussion

The overall HV rankings for each algorithm, shown in tables 6.1 to 6.10, are
analyzed and discussed next.

The PMGPSOSTD consistently ranked fourth overall in terms of HV (ta-
bles 6.1 to 6.10). The PMGPSOSTD is the only algorithm that never ranked
worst overall (considering both HV and IGD). Therefore, the overall perfor-
mance of the PMGPSOSTD with respect to HV was not competitive although
consistent.

The best overall rank obtained by the PMGPSOR in terms of HV was
five, for the 10- and 15-objective DTLZ problems (tables 6.4 and 6.5). The
PMGPSOR performed worst overall in terms of HV the most; that is, eight
times for the 3-, 5-, and 8-objective DTLZ problems (tables 6.1 to 6.3) and
for the 3-, 5-, 8-, 10-, and 15-objective WFG problems (tables 6.6 to 6.10).
Therefore, the PMGPSOR performed worst overall in terms of HV.

The best overall rank obtained by the PMGPSORI in terms of HV was
five, for the 8-, 10-, and 15-objective WFG problems (tables 6.8 to 6.10). The
PMGPSORI ranked worst overall in terms of HV the second-most; that is,
seven times for the rest of the problems (tables 6.1 to 6.7). Therefore, the
PMGPSORI did not perform well in terms of HV. The overall performance of
the PMGPSOR and PMGSORI was comparable with respect to HV.

The KnMGPSOSTD ranked first overall eight times with respect to HV;
that is, the most compared to any algorithm. The KnMGPSOSTD ranked first
overall for the 3-, 5-, 8-, 10-, and 15-objective DTLZ problems (tables 6.1 to 6.5)
and for the 8-, 10-, and 15-objective WFG problems (tables 6.8 to 6.10). The
KnMGPSOSTD never ranked worse than top-three overall with respect to HV.
Therefore, the KnMGPSOSTD performed best overall with respect to HV.

The KnMGPSOR ranked best overall only twice with respect to HV; i.e.,
the least by any algorithm. The KnMGPSOR ranked first overall for the
3-objective DTLZ problems (table 6.1) and the 5-objective WFG problems
(table 6.7). The KnMGPSOR never ranked worse than top-three overall with
respect to HV. Therefore, the KnMGPSOR performed somewhat competitively
in terms of HV.

The KnMGPSORI, like the KnMGPSOR, ranked best overall only twice in
terms of HV. The KnMGPSORI ranked best overall in terms of HV for the
3- and 5-objective WFG problems (tables 6.6 and 6.7). The KnMGPSORI

never ranked worse than top-three overall with respect to HV. Therefore, the
KnMGPSORI performed somewhat competitively in terms of HV. The overall
performance of the KnMGPSOR and KnMGSORI was comparable with respect
to HV.
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6.2.2 Inverted Generational Distance Discussion

The overall IGD rankings for each algorithm, shown in tables 6.11 to 6.20, are
analyzed and discussed next.

The PMPSOSTD performed best overall four times with respect to IGD,
which were for the 8-objective DTLZ problems (table 6.13) and the 3-, 5-, and
15-objective WFG problems (tables 6.16, 6.17, and 6.20). The PMGPSOSTD

never ranked worse than top-three overall with respect to IGD. Therefore, the
PMGPSOSTD performed competitively in terms of IGD.

The PMGPSOR ranked best overall seven times with respect to IGD; that
is, the most by any algorithm. The PMGPSOR ranked first overall for the 3-,
8-, 10-, and 15-objective DTLZ problems (tables 6.11 and 6.13 to 6.15) and also
for the 5-, 8-, and 15-objective WFG problems (tables 6.17, 6.18, and 6.20).
The PMGPSOR never ranked worse than top-three overall with respect to
IGD. Therefore, the PMGPSOR performed best in terms of IGD.

The PMGPSORI ranked best overall five times with regards to IGD; that
is, for the 5- and 15-objective DTLZ problems (tables 6.12 and 6.15) and the
3-, 10-, and 15-objective WFG problems (tables 6.16, 6.19, and 6.20). The
PMGPSORI never ranked worse than top-three overall with respect to IGD.
Therefore, the PMGPSORI performed very competitively in terms of IGD.

The best overall rank obtained by the KnMGPSOSTD in terms of IGD
was four, for the 8-objective DTLZ problems (table 6.13) and the 3-, 5-,
10-, and 15-objective WFG problems (tables 6.16, 6.17, 6.19, and 6.20). The
KnMGPSOSTD ranked worst overall four times in terms of IGD, for the 3-,
5-, 10-, and 15-objective DTLZ problems (tables 6.11, 6.12, 6.14, and 6.15).
Therefore, the KnMGPSOSTD did not perform well in terms of IGD.

The best overall rank obtained by the KnMGPSOR with respect to IGD
was four, for the 3-objective DTLZ problems (table 6.11). The KnMGPSOR

ranked worst overall the most in terms of IGD. That is, six times for the
8-objective DTLZ problems (table 6.13) and for the 3-, 5-, 8-, 10-, and 15-
objective WFG problems (tables 6.16 to 6.20). Therefore, the KnMGPSOR

performed worst overall in terms of IGD.
The best overall rank obtained by the KnMGPSORI in terms of

IGD was four, for the 3-, 5-, 10-, and 15-objective DTLZ problems (ta-
bles 6.11, 6.12, 6.14, and 6.15) and the 8-objective WFG problems (table 6.18).
The KnMGPSORI ranked worst overall only once in terms of IGD; i.e., for the
8-objective DTLZ problems (table 6.13). Therefore, the KnMGPSORI did not
perform well in terms of IGD. The KnMGPSORI did, however, outperform
both the KnMGPSOSTD and the KnMGPSOSTD with respect to IGD.

6.2.3 General Discussion

Some general findings with regards to tables 6.1 to 6.20 are discussed next.
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The KnMGPSOSTD, the KnMGPSOR, and the KnMGPSORI ranked top-
three overall for each problem with respect to HV (tables 6.1 to 6.10). That is,
the knee-points approach (the KnMGPSO algorithm) resulted in higher HV
values than the partial-dominance approach (the PMGPSO algorithm). This
was expected since Zhang et al. [174] noted that the incorporation of knee-
points during optimization results in a bias towards a higher HV. Therefore,
the KnMGPSO algorithms outperformed the PMGPSO algorithms in terms
of HV.

The PMGPSOSTD, the PMGPSOR, and the PMGPSORI ranked top-three
overall for each problem in terms of IGD (tables 6.11 to 6.20). Therefore, the
PMGPSO algorithm variants outperformed the KnMGPSO algorithm variants
with respect to IGD.

The PMGPSO algorithms dominated in terms of IGD while the KnMGPSO
algorithms dominated in terms of HV. Future research will investigate whether
it makes sense to combine partial-dominance and knee-points in some way.

The dynamic archive balance coefficient update strategies did not signifi-
cantly improve algorithm performance. Only the performance of the PMGPSO
algorithm was improved slightly with regards to IGD. That is, the PMGPSOR

and the PMGPSORI outperformed the PMGPSOSTD with respect to IGD.
The PMGPSOR was superior to both the PMGPSOSTD and the PMGPSORI

in terms of IGD.
The results, discussed in the sections above, are summarized in ta-

bles 6.21 and 6.22. The tables contain the number of overall best, overall
top-three, and overall worst ranks obtained by each algorithm with respect
to either HV or IGD. Tables 6.23 and 6.24 contain the average overall rank
obtained by each algorithm for each benchmark problem suite for each number
of objectives with respect to either HV or IGD.

Table 6.21: HV Ranking Summary

Algorithm
Number of

overall best HV ranks

Number of

overall HV ranks ≤ 3

Number of

overall worst HV ranks

PMGPSOSTD 0 0 0

PMGPSOR 0 0 8

PMGPSORI 0 0 7

KnMGPSOSTD 8 10 0

KnMGPSOR 2 10 0

KnMGPSORI 2 10 0
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Table 6.22: IGD Ranking Summary

Algorithm
Number of

overall best IGD ranks

Number of

overall IGD ranks ≤ 3

Number of

overall worst IGD ranks

PMGPSOSTD 4 10 0

PMGPSOR 7 10 0

PMGPSORI 5 10 0

KnMGPSOSTD 0 0 4

KnMGPSOR 0 0 6

KnMGPSORI 0 0 1

6.3 Summary
This chapter empirically investigated if either of the two multi-guide parti-
cle swarm optimization (MGPSO) algorithm [137] adaptations, the partial-
dominance multi-guide particle swarm optimization (PMGPSO) algorithm or
the knee-point driven multi-guide particle swarm optimization (KnMGPSO)
algorithm, outperforms the other; that is, to determine which of the two pro-
posed scalability-improving mechanisms, if any, is superior to the other. Fur-
thermore, different archive balance coefficient update strategies were investi-
gated to determine if scalability to many-objective optimization (MaOO) is
improved by any of the approaches. Three different archive balance coefficient
update strategies were also investigated with the aim of improving scalability.
These included the standard static archive balance coefficient update strat-
egy (STD), the random dynamic archive balance coefficient update strategy
(R), and the random per particle dynamic archive balance coefficient update
strategy (RI) [53]. The KnMGPSO and PMGPSO algorithms were tested on
a set of benchmark algorithms by calculating, and statistically analyzing, the
inverted generational distance (IGD) [25, 128] and hypervolume (HV) [181]
performance measure values that were calculated on the normalized solutions
without outliers. Problems with 3, 5, 8, 10, and 15 objectives were used to
test the scalability of the algorithms. The results were presented in tables and
discussed.

The PMGPSO algorithm using the STD (PMGPSOSTD) performed very
competitively since it, at worst, ranked fourth overall. The PMGPSO algo-
rithm using the R (PMGPSOR) performed best overall in terms of IGD while
ranking worst overall most often with respect to HV. The PMGPSO algorithm
using the RI (PMGPSORI) performed competitively in terms of IGD but not
in terms of HV. The PMGPSOR and the PMGPSORI had similar performance.

The KnMGPSO algorithm using the STD (KnMGPSOSTD) performed best
overall in terms of HV. The KnMGPSO algorithm using the R (KnMGPSOR)
performed worst overall since it rarely ranked best overall in terms of HV and
ranked worst overall most often in terms of IGD. The KnMGPSO algorithm
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Table 6.23: HV Ranking Averages

Algorithm Benchmark

Problems

nm Average
3 5 8 10 15

PMGPSOSTD

DTLZ 4 4 4 4 4 4

WFG 4 4 4 4 4 4

Average Rank 4 4 4 4 4 4

PMGPSOR

DTLZ 5 5 5 5 5 5

WFG 4 5 6 6 6 5.4

Average Rank 4.5 5 5.5 5.5 5.5 5.2

PMGPSORI

DTLZ 5 5 5 6 6 5.4

WFG 4 5 5 5 5 4.8

Average Rank 4.5 5 5 5.5 5.5 5.1

KnMGPSOSTD

DTLZ 1 1 1 1 1 1

WFG 3 3 1 1 1 1.8

Average Rank 2 2 1 1 1 1.4

KnMGPSOR

DTLZ 1 3 2 2 2 2

WFG 2 1 2 2 2 1.8

Average Rank 1.5 2 2 2 2 1.9

KnMGPSORI

DTLZ 3 2 3 3 2 2.6

WFG 1 1 2 3 3 2

Average Rank 2 1.5 2.5 3 2.5 2.3
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Table 6.24: IGD Ranking Averages

Algorithm Benchmark

Problems

nm Average
3 5 8 10 15

PMGPSOSTD

DTLZ 3 3 1 3 2 2.4

WFG 1 1 3 3 1 1.8

Average Rank 2 2 2 3 1.5 2.1

PMGPSOR

DTLZ 1 2 1 1 1 1.2

WFG 3 1 1 2 1 1.6

Average Rank 2 1.5 1 1.5 1 1.4

PMGPSORI

DTLZ 2 1 3 2 1 1.8

WFG 1 3 2 1 1 1.6

Average Rank 1.5 2 2.5 1.5 1 1.7

KnMGPSOSTD

DTLZ 6 6 4 6 6 5.6

WFG 4 4 5 4 4 4.2

Average Rank 5 5 4.5 5 5 4.9

KnMGPSOR

DTLZ 4 4 5 5 5 4.6

WFG 6 6 6 6 6 6

Average Rank 5 5 5.5 5.5 5.5 5.3

KnMGPSORI

DTLZ 4 4 5 4 4 4.2

WFG 5 5 4 5 5 4.8

Average Rank 4.5 4.5 4.5 4.5 4.5 4.5
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using the RI (KnMGPSORI) only performed somewhat competitively in terms
of HV.

Note that the PMGPSO algorithms dominated in terms of IGD while the
KnMGPSO algorithms dominated in terms of HV. That is, the PMGPSO
algorithm variants never ranked top-three overall in terms of HV while the
KnMGPSO algorithm variants never ranked top-three overall in terms of IGD.

The dynamic archive balance coefficient update strategies marginally im-
proved the performance of the PMGPSO algorithm with regards to IGD only.



Chapter 7

Conclusions

“The only person you are destined to become is the person you decide to be.”
— Ralph W. Emerson

This chapter concludes the dissertation. Section 7.1 summarizes the find-
ings of the thesis and section 7.2 discusses avenues of future work.

7.1 Summary
This study aimed to investigate the ability of the multi-guide particle swarm
optimization (MGPSO) algorithm to solve many-objective optimization prob-
lems (MaOPs). This work also proposed to investigate different techniques
which could be used to help the MGPSO algorithm scale to many-objectives.
The proposed techniques included the partial-dominance approach and the
knee-points approach, which led to the proposal and development of the
partial-dominance multi-guide particle swarm optimization (PMGPSO) al-
gorithm and the knee-point driven multi-guide particle swarm optimization
(KnMGPSO) algorithm. The PMGPSO algorithm and the KnMGPSO algo-
rithm are MGPSO algorithm adaptations with the goal of investigating if these
approaches will result in better scalability. The Pareto-dominance relation de-
grades as the number of objectives of the problem continues to increase. It
seems that the MGPSO algorithm is not that much affected by this problem.
This study also aimed to investigate the use of different archive balance coeffi-
cient update strategies for the purpose of aiding the scalability of the MGPSO
algorithm. These included the standard static archive balance coefficient up-
date strategy (STD), the random dynamic archive balance coefficient update
strategy (R), and the random per particle dynamic archive balance coefficient
update strategy (RI).

The results indicated that the MGPSO algorithm using the STD
(MGPSOSTD) scaled competitively considering the hypervolume (HV) rank-
ings in chapters 4 and 5. The PMGPSO algorithm using the STD

215
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(PMGPSOSTD) scaled competitively in terms of the inverted generational dis-
tance (IGD) rankings presented in Chapter 4. The KnMGPSO algorithm
using the STD (KnMGPSOSTD) scaled competitively in terms of both the HV
and IGD rankings presented in Chapter 5. The partial-dominance approach
and knee-points approach did not improve the scalability of the MGPSO al-
gorithm significantly in all cases. Note, however, that the MGPSO, the PMG-
PSO, and the KnMGPSO algorithms all performed and scaled competitively
relative to the state-of-the-art many-objective optimization (MaOO) bench-
mark algorithms used in this study (chapters 4 and 5). The benchmark algo-
rithms included the controlling dominance area of solutions speed constraint
multi-objective particle swarm optimization (CDAS-SMPSO) algorithm, the
knee-point driven evolutionary algorithm (KnEA), the many-objective evolu-
tionary algorithm based on dominance and decomposition (MOEA/DD), and
the reference-point based non-dominated sorting genetic algorithm (NSGA-
III). The NSGA-III scaled well and outperformed all algorithms with respect
to IGD in Chapter 5. This can probably be attributed to the reference-points
utilized by the NSGA-III to help guide the search.

Note that it is suspected that the multi-swarm approach employed by the
MGPSO, the PMGPSO, and the KnMGPSO algorithms significantly improves
the performance of these algorithms. This is because each subswarm exploits
information mainly with regards to its assigned objective, thereby, increasing
the selection pressure. This may have helped to guide the search despite the
weaknesses associated with the use of the Pareto-dominance relation (used by
the MGPSO and the KnMGPSO algorithms). It may have also helped guide
the search even with the stochastic partial-dominance relation (used by the
PMGPSO algorithm). Also, the Pareto-dominance relation is only used to
update the archive (for the MGPSO and KnMGPSO algorithms) and not to
select the personal best, neighbourhood best, or archive guides.

The dynamic archive coefficient update strategies did not improve algo-
rithm performance. That is, the R and the RI did not improve the scalability
of the MGPSO, the PMGPSO, or the KnMGPSO algorithms.

In Chapter 6 the PMGPSO algorithm outperformed the KnMGPSO algo-
rithm in terms of IGD but the KnMGPSO algorithm outperformed the PMG-
PSO algorithm in terms of HV.

Therefore, the MGPSO algorithm scaled well to MaOPs compared to other
state-of-the-art MaOO algorithms. The PMGPSO and the KnMGPSO algo-
rithms also scaled competitively, but did not supersede the performance of
the MGPSO algorithm indefinitely. The dynamic archive balance coefficient
update strategies did not improve scalability for the MGPSO, the PMGPSO,
and the KnMGPSO algorithms.

None of the MGPSOSTD, PMGPSOSTD, or KnMGPSOSTD algorithms was
superior to the others in all cases. Therefore, future research is required to
better balance the exploration and exploitation during the search process of
the MGPSO, PMGPSO, and KnMGPSO algorithms, hopefully resulting in
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even larger HV and even smaller IGD values. That is, improving the MGPSO
algorithm to such a degree that it performs and scales well to many-objectives
both in terms of HV and IGD.

7.2 Future Research
Throughout this study, several new ideas for future research have been identi-
fied. A summary of each of these ideas is given below.

Convergence- and Diversity Related Mechanisms
Experiment with different combinations of convergence- and diversity-related
mechanisms, together with visualizing the archive, with the goal to investi-
gate the diversity and accuracy profile of the MGPSO algorithm (or other
variants thereof). For example, consider using weighted distance instead of
crowding distance for diversity preservation/promotion (i.e. to promote explo-
ration) [174]. That is, investigate whether using weighted distance for archive
deletion and/or archive guide selection would improve the performance of the
MGPSO algorithm (and the PMGPSO and KnMGPSO algorithms). Note,
however, that the weighted distance approach has the drawback of introduc-
ing a parameter for the k-nearest neighbours [56] component, that ideally needs
to be tuned since it determines how many of the closest solutions, in objective
space, should be considered for the weighted distance calculation. Also, inves-
tigate if knee-points are affected by the curse of dimensionality the same way
as other issues listed in Section 2.2.2.

Tuning Control Parameters
Investigate the performance difference in the MGPSO algorithm (and any vari-
ants thereof) which uses tuned control parameter values instead of resampling
new control parameter values throughout the search (as in this study). Also,
consider using subswarm specific control parameter values.

Larger Archive Sizes
Investigate larger archive sizes with the aim of improving algorithm perfor-
mance without unjustifiably increasing the execution time of an algorithm.
Storage requirements should also be considered.

Larger Intervals for Resampling Control Parameter Values
Investigate larger sampling intervals as in [67]; i.e., resample control parameter
values from the convergent regions of the MGPSO algorithm after a number
of iterations instead of each velocity update. It can also be a good idea to
resample new control parameter values from the convergent regions only if no
performance differences are observed over a period of time. This raises the
question of which performance measure to use.
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Larger Partial-dominance Objective Sampling Interval
Investigate selecting objectives for the partial-dominance relation after a num-
ber of iterations instead of at each archive insert attempt. Larger objective
sampling intervals may enhance algorithm performance [52, 69, 133].

Performance-based Partial-dominance
Use roulette wheel selection to determine the objectives selected for the partial-
dominance relation. The probability of an objective being selected is based on
some performance information. So, if an objective was selected and it resulted
in an improvement of performance, then increase the selection probability for
that objective, while the others will have to reduce (since the sum of probabil-
ities has to be equal to 1). So the probability of selection is the performance
measure value of the selected objective divided by the sum of the performance
measure values for the other objectives. This assumes maximization. This
raises the question of which performance measure to use.

Hybrid Algorithms
While individual techniques have worked in improving algorithm performance,
the current trend is to develop hybrid algorithms, since no one paradigm or
mechanism is superior to the others in all situations. In doing so, the re-
spective strengths of different techniques can be utilized while eliminating the
weaknesses of individual techniques. Investigate the strengths of the NSGA-III
and incorporate the responsible mechanisms into the MGPSO, the PMGPSO,
and/or the PMGPSO algorithms. The mechanisms used by the NSGA-III is
worth investigating further since it was the only benchmark algorithm that con-
sistently stood out in terms of performance. That is, maybe a MGPSO algo-
rithm variant making use of a reference-front (reference-points) to better guide
the search, like the NSGA-III, would scale better to MaOPs. Note, however,
that this approach will increase the computational cost tremendously [106].
Also, consider possibly combining the MGPSOSTD and the PMGPSOSTD in
some way, because the former performed best with respect to HV and the lat-
ter with respect to IGD. Finally, investigate whether it makes sense to combine
partial-dominance and knee-points in some way.
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Appendix A

Acronyms

This appendix lists the acronyms that were used throughout this study.
Acronyms are typeset in bold, with the corresponding meaning alongside.
The acronyms are listed in alphabetical order.

AI Artificial Intelligence.

ANOVA Analysis of Variance.

CDAS Controlling Dominance Area of Solutions.

CDAS-SMPSO Controlling Dominance Area of Solutions Speed Constraint
Multi-objective Particle Swarm Optimization.

CHPC Centre for High Performance Computing.

CI Computational Intelligence.

CIlib Computational Intelligence library.

COVID-19 Coronavirus disease.

CSIR Council for Scientific and Industrial Research.

CSP Sonstraint Satisfaction Problem.

DTLZ Deb-Thiele-Laumanns-Zitzler.

EA Evolutionary Algorithm.

EC Evolutionary Computation.
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GA Genetic Algorithm.

gbest global best.

HV Hypervolume.

IGD Inverted Generational Distance.

IQR Interquartile Range.

KnEA Knee-point driven Evolutionary Algorithm.

KnMGPSO Knee-point driven Multi-guide Particle Swarm Optimization.

KnMGPSOR Knee-point driven Multi-guide Particle Swarm Optimization
algorithm with the Random dynamic archive balance coefficient update
strategy.

KnMGPSORI Knee-point driven Multi-guide Particle Swarm Optimization
algorithm with the Random per Particle dynamic archive balance coefficient
update strategy.

KnMGPSOSTD Knee-point driven Multi-guide Particle Swarm Optimization
algorithm with the standard static archive balance coefficient update strategy.

lbest local best.

LD Linearly Decreasing dynamic archive balance coefficient update strategy.

LI Linearly Increasing dynamic archive balance coefficient update strategy.

MaOEA Many-objective Evolutionary Algorithm.

MaOO Many-objective Optimization.

MaOP Many-objective Optimization Problem.

MaOPSO Many-objective Particle Swarm Optimization.

MGPSO Multi-guide Particle Swarm Optimization.

MGPSOR Multi-guide Particle Swarm Optimization algorithm with the
random dynamic archive balance coefficient update strategy.
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MGPSORI Multi-guide particle swarm optimization algorithm with the
random per particle dynamic archive balance coefficient update strategy.

MGPSOSTD Multi-guide Particle Swarm Optimization algorithm with the
standard static archive balance coefficient update strategy.

MOEA Multi-objective Evolutionary Algorithm.

MOEA/D Multi-objective Evolutionary Algorithm based on Decomposition.

MOEA/DD Many-objective Evolutionary Algorithm based on Dominance
and Decomposition.

MOO Multi-objective Optimization.

MOP Multi-objective Optimization Problem.

MOPSO Multi-objective Particle Swarm Optimization.

NSGA-II Non-dominated Sorting Genetic Algorithm.

NSGA-III Reference-point based many-objective Non-dominated Sorting
Genetic Algorithm.

PBI Penalty-based Boundary Intersection.

PlatEMO Platform for Evolutionary Multi-objective Optimization.

PMGPSO Partial-dominance Multi-guide Particle Swarm Optimization.

PMGPSOR Partial-dominance Multi-guide Particle Swarm Optimization al-
gorithm with the Random dynamic archive balance coefficient update strategy.

PMGPSORI Partial-dominance Multi-guide Particle Swarm Optimization
algorithm with the Random per Particle dynamic archive balance coefficient
update strategy.

PMGPSOSTD Partial-dominance Multi-guide Particle Swarm Optimization
algorithm with the standard static archive balance coefficient update strategy.

POF Pareto-optimal Front.

POS Pareto-optimal Set.
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PSO Particle Swarm Optimization.

R Random dynamic archive balance coefficient update strategy.

RI Random per article dynamic archive balance coefficient update strategy.

SBX Simulated Binary Crossover.

SI Swarm Intelligence.

SMPSO Speed Constraint Multi-objective Particle Swarm Optimization.

STD Standard static archive balance coefficient update strategy.

UOO Uni-objective Optimization.

VEPSO Vector Evaluated Particle Swarm Optimization.

WFG Walking Fish Group.



Appendix B

Symbols

This appendix lists the important symbols used throughout the dissertation,
as well as their corresponding meanings.

A set of archive solutions

âi(t) archive guide for the i-th particle at iteration t

bk Euclidean distance in the objective space between solution

k of the true POF and the closest member of the found

front

C(t) population of individuals at generation (iteration) t

c1 cognitive acceleration coefficient

c2 social acceleration coefficient

c3 archive acceleration coefficient

E list of extremal solutions used to construct matrix G

Em least desirable solution for objective m

F feasible space
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f objective function (to be minimized)

fm minimization objective function for objective m

fm(x) quantity associated with the quality of candidate solution

x for objective m

f(x) objective vector quantifying the quality of candidate

solution x

f
′′

m(x) CDAS-modified quantity associated with the quality of

candidate solution x for objective m

f∗m optimal objective value for objective m

f
′ objective function (to be maximized)

f∗∗m worst (least desirable) objective value for objective m in

the POS

gpbi(x∣w,z∗) quantity associated with the quality of solution x

with regards to the PBI aggregation approach

G matrix used to determine the constants of the

hyperplane H

H extremal hyperplane

HV HV performance measure

i particle index
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IGD IGD performance measure

j, k generic set component indices

jn archive guide coefficient component index

m objective index

maxm(t) maximum value for objective m at iteration t

minm(t) minimum value for objective m at iteration t

n number of decision variables

nm number of objectives

ns number of particles/individuals

(also known as the swarm/population size)

nsm subswarm size for objective m

nt maximum number of iterations

O objective space

P POS

P PD
m probability of the m-th objective being chosen for the

partial-dominance relation

POF ∗ set of non-dominated objective vectors representing the

true POF
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Q set of non-dominated objective vectors that make up the

approximated POF

ratio(t) ratio of the neighbourhood size to the range spanned by

obejctive m at iteration t as used by the knee-point

identification approach

rhv reference-point for the HV (hypercube) calculation

Rm(t) neighbourhood of particle for objective m when

identifying knee-points

Rn n-dimensional real number space

Rnm nm-dimensional real number space

r1 first uniform random stochastic vector with components

in the range [0, 1]

r2 second uniform random stochastic vector with components

in the range [0, 1]

r3 third uniform random stochastic vector with components

in the range [0, 1]

S search space

S swarm of particles

Sm subswarm of particles associated with (or responsible for)

optimizing objective m
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t current iteration/generation (i.e. the current time step)

vi(t) velocity of the i-th particle at iteration t

Vk hypercube formed between solution f(x)k and a reference

point rhv

vmax maximum particle velocity

w weight vector (i.e. reference-point)

W set of weight vectors (i.e. reference-points) used by the

MOEA/DD and the NSGA-III

w inertia weight

x decision vector

(i.e. a candidate solution, particle, or chromosome)

xi(t) position (or gene alleles) of particle

(or chromosome/individual) i at iteration t

xmax upper bound of the search space when all dimensions have

the same boundary

xmax upper bound of the search space in some dimension

xmin lower bound of the search space when all dimensions have

the same boundary

xmin lower bound of the search space in some dimension

yi(t) personal best position of the i-th particle at iteration t
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(cognitive guide)

ŷi(t) neighbourhood best position of the i-th particle at

iteration t (social guide)

znad nadir objective vector

z∗ ideal objective vector

χ constriction factor (coefficient)

δ neighbourhood selection probability

γ parameter controlling the contraction and expansion of the

CDAS method

κ desired ratio of knee-points to non-dominated solutions

(i.e. the rate of knee-points)

λij(t) j-th component of the archive balance coefficient for

particle i at iteration t

ϕ PBI penalty parameter

ψ MOEA/DD neighbourhood size

ζ(t − 1) ratio of knee-points to non-dominated solutions at

iteration t − 1

≺ Pareto-dominance operator



Appendix C

Parameter Configurations

This appendix provides a list of the parameter configurations for the bench-
mark algorithms used in this study that required parameter tuning. The ex-
perimental work for the below listed algorithms were conducted using the
PlatEMO [153] framework with the recommended well-performing parameter
configurations found throughout the literature [33, 95, 174]. Tables C.1, C.2,
and C.3 lists the parameter configurations for the KnEA, the MOEA/DD, and
the CDAS-SMPSO algorithm respectively.
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Table C.1: Tuned Parameter Values for the KnEA

KnEA

κ

Benchmark nm

Function 3 5 8 10 15

DTLZ1 0.2 0.3 0.2 0.7 0.2

DTLZ2 0.2 0.8 0.3 0.7 0.6

DTLZ3 0.5 0.1 0.6 0.4 0.6

DTLZ4 0.8 0.6 0.6 0.9 0.7

DTLZ5 0.8 0.5 0.4 0.2 0.6

DTLZ6 0.4 0.3 0.4 0.1 0.3

DTLZ7 0.5 0.8 0.8 0.4 0.6

WFG1 0.7 0.8 0.7 0.4 0.9

WFG2 0.8 0.5 0.3 0.8 0.7

WFG3 0.9 0.8 0.2 0.7 0.1

WFG4 0.7 0.5 0.7 0.5 0.5

WFG5 0.8 0.6 0.7 0.6 0.8

WFG6 0.9 0.6 0.4 0.9 0.9

WFG7 0.6 0.5 0.8 0.6 0.9

WFG8 0.9 0.6 0.7 0.5 0.6

WFG9 0.5 0.6 0.7 0.5 0.2
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Table C.2: Tuned Parameter Values for the MOEA/DD

MOEA/DD

δ

Benchmark nm

Function 3 5 8 10 15

DTLZ1 0.2 1.0 1.0 0.9 1.0

DTLZ2 0.0 0.0 0.5 1.0 0.3

DTLZ3 1.0 1.0 0.8 1.0 1.0

DTLZ4 0.1 0.2 0.2 1.0 0.0

DTLZ5 0.1 0.1 0.4 0.5 0.1

DTLZ6 0.1 0.0 0.0 0.2 0.3

DTLZ7 0.1 0.6 0.8 1.0 0.5

WFG1 0.1 0.3 0.0 0.0 0.1

WFG2 0.2 0.6 0.8 1.0 0.7

WFG3 0.5 0.5 0.0 0.2 0.1

WFG4 0.3 0.2 1.0 1.0 0.8

WFG5 0.4 0.2 0.6 0.8 0.7

WFG6 0.8 0.0 0.9 0.1 0.1

WFG7 0.4 0.5 1.0 0.9 0.6

WFG8 0.8 0.2 0.9 0.2 0.5

WFG9 0.6 0.2 0.8 0.3 0.6
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Table C.3: Tuned Parameter Values for the CDAS-SMPSO algorithm

CDAS-SMPSO

γ

Benchmark nm

Function 3 5 8 10 15

DTLZ1 0.25 0.25 0.25 0.25 0.25

DTLZ2 0.35 0.35 0.35 0.35 0.35

DTLZ3 0.35 0.3 0.25 0.35 0.25

DTLZ4 0.5 0.5 0.5 0.5 0.5

DTLZ5 0.4 0.4 0.4 0.4 0.4

DTLZ6 0.25 0.25 0.25 0.25 0.25

DTLZ7 0.35 0.35 0.3 0.25 0.45

WFG1 0.45 0.5 0.5 0.5 0.5

WFG2 0.5 0.5 0.45 0.4 0.35

WFG3 0.45 0.45 0.45 0.45 0.5

WFG4 0.5 0.45 0.6 0.45 0.7

WFG5 0.45 0.45 0.6 0.6 0.65

WFG6 0.45 0.45 0.45 0.45 0.5

WFG7 0.45 0.45 0.4 0.55 0.35

WFG8 0.45 0.4 0.55 0.65 0.4

WFG9 0.45 0.45 0.4 0.35 0.3



Appendix D

Performance Measure Values for
Chapter 4

This appendix provides the average, standard deviation, maximum, and min-
imum HV and IGD performance measure values for each algorithm on each
problem instance for Chapter 4. Section D.1 lists the HV performance mea-
sure tables; that is, tables D.1 to D.10. Section D.2 lists the IGD performance
measure tables; that is, tables D.11 to D.20. Note that the tables are listed
alphabetically according to algorithm name. Also, note that some of the al-
gorithms had no valid solutions left over after outlier removal; that is, no
solutions in any of the independent samples for that specific problem. In these
rare cases no performance measure value could be calculated; indicated with
“-”.

D.1 Hypervolume Values
The average, standard deviation, maximum, and minimum HV performance
measure values for each algorithm on each problem instance are listed in ta-
bles D.1 to D.10. Note that these performance measure values are associated
with Chapter 4.
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Table D.1: Average, Standard Deviation, Maximum, and Minimum HV for
the CDAS-SMPSO algorithm

CDAS-SMPSO HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.1357

0.0404

1.2104

1.0485

1.3125

0.0789

1.4477

1.1361

1.4184

0.2067

1.8199

0.9328

1.7371

0.4681

2.4801

0.6701

3.3500

0.4094

3.9672

2.2402

DTLZ2

1.2722

0.0379

1.3123

1.1754

1.5217

0.0414

1.5710

1.4202

1.9481

0.0670

2.0554

1.8313

2.3269

0.0984

2.4873

2.0640

3.3020

0.4377

3.9508

1.7962

DTLZ3

1.2354

0.0992

1.3210

0.8882

1.4085

0.0563

1.6098

1.2793

1.8465

0.0923

1.9731

1.4836

2.2846

0.2133

2.5641

1.7090

3.6132

0.3240

3.8947

2.5868

DTLZ4

1.1509

0.1444

1.3056

0.8166

1.4886

0.1065

1.5794

1.1525

1.8167

0.2468

2.0901

1.0120

1.9809

0.3988

2.5731

1.1566

2.7113

0.5150

3.8472

1.6532

DTLZ5

1.1577

0.0429

1.2594

1.0906

1.2681

0.0898

1.4724

1.1373

1.4657

0.1882

1.8632

1.1665

1.5488

0.1424

1.9724

1.3483

2.2675

0.4562

3.2805

1.3836

DTLZ6

0.9170

0.0879

1.0803

0.7284

1.1089

0.1117

1.3289

0.7986

1.5343

0.1686

1.9037

1.3007

1.9192

0.1511

2.2595

1.6358

3.1058

0.4343

3.9458

2.1760
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Table D.1: Average, Standard Deviation, Maximum, and Minimum HV for
the CDAS-SMPSO algorithm (continue)

CDAS-SMPSO HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.1034

0.1216

0.4162

0.0149

0.0371

0.0674

0.2846

0.0004

0.0024

0.0078

0.0422

0.0000

0.0017

0.0071

0.0391

0.0000

0.0010

0.0033

0.0150

0.0000

WFG1

1.0261

0.0509

1.0662

0.8740

1.1982

0.0372

1.2513

1.0866

0.5775

0.1253

0.8830

0.4500

0.3129

0.1591

0.6180

0.0910

0.0222

0.0104

0.0299

0.0070

WFG2

0.9765

0.0292

1.0457

0.8946

1.0336

0.0432

1.1023

0.9377

0.7076

0.1136

0.8955

0.4079

0.4845

0.2118

0.9290

0.0787

1.8310

0.5736

2.7255

0.3379

WFG3

0.7562

0.0223

0.8054

0.7072

0.7559

0.0192

0.7936

0.7071

0.6802

0.0385

0.7669

0.5951

0.7875

0.0529

0.8868

0.6851

1.8559

0.1238

2.0642

1.5697

WFG4

0.7587

0.0149

0.7855

0.7317

0.9176

0.0415

1.0163

0.8317

1.0273

0.0351

1.1069

0.9501

1.0835

0.1029

1.2940

0.8334

1.6461

0.2800

1.9732

0.7266

WFG5

0.7788

0.0196

0.8185

0.7510

0.8273

0.0330

0.8965

0.7711

0.8895

0.0453

0.9920

0.7851

0.7564

0.0766

0.9165

0.5873

0.6921

0.2514

1.1202

0.2417
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Table D.1: Average, Standard Deviation, Maximum, and Minimum HV for
the CDAS-SMPSO algorithm (continue)

CDAS-SMPSO HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.6799

0.0228

0.7073

0.6137

0.7360

0.0292

0.8115

0.6841

0.7464

0.0393

0.8314

0.6669

0.7236

0.0691

0.9040

0.5433

0.9377

0.2278

1.3590

0.2913

WFG7

0.7867

0.0114

0.8067

0.7585

0.8568

0.0301

0.9048

0.7970

0.8634

0.0338

0.9375

0.7996

0.8297

0.0774

0.9707

0.6852

1.3364

0.1762

1.6016

0.9431

WFG8

0.7720

0.0164

0.8048

0.7359

0.7602

0.0384

0.8095

0.6073

0.7953

0.0345

0.8570

0.7249

0.7530

0.0694

0.8715

0.6006

1.3021

0.1462

1.5906

0.9503

WFG9

0.8318

0.0297

0.8965

0.7629

0.8562

0.0301

0.9174

0.7924

0.9012

0.0742

1.0079

0.6303

0.7711

0.2139

1.0705

0.2060

1.2606

0.2575

1.6945

0.2950
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Table D.2: Average, Standard Deviation, Maximum, and Minimum HV for
the KnEA

KnEA HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.3251

0.0008

1.3263

1.3228

-

-

-

-

2.0701

0.0370

2.1100

1.9093

2.4788

0.0765

2.5748

2.2513

3.9868

0.1232

4.1392

3.6886

DTLZ2

1.3095

0.0019

1.3131

1.3053

1.5607

0.0564

1.6054

1.3894

1.6904

0.2248

1.9870

1.2250

2.1901

0.2301

2.5321

1.7060

2.9177

0.4846

3.9176

2.2293

DTLZ3

1.3185

0.0080

1.3233

1.2774

1.4932

0.1271

1.5995

1.1485

1.9345

0.1564

2.0780

1.5562

2.2669

0.2657

2.5387

1.2509

3.8488

0.3018

4.1481

3.2682

DTLZ4

1.2817

0.0395

1.3050

1.0987

1.3204

0.1604

1.5600

1.1274

1.4430

0.0373

1.4949

1.3467

1.7968

0.0376

1.8511

1.6619

2.4787

0.0726

2.5925

2.3423

DTLZ5

1.1629

0.0946

1.2423

1.0051

1.0150

0.1041

1.4775

0.8742

1.0997

0.0697

1.2032

0.9409

1.1107

0.2082

2.0671

0.7964

1.6922

0.6308

3.2977

1.1245

DTLZ6

1.0278

0.0168

1.0509

0.9981

0.6209

0.2092

1.2337

0.4179

0.7052

0.2062

1.1836

0.4985

0.9619

0.1957

1.5486

0.7375

1.5910

0.4548

2.6475

1.0583
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Table D.2: Average, Standard Deviation, Maximum, and Minimum HV for
the KnEA (continue)

KnEA HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.3951

0.0420

0.4286

0.1822

0.8557

0.0410

0.9495

0.7891

0.9364

0.1736

1.2319

0.4949

0.5275

0.1605

0.9730

0.2984

0.1051

0.0580

0.2435

0.0110

WFG1

0.8130

0.0512

1.0381

0.7365

0.9437

0.1861

1.2424

0.6819

0.6856

0.1753

1.0206

0.4454

0.6150

0.1416

0.9050

0.3504

0.0775

0.0222

0.1148

0.0427

WFG2

0.9506

0.0575

1.0178

0.8584

0.9900

0.0699

1.1275

0.8333

0.6980

0.0912

0.9487

0.5122

0.7028

0.1499

1.0158

0.3816

2.0528

0.4985

2.8801

1.0861

WFG3

0.7057

0.0300

0.7505

0.6413

0.6163

0.0366

0.6852

0.5426

0.4554

0.0532

0.5645

0.3471

0.3817

0.1095

0.6600

0.2152

0.4460

0.4268

1.5702

0.0041

WFG4

0.7951

0.0139

0.8177

0.7451

1.0125

0.0361

1.0792

0.9421

0.7828

0.1241

1.0067

0.4328

0.9416

0.1276

1.1554

0.6416

0.7251

0.2874

1.3178

0.2606

WFG5

0.8401

0.0134

0.8777

0.8221

0.9864

0.0398

1.0492

0.8866

0.5197

0.1936

0.8435

0.1988

0.8144

0.1546

1.0776

0.4494

0.6281

0.2719

1.1649

0.1513
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Table D.2: Average, Standard Deviation, Maximum, and Minimum HV for
the KnEA (continue)

KnEA HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.7217

0.0171

0.7702

0.6972

0.8660

0.0385

0.9322

0.7561

0.4998

0.1529

0.8076

0.1649

0.7077

0.1368

1.0011

0.4762

0.6390

0.2835

1.3947

0.2384

WFG7

0.8039

0.0144

0.8286

0.7748

0.9791

0.0381

1.0566

0.9083

0.6050

0.0938

0.7916

0.4267

0.6274

0.1413

0.9645

0.3582

0.3828

0.2781

1.3027

0.0696

WFG8

0.8155

0.0148

0.8504

0.7707

0.8569

0.0665

0.9934

0.6939

0.5075

0.1248

0.7005

0.2714

0.5221

0.1733

0.8766

0.2176

0.5960

0.4419

1.3803

0.0616

WFG9

0.7968

0.0258

0.8726

0.7449

0.8826

0.0486

1.0315

0.7945

0.6325

0.1114

0.9160

0.4747

0.6942

0.1637

1.0938

0.3405

0.7000

0.4044

1.5249

0.1116
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Table D.3: Average, Standard Deviation, Maximum, and Minimum HV for
the MGPSOR

MGPSOR HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.3120

0.0024

1.3178

1.3077

1.5399

0.0104

1.5593

1.5037

1.9914

0.0262

2.0262

1.8977

2.3914

0.0283

2.4446

2.3142

3.9004

0.0383

3.9585

3.8224

DTLZ2

1.3214

0.0004

1.3221

1.3205

1.5898

0.0030

1.5939

1.5815

2.0784

0.0108

2.0985

2.0570

2.4433

0.0257

2.4925

2.3705

3.7608

0.0994

3.8928

3.4487

DTLZ3

1.3041

0.0031

1.3096

1.2986

1.5270

0.0077

1.5448

1.5089

1.9767

0.0284

2.0467

1.9280

2.3060

0.0809

2.4202

2.0158

3.7915

0.1079

3.9434

3.5465

DTLZ4

1.1952

0.1108

1.3196

1.0797

1.5218

0.0868

1.5950

1.2898

1.5516

0.1023

1.9887

1.2925

1.7845

0.0480

1.8645

1.6166

2.5076

0.0891

2.6329

2.2881

DTLZ5

1.2711

0.0004

1.2717

1.2702

1.4956

0.0032

1.5007

1.4849

1.9120

0.0039

1.9207

1.9059

2.2422

0.0083

2.2667

2.2292

3.3743

0.0218

3.4323

3.3365

DTLZ6

0.7830

0.0087

0.8015

0.7655

1.0748

0.0119

1.0964

1.0490

1.3382

0.0376

1.4112

1.2697

1.3642

0.0656

1.4675

1.1598

1.9419

0.1403

2.2019

1.5867
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Table D.3: Average, Standard Deviation, Maximum, and Minimum HV for
the MGPSOR (continue)

MGPSOR HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

1.1781

0.0602

1.2630

1.0445

1.3528

0.0432

1.4229

1.2520

1.2660

0.0559

1.3542

1.1539

1.0182

0.1469

1.3386

0.7741

1.2964

0.2151

1.8038

0.8764

WFG1

0.5362

0.0190

0.5712

0.4937

0.6332

0.0473

0.7932

0.5467

0.8355

0.0984

1.1012

0.6499

0.8244

0.1799

1.3682

0.5679

3.6280

0.2125

3.9559

3.1336

WFG2

0.8646

0.0357

0.8887

0.6855

0.9934

0.0288

1.0317

0.8633

1.2733

0.0203

1.3086

1.2353

1.4948

0.0202

1.5360

1.4546

2.4517

0.0314

2.5012

2.3771

WFG3

0.7849

0.0156

0.8193

0.7487

0.9019

0.0093

0.9200

0.8799

1.1168

0.0225

1.1530

1.0638

1.2520

0.0323

1.3130

1.1943

2.1289

0.0489

2.2033

2.0455

WFG4

0.7662

0.0212

0.8051

0.7212

0.7886

0.0220

0.8346

0.7480

1.0381

0.0180

1.0823

1.0092

1.1726

0.0336

1.2291

1.0992

1.9555

0.0502

2.0686

1.8728

WFG5

0.7524

0.0399

0.8299

0.6864

0.7106

0.0264

0.7586

0.6523

0.7634

0.0237

0.8096

0.7196

0.7711

0.0358

0.8422

0.6996

1.3282

0.1033

1.5138

1.1188
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Table D.3: Average, Standard Deviation, Maximum, and Minimum HV for
the MGPSOR (continue)

MGPSOR HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.7025

0.0151

0.7246

0.6589

0.7192

0.0179

0.7548

0.6790

0.8274

0.0252

0.8713

0.7760

0.8968

0.0292

0.9522

0.8341

1.4641

0.0428

1.5361

1.3609

WFG7

0.5917

0.0109

0.6105

0.5688

0.6298

0.0104

0.6577

0.6107

0.7578

0.0223

0.8260

0.7083

0.8290

0.0233

0.8764

0.7783

1.2827

0.0426

1.3958

1.2151

WFG8

0.5669

0.0067

0.5822

0.5549

0.5922

0.0128

0.6177

0.5675

0.7090

0.0221

0.7484

0.6650

0.8017

0.0265

0.8478

0.7443

1.2452

0.0479

1.3395

1.1484

WFG9

0.9660

0.0188

1.0033

0.9214

1.0022

0.0314

1.1074

0.9464

1.1525

0.0385

1.2521

1.0850

1.2459

0.0656

1.4153

1.1050

1.9361

0.1013

2.0800

1.7334
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Table D.4: Average, Standard Deviation, Maximum, and Minimum HV for
the MGPSORI

MGPSORI HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.3115

0.0024

1.3185

1.3077

1.5397

0.0104

1.5593

1.5037

1.9899

0.0247

2.0283

1.8977

2.3837

0.0331

2.4446

2.2908

3.9012

0.0361

3.9798

3.8013

DTLZ2

1.3214

0.0005

1.3222

1.3198

1.5897

0.0036

1.5966

1.5800

2.0807

0.0111

2.0985

2.0570

2.4538

0.0269

2.5058

2.3705

3.7692

0.1054

3.9215

3.3851

DTLZ3

1.3041

0.0031

1.3096

1.2959

1.5254

0.0100

1.5476

1.4963

1.9817

0.0322

2.0497

1.8698

2.2982

0.0734

2.4202

2.0158

3.8036

0.0953

4.0081

3.5465

DTLZ4

1.1938

0.1086

1.3201

1.0797

1.5240

0.0849

1.5952

1.2898

1.5463

0.1200

1.9887

1.1723

1.7883

0.0437

1.8645

1.6166

2.5188

0.0769

2.6329

2.2881

DTLZ5

1.2711

0.0004

1.2717

1.2702

1.4949

0.0067

1.5007

1.4494

1.9114

0.0052

1.9223

1.8973

2.2428

0.0074

2.2667

2.2292

3.3773

0.0213

3.4323

3.3365

DTLZ6

0.7822

0.0082

0.8015

0.7655

1.0742

0.0115

1.1035

1.0490

1.3336

0.0350

1.4112

1.2465

1.3741

0.0606

1.4941

1.1598

1.9234

0.1339

2.2019

1.5867
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Table D.4: Average, Standard Deviation, Maximum, and Minimum HV for
the MGPSORI (continue)

MGPSORI HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

1.1695

0.0573

1.2630

1.0445

1.3622

0.0402

1.4501

1.2520

1.2684

0.0543

1.3909

1.1539

0.9892

0.1299

1.3386

0.7282

1.2662

0.2230

1.8038

0.7350

WFG1

0.5403

0.0214

0.5816

0.4915

0.6380

0.0510

0.7946

0.5467

0.8548

0.1196

1.3245

0.6499

0.8207

0.2104

1.7379

0.5679

3.6058

0.1981

3.9559

3.1336

WFG2

0.8698

0.0262

0.8912

0.6855

0.9887

0.0458

1.0317

0.7733

1.2757

0.0190

1.3172

1.2215

1.5000

0.0190

1.5360

1.4546

2.4556

0.0322

2.5393

2.3771

WFG3

0.7870

0.0143

0.8225

0.7487

0.8984

0.0112

0.9200

0.8702

1.1179

0.0208

1.1694

1.0638

1.2555

0.0344

1.3402

1.1873

2.1440

0.0536

2.2519

2.0278

WFG4

0.7684

0.0195

0.8051

0.7193

0.7901

0.0210

0.8346

0.7480

1.0402

0.0229

1.0833

0.9902

1.1743

0.0310

1.2462

1.0992

1.9502

0.0509

2.0686

1.8290

WFG5

0.7518

0.0399

0.8299

0.6665

0.7073

0.0268

0.7674

0.6523

0.7675

0.0301

0.8540

0.7196

0.7720

0.0402

0.8808

0.6958

1.3246

0.1065

1.5138

1.0968
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Table D.4: Average, Standard Deviation, Maximum, and Minimum HV for
the MGPSORI (continue)

MGPSORI HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.7039

0.0130

0.7274

0.6589

0.7208

0.0191

0.7611

0.6640

0.8278

0.0239

0.8713

0.7760

0.9042

0.0311

0.9708

0.8341

1.4600

0.0497

1.5577

1.3128

WFG7

0.5914

0.0131

0.6210

0.5622

0.6324

0.0142

0.6857

0.6107

0.7561

0.0249

0.8359

0.7006

0.8285

0.0244

0.8836

0.7716

1.2780

0.0445

1.3958

1.1667

WFG8

0.5659

0.0075

0.5842

0.5499

0.5928

0.0127

0.6270

0.5675

0.7096

0.0210

0.7484

0.6650

0.7970

0.0330

0.8478

0.6640

1.2496

0.0492

1.3395

1.1478

WFG9

0.9678

0.0161

1.0033

0.9214

0.9970

0.0279

1.1074

0.9290

1.1450

0.0374

1.2521

1.0850

1.2478

0.0648

1.4153

1.0504

1.9239

0.1041

2.1026

1.6463



APPENDIX D. PERFORMANCE MEASURE VALUES FOR CHAPTER 4 263

Table D.5: Average, Standard Deviation, Maximum, and Minimum HV for
the MGPSOSTD

MGPSOSTD HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.3158

0.0069

1.3297

1.3077

1.5430

0.0128

1.5944

1.5037

1.9980

0.0294

2.1307

1.8977

2.3890

0.0401

2.5063

2.2908

3.9058

0.0408

3.9798

3.7926

DTLZ2

1.3212

0.0007

1.3222

1.3176

1.5895

0.0036

1.5978

1.5800

2.0797

0.0121

2.0993

2.0357

2.4523

0.0313

2.5094

2.3516

3.7611

0.1029

3.9215

3.3273

DTLZ3

1.3080

0.0073

1.3281

1.2959

1.5313

0.0156

1.5999

1.4963

1.9898

0.0338

2.1333

1.8698

2.3022

0.0751

2.4353

2.0158

3.8104

0.0975

4.0459

3.5465

DTLZ4

1.1960

0.1080

1.3201

1.0797

1.5059

0.0945

1.5952

1.2897

1.5827

0.1289

1.9887

1.1723

1.8063

0.0474

1.8968

1.6166

2.5567

0.0847

2.6795

2.2881

DTLZ5

1.2708

0.0006

1.2717

1.2689

1.4949

0.0057

1.5007

1.4494

1.9122

0.0055

1.9290

1.8973

2.2439

0.0107

2.2788

2.2195

3.3787

0.0250

3.4493

3.3212

DTLZ6

0.7795

0.0092

0.8015

0.7598

1.0727

0.0114

1.1035

1.0490

1.3360

0.0330

1.4112

1.2465

1.3835

0.0580

1.5193

1.1598

1.9298

0.1360

2.2019

1.5867
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Table D.5: Average, Standard Deviation, Maximum, and Minimum HV for
the MGPSOSTD (continue)

MGPSOSTD HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

1.1619

0.0583

1.2630

1.0442

1.3599

0.0388

1.4501

1.2520

1.2970

0.0797

1.5497

1.0987

1.1094

0.2303

1.8105

0.7282

1.4855

0.4298

2.6837

0.7350

WFG1

0.5273

0.0275

0.5816

0.4716

0.6191

0.0534

0.7946

0.5203

0.7971

0.1322

1.3245

0.5641

0.7520

0.2016

1.7379

0.4836

3.4781

0.5894

3.9559

0.3016

WFG2

0.8664

0.0270

0.8912

0.6855

0.9856

0.0450

1.0317

0.7717

1.2746

0.0175

1.3172

1.2215

1.4952

0.0410

1.5520

1.1828

2.4507

0.0337

2.5393

2.3771

WFG3

0.7821

0.0164

0.8225

0.7450

0.8928

0.0145

0.9200

0.8469

1.1213

0.0236

1.1716

1.0561

1.2532

0.0432

1.3530

1.1516

2.1401

0.0582

2.2519

1.9857

WFG4

0.7664

0.0219

0.8065

0.7151

0.7882

0.0221

0.8416

0.7245

1.0375

0.0241

1.0833

0.9847

1.1668

0.0314

1.2462

1.0992

1.9384

0.0556

2.0686

1.7897

WFG5

0.7584

0.0524

0.9503

0.6665

0.7076

0.0291

0.7975

0.6523

0.7778

0.0338

0.9043

0.7196

0.7888

0.0465

0.9053

0.6958

1.3680

0.1255

1.6660

1.0968
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Table D.5: Average, Standard Deviation, Maximum, and Minimum HV for
the MGPSOSTD (continue)

MGPSOSTD HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.6958

0.0179

0.7274

0.6445

0.7145

0.0214

0.7611

0.6502

0.8221

0.0271

0.8713

0.7496

0.9003

0.0326

0.9976

0.8311

1.4469

0.0537

1.5577

1.2696

WFG7

0.5894

0.0143

0.6229

0.5517

0.6328

0.0160

0.6857

0.6053

0.7595

0.0281

0.8359

0.6997

0.8325

0.0285

0.9133

0.7716

1.2757

0.0469

1.4120

1.1667

WFG8

0.5637

0.0085

0.5842

0.5435

0.5921

0.0128

0.6270

0.5649

0.7123

0.0216

0.7652

0.6650

0.8086

0.0364

0.8819

0.6640

1.2542

0.0512

1.3814

1.1478

WFG9

0.9643

0.0166

1.0033

0.9214

0.9978

0.0290

1.1074

0.9290

1.1420

0.0344

1.2521

1.0712

1.2450

0.0650

1.4153

1.0504

1.9195

0.1004

2.1026

1.6463
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Table D.6: Average, Standard Deviation, Maximum, and Minimum HV for
the MOEA/DD

MOEA/DD HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.3194

0.0018

1.3221

1.3125

1.5873

0.0076

1.6032

1.5714

2.0439

0.0311

2.1062

1.9676

2.2597

0.1109

2.4921

2.0848

3.8909

0.2203

4.1098

2.9535

DTLZ2

1.2989

0.0035

1.3062

1.2903

1.5974

0.0032

1.6023

1.5883

2.0742

0.0175

2.1103

2.0366

1.8867

0.3535

2.4718

1.0749

1.8691

0.8263

3.4529

0.7626

DTLZ3

1.3037

0.0043

1.3102

1.2950

1.5943

0.0055

1.6048

1.5829

2.1110

0.0126

2.1303

2.0780

2.4125

0.1298

2.5603

1.8253

3.9605

0.1347

4.1345

3.6232

DTLZ4

1.2808

0.0084

1.2980

1.2645

1.5998

0.0048

1.6057

1.5844

2.1126

0.0296

2.1417

1.9940

2.2087

0.3791

2.5819

1.3618

2.2679

0.0000

2.2679

2.2679

DTLZ5

1.2186

0.0048

1.2291

1.2048

1.4270

0.0119

1.4469

1.4025

1.5602

0.1998

1.8177

1.2392

1.2125

0.3187

2.0982

0.6325

1.5446

0.3664

3.2358

1.0963

DTLZ6

0.9826

0.0137

1.0057

0.9496

1.3368

0.0136

1.3674

1.3115

1.6664

0.0536

1.7735

1.5409

0.8263

0.3661

1.3521

0.0906

0.6826

0.6871

2.1980

0.1483
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Table D.6: Average, Standard Deviation, Maximum, and Minimum HV for
the MOEA/DD (continue)

MOEA/DD HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.4057

0.0207

0.4455

0.3673

0.8051

0.1002

0.9796

0.6142

0.2905

0.2867

1.1046

0.0030

0.0254

0.0601

0.2421

0.0001

0.0026

0.0054

0.0242

0.0000

WFG1

1.0339

0.0395

1.0748

0.9373

1.1895

0.0531

1.2576

1.0182

0.6406

0.0862

0.8407

0.5413

0.6131

0.0787

0.7933

0.4682

0.0376

0.0000

0.0376

0.0376

WFG2

0.9141

0.0378

0.9604

0.7894

0.8671

0.0735

0.9845

0.7269

0.4583

0.0819

0.6030

0.2303

0.3075

0.1224

0.7763

0.1492

1.6708

0.5101

2.6114

0.1536

WFG3

0.6405

0.0226

0.6879

0.5832

0.5787

0.0232

0.6334

0.5472

0.4179

0.0492

0.5146

0.3343

0.1418

0.0374

0.2608

0.0855

0.2567

0.2472

0.9498

0.0007

WFG4

0.6809

0.0209

0.7207

0.6406

0.8956

0.0436

0.9731

0.8096

0.9389

0.0319

1.0174

0.8734

0.9928

0.0722

1.1048

0.7512

1.9032

0.1855

2.2652

1.4921

WFG5

0.7551

0.0149

0.7846

0.7204

0.8562

0.0289

0.9071

0.7985

0.8273

0.0550

0.9083

0.6737

0.3670

0.1812

0.8451

0.0999

1.2227

0.5336

2.1641

0.4126
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Table D.6: Average, Standard Deviation, Maximum, and Minimum HV for
the MOEA/DD (continue)

MOEA/DD HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.6411

0.0208

0.6737

0.5927

0.7643

0.0253

0.8332

0.7057

0.7227

0.0374

0.8033

0.6450

0.4338

0.1382

0.6841

0.1529

1.0618

0.4212

1.9546

0.1752

WFG7

0.7065

0.0129

0.7353

0.6755

0.8736

0.0325

0.9432

0.8069

0.7958

0.0433

0.8748

0.7043

0.6680

0.1439

0.9079

0.3718

1.6023

0.4159

2.2405

0.3584

WFG8

0.7359

0.0147

0.7718

0.7113

0.8084

0.0362

0.8775

0.6856

0.7670

0.0496

0.8799

0.6773

0.3963

0.2255

0.8081

0.0770

1.3243

0.4425

2.0602

0.5855

WFG9

0.7371

0.0433

0.8216

0.6735

0.7940

0.0424

0.9024

0.6930

0.7599

0.0604

0.8804

0.6445

0.6834

0.0992

0.8736

0.4003

1.7060

0.3945

2.2937

0.3990
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Table D.7: Average, Standard Deviation, Maximum, and Minimum HV for
the NSGA-III

NSGA-III HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.3202

0.0013

1.3228

1.3176

1.5917

0.0042

1.6021

1.5823

2.0503

0.0226

2.1034

2.0062

2.3253

0.1811

2.4830

1.6322

3.6352

0.2618

3.9272

3.0755

DTLZ2

1.2941

0.0034

1.2997

1.2862

1.5856

0.0077

1.5949

1.5566

2.0294

0.0445

2.1086

1.9047

2.2546

0.2915

2.4999

1.1584

3.0517

0.4667

3.7440

1.9614

DTLZ3

1.3094

0.0026

1.3138

1.3041

1.6004

0.0038

1.6051

1.5910

2.1019

0.0162

2.1255

2.0409

2.4613

0.0775

2.5745

2.2853

3.9155

0.1336

4.1169

3.5855

DTLZ4

1.2212

0.0622

1.2748

1.0229

1.5498

0.0508

1.5929

1.3997

1.9929

0.1217

2.1194

1.6547

2.1322

0.3854

2.5478

1.0575

1.8881

0.1997

2.3134

1.7039

DTLZ5

1.2090

0.0075

1.2204

1.1885

1.3463

0.0914

1.4296

1.0795

1.5619

0.2003

1.7549

1.0438

0.8290

0.2401

1.5281

0.3627

1.3721

0.2733

1.8713

0.7473

DTLZ6

0.9639

0.0186

1.0078

0.9275

1.2864

0.0160

1.3090

1.2469

1.5525

0.0708

1.6874

1.3877

1.4912

0.2774

1.9209

0.5769

1.5942

0.5122

2.4184

0.2080
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Table D.7: Average, Standard Deviation, Maximum, and Minimum HV for
the NSGA-III (continue)

NSGA-III HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.3420

0.0119

0.3696

0.3137

0.7503

0.0381

0.8425

0.6811

0.8691

0.0897

1.0078

0.6734

0.6842

0.1550

1.0292

0.4115

0.5736

0.1490

0.9214

0.2855

WFG1

0.9928

0.0775

1.0567

0.7499

1.1988

0.0652

1.2593

1.0184

0.6992

0.1756

0.9767

0.3696

0.5074

0.1645

0.7485

0.1519

0.1388

0.2008

0.4975

0.0340

WFG2

0.8782

0.0564

0.9876

0.8114

0.9296

0.0570

1.0350

0.8253

0.6609

0.0538

0.8046

0.5594

0.7488

0.1120

1.0195

0.5714

2.6782

0.3327

3.3423

1.7894

WFG3

0.7288

0.0076

0.7433

0.7125

0.6836

0.0167

0.7170

0.6538

0.5120

0.0401

0.5907

0.4302

0.4791

0.0653

0.6472

0.3925

1.6192

0.2550

2.1022

1.0950

WFG4

0.7333

0.0138

0.7642

0.7067

0.8303

0.0380

0.9327

0.7536

0.9113

0.0294

0.9637

0.8567

0.9579

0.0863

1.0998

0.7602

1.8599

0.1198

2.0831

1.6638

WFG5

0.7705

0.0132

0.8071

0.7436

0.8728

0.0246

0.9238

0.8247

0.8595

0.0377

0.9439

0.8010

0.6607

0.0792

0.8168

0.4925

1.6600

0.1409

1.8615

1.3849
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Table D.7: Average, Standard Deviation, Maximum, and Minimum HV for
the NSGA-III (continue)

NSGA-III HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.6497

0.0128

0.6780

0.6238

0.7540

0.0267

0.7951

0.6903

0.7447

0.0292

0.8379

0.7009

0.5952

0.0801

0.7588

0.4388

1.6889

0.1538

1.9624

1.4184

WFG7

0.7361

0.0158

0.7660

0.6867

0.8740

0.0483

0.9482

0.7553

0.8493

0.0273

0.9096

0.7951

0.8136

0.0942

1.0126

0.5494

1.8069

0.1558

2.0538

1.3214

WFG8

0.7532

0.0152

0.7772

0.7179

0.7869

0.0250

0.8343

0.7124

0.8290

0.0431

0.9180

0.7487

0.6827

0.0931

0.8677

0.4684

1.6077

0.1140

1.8350

1.4221

WFG9

0.7366

0.0256

0.8182

0.7039

0.8069

0.0478

0.9345

0.7033

0.8691

0.0523

0.9873

0.7509

0.7512

0.0909

0.9109

0.5591

1.9323

0.1445

2.2190

1.7005
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Table D.8: Average, Standard Deviation, Maximum, and Minimum HV for
the PMGPSOR

PMGPSOR HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.2315

0.0052

1.2402

1.2208

1.4765

0.0123

1.5024

1.4429

1.8731

0.0254

1.9545

1.8229

2.2613

0.0365

2.3399

2.2052

3.6508

0.0698

3.8277

3.5107

DTLZ2

1.2529

0.0093

1.2648

1.2178

1.4960

0.0213

1.5414

1.4636

1.9382

0.0298

1.9908

1.8710

2.2479

0.0586

2.3595

2.1092

3.4265

0.1106

3.6114

3.2438

DTLZ3

1.1372

0.0191

1.1809

1.1053

1.3767

0.0294

1.4429

1.3335

1.7894

0.0411

1.8872

1.7310

2.0129

0.0902

2.2190

1.7975

3.1670

0.2239

3.6471

2.7072

DTLZ4

1.2989

0.0047

1.3085

1.2865

1.2263

0.0296

1.2822

1.1606

1.4994

0.0400

1.5743

1.4223

1.7609

0.0469

1.8449

1.6652

2.5281

0.0595

2.6320

2.3985

DTLZ5

1.2034

0.0101

1.2204

1.1675

1.3623

0.0255

1.4010

1.2752

1.7043

0.0309

1.7811

1.6309

1.9621

0.0454

2.0610

1.8515

2.9463

0.0951

3.1408

2.7136

DTLZ6

0.7533

0.0096

0.7702

0.7240

1.0589

0.0150

1.0906

1.0287

1.3385

0.0290

1.3900

1.2614

1.4256

0.0523

1.5153

1.2798

1.9649

0.1028

2.1619

1.7099
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Table D.8: Average, Standard Deviation, Maximum, and Minimum HV for
the PMGPSOR (continue)

PMGPSOR HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

1.0316

0.0746

1.1732

0.8771

1.2025

0.0738

1.3049

1.0362

1.1920

0.1261

1.3829

0.8969

1.0537

0.1555

1.2867

0.7488

1.2473

0.2385

1.7374

0.6618

WFG1

0.4211

0.0201

0.4668

0.3838

0.4830

0.0123

0.5114

0.4557

0.5111

0.0172

0.5501

0.4734

0.4694

0.0201

0.5029

0.4242

0.0620

0.0037

0.0694

0.0541

WFG2

0.8094

0.0084

0.8256

0.7930

0.9148

0.0125

0.9385

0.8843

1.0850

0.0263

1.1369

1.0267

1.2481

0.0534

1.3355

1.1150

2.2177

0.0890

2.3877

2.0619

WFG3

0.7065

0.0106

0.7240

0.6869

0.8100

0.0156

0.8393

0.7793

1.0054

0.0358

1.0718

0.9114

1.1529

0.0410

1.2285

1.0618

2.0165

0.0854

2.1637

1.8555

WFG4

0.7327

0.0218

0.7793

0.6872

0.7607

0.0222

0.7968

0.7145

1.0314

0.0240

1.0726

0.9801

1.1632

0.0304

1.2232

1.1157

1.8672

0.0503

1.9621

1.7630

WFG5

0.6454

0.0327

0.7180

0.5611

0.6824

0.0265

0.7251

0.6179

0.7721

0.0289

0.8600

0.7242

0.7776

0.0345

0.8280

0.6791

1.4169

0.0689

1.5935

1.3119
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Table D.8: Average, Standard Deviation, Maximum, and Minimum HV for
the PMGPSOR (continue)

PMGPSOR HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.5972

0.0176

0.6262

0.5627

0.6520

0.0213

0.6866

0.6107

0.7879

0.0262

0.8370

0.7270

0.8827

0.0265

0.9264

0.8370

1.4199

0.0494

1.5070

1.2830

WFG7

0.5450

0.0154

0.5928

0.5265

0.6149

0.0162

0.6541

0.5921

0.7459

0.0225

0.7940

0.6868

0.8150

0.0290

0.8922

0.7518

1.2654

0.0496

1.3673

1.1463

WFG8

0.5192

0.0073

0.5305

0.5036

0.5613

0.0172

0.5948

0.5218

0.6899

0.0152

0.7180

0.6557

0.7686

0.0287

0.8157

0.6970

1.2288

0.0414

1.2999

1.1111

WFG9

0.8604

0.0229

0.9096

0.8175

0.8891

0.0219

0.9212

0.8410

1.0821

0.0252

1.1367

1.0326

1.1928

0.0644

1.3086

1.0580

1.9193

0.0861

2.0842

1.7665
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Table D.9: Average, Standard Deviation, Maximum, and Minimum HV for
the PMGPSORI

PMGPSORI HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.2313

0.0059

1.2449

1.2176

1.4774

0.0118

1.5044

1.4429

1.8715

0.0263

1.9545

1.8172

2.2605

0.0335

2.3399

2.2015

3.6439

0.0701

3.8277

3.4032

DTLZ2

1.2525

0.0109

1.2715

1.2178

1.4968

0.0191

1.5436

1.4636

1.9403

0.0312

2.0029

1.8710

2.2504

0.0527

2.3595

2.1092

3.4337

0.1161

3.6692

3.2438

DTLZ3

1.1376

0.0179

1.1809

1.1010

1.3792

0.0296

1.4558

1.3256

1.7906

0.0484

1.9326

1.7072

2.0306

0.0912

2.2674

1.7975

3.2072

0.2024

3.6730

2.7072

DTLZ4

1.2998

0.0043

1.3085

1.2865

1.2307

0.0279

1.3188

1.1606

1.4849

0.0493

1.5743

1.3343

1.7599

0.0426

1.8449

1.6652

2.5231

0.0564

2.6320

2.3978

DTLZ5

1.2024

0.0095

1.2204

1.1675

1.3662

0.0219

1.4100

1.2752

1.7045

0.0334

1.7811

1.6309

1.9677

0.0526

2.0622

1.8412

2.9524

0.0879

3.1408

2.7136

DTLZ6

0.7544

0.0085

0.7702

0.7240

1.0598

0.0134

1.0906

1.0287

1.3406

0.0288

1.4022

1.2614

1.4125

0.0523

1.5153

1.2798

1.9575

0.1023

2.1619

1.7099
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Table D.9: Average, Standard Deviation, Maximum, and Minimum HV for
the PMGPSORI (continue)

PMGPSORI HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

1.0331

0.0771

1.2336

0.8771

1.2087

0.0858

1.3523

0.9320

1.1883

0.1284

1.4522

0.8379

1.0180

0.1621

1.2867

0.6361

1.2069

0.2297

1.7374

0.6618

WFG1

0.4210

0.0183

0.4668

0.3838

0.4792

0.0168

0.5190

0.4378

0.5102

0.0216

0.5734

0.4686

0.4691

0.0189

0.5116

0.4242

0.0626

0.0042

0.0735

0.0541

WFG2

0.8086

0.0084

0.8288

0.7914

0.9153

0.0139

0.9554

0.8843

1.0856

0.0281

1.1484

1.0267

1.2465

0.0551

1.3501

1.1057

2.2069

0.0910

2.3907

1.9744

WFG3

0.7070

0.0106

0.7283

0.6869

0.8108

0.0147

0.8393

0.7793

1.0124

0.0314

1.0718

0.9114

1.1542

0.0406

1.2285

1.0618

2.0034

0.0963

2.1637

1.6978

WFG4

0.7308

0.0223

0.7793

0.6767

0.7649

0.0228

0.8126

0.7145

1.0271

0.0243

1.0776

0.9721

1.1555

0.0330

1.2560

1.0979

1.8697

0.0498

1.9621

1.7630

WFG5

0.6416

0.0305

0.7180

0.5611

0.6852

0.0260

0.7399

0.6179

0.7725

0.0288

0.8600

0.7184

0.7861

0.0363

0.8602

0.6791

1.4132

0.0683

1.5935

1.2236
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Table D.9: Average, Standard Deviation, Maximum, and Minimum HV for
the PMGPSORI (continue)

PMGPSORI HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.5970

0.0195

0.6333

0.5627

0.6529

0.0189

0.6866

0.5992

0.7908

0.0256

0.8407

0.7270

0.8822

0.0272

0.9264

0.8158

1.4271

0.0484

1.5207

1.2830

WFG7

0.5441

0.0145

0.5928

0.5184

0.6147

0.0167

0.6541

0.5895

0.7477

0.0248

0.8040

0.6868

0.8146

0.0280

0.8922

0.7518

1.2613

0.0470

1.3673

1.1463

WFG8

0.5192

0.0094

0.5420

0.4957

0.5586

0.0159

0.5948

0.5171

0.6888

0.0162

0.7261

0.6557

0.7699

0.0288

0.8301

0.6860

1.2349

0.0485

1.3521

1.1111

WFG9

0.8604

0.0251

0.9322

0.8062

0.8875

0.0228

0.9327

0.8410

1.0867

0.0257

1.1510

1.0326

1.1948

0.0560

1.3086

1.0580

1.9184

0.0944

2.0842

1.5876
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Table D.10: Average, Standard Deviation, Maximum, and Minimum HV for
the PMGPSOSTD

PMGPSOSTD HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.2378

0.0186

1.3201

1.2176

1.4763

0.0115

1.5044

1.4429

1.8769

0.0377

2.0855

1.8172

2.2593

0.0396

2.3964

2.1796

3.6442

0.0634

3.8277

3.4032

DTLZ2

1.2569

0.0129

1.2871

1.2178

1.5001

0.0198

1.5513

1.4634

1.9404

0.0333

2.0029

1.8590

2.2532

0.0562

2.3719

2.1092

3.4378

0.1162

3.7135

3.2317

DTLZ3

1.1530

0.0325

1.2553

1.1003

1.3856

0.0311

1.4558

1.3256

1.7908

0.0508

1.9326

1.6321

2.0227

0.0859

2.2674

1.7975

3.2282

0.1994

3.6730

2.7072

DTLZ4

1.2981

0.0075

1.3085

1.2505

1.2405

0.0302

1.3229

1.1606

1.5019

0.0495

1.5955

1.3343

1.7796

0.0497

1.8946

1.6652

2.5498

0.0652

2.6770

2.3978

DTLZ5

1.2078

0.0139

1.2441

1.1675

1.3711

0.0268

1.4422

1.2752

1.7140

0.0390

1.8028

1.6209

1.9767

0.0588

2.1029

1.8279

2.9512

0.0937

3.1408

2.6384

DTLZ6

0.7531

0.0091

0.7702

0.7240

1.0587

0.0131

1.0906

1.0287

1.3434

0.0290

1.4022

1.2614

1.4108

0.0518

1.5288

1.2798

1.9716

0.1023

2.2710

1.7099
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Table D.10: Average, Standard Deviation, Maximum, and Minimum HV for
the PMGPSOSTD (continue)

PMGPSOSTD HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

1.0247

0.0759

1.2336

0.8682

1.2112

0.0948

1.3975

0.9320

1.2240

0.1466

1.5657

0.8379

1.1256

0.2519

1.7031

0.6361

1.4608

0.4522

2.4167

0.6618

WFG1

0.4250

0.0220

0.4885

0.3638

0.4806

0.0217

0.5569

0.4265

0.5098

0.0242

0.5734

0.4535

0.4637

0.0229

0.5152

0.4047

0.0628

0.0042

0.0735

0.0541

WFG2

0.8078

0.0094

0.8288

0.7792

0.9185

0.0142

0.9554

0.8843

1.0940

0.0302

1.1671

1.0267

1.2539

0.0544

1.3501

1.1057

2.1999

0.0953

2.3907

1.9744

WFG3

0.7083

0.0127

0.7405

0.6765

0.8166

0.0170

0.8594

0.7793

1.0206

0.0395

1.0936

0.9114

1.1622

0.0482

1.2943

1.0618

1.9916

0.0931

2.1705

1.6978

WFG4

0.7272

0.0227

0.7793

0.6668

0.7646

0.0234

0.8126

0.7145

1.0241

0.0253

1.0776

0.9721

1.1497

0.0340

1.2560

1.0722

1.8591

0.0538

1.9621

1.7310

WFG5

0.6423

0.0301

0.7192

0.5611

0.6877

0.0267

0.7573

0.6179

0.7831

0.0380

0.9013

0.7116

0.8046

0.0507

0.9676

0.6791

1.4449

0.0950

1.7255

1.2236
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Table D.10: Average, Standard Deviation, Maximum, and Minimum HV for
the PMGPSOSTD (continue)

PMGPSOSTD HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.5948

0.0189

0.6333

0.5627

0.6497

0.0221

0.6915

0.5961

0.7905

0.0290

0.8516

0.7270

0.8793

0.0332

0.9533

0.8011

1.4194

0.0510

1.5262

1.2830

WFG7

0.5574

0.0264

0.6208

0.5137

0.6205

0.0203

0.6722

0.5895

0.7504

0.0283

0.8143

0.6714

0.8208

0.0365

0.9228

0.7518

1.2602

0.0506

1.3673

1.1122

WFG8

0.5198

0.0121

0.5509

0.4855

0.5600

0.0155

0.5948

0.5171

0.6926

0.0208

0.7515

0.6330

0.7872

0.0374

0.8758

0.6860

1.2409

0.0502

1.3521

1.1111

WFG9

0.8578

0.0262

0.9322

0.8050

0.8871

0.0237

0.9351

0.8410

1.0880

0.0265

1.1643

1.0326

1.1961

0.0529

1.3086

1.0580

1.9177

0.0880

2.0842

1.5876
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D.2 Inverted Generational Distance Values
The average, standard deviation, maximum, and minimum IGD performance
measure values for each algorithm on each problem instance are listed in ta-
bles D.11 to D.20. Note that these performance measure values are associated
with Chapter 4.

Table D.11: Average, Standard Deviation, Maximum, and Minimum IGD for
the CDAS-SMPSO algorithm

CDAS-SMPSO IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0072

0.0008

0.0079

0.0049

0.0068

0.0006

0.0076

0.0055

0.0078

0.0012

0.0131

0.0066

0.0078

0.0025

0.0156

0.0060

0.0071

0.0003

0.0079

0.0068

DTLZ2

0.0185

0.0003

0.0192

0.0179

0.0184

0.0005

0.0195

0.0175

0.0207

0.0010

0.0235

0.0195

0.0187

0.0006

0.0202

0.0175

0.0210

0.0008

0.0230

0.0194

DTLZ3

0.0225

0.0017

0.0252

0.0185

0.0258

0.0006

0.0271

0.0237

0.0289

0.0007

0.0294

0.0254

0.0248

0.0011

0.0261

0.0228

0.0266

0.0005

0.0269

0.0250

DTLZ4

0.0198

0.0021

0.0238

0.0149

0.0225

0.0013

0.0257

0.0205

0.0275

0.0013

0.0307

0.0254

0.0254

0.0012

0.0280

0.0225

0.0277

0.0010

0.0301

0.0258
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Table D.11: Average, Standard Deviation, Maximum, and Minimum IGD for
the CDAS-SMPSO algorithm (continue)

CDAS-SMPSO IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ5

0.0209

0.0002

0.0212

0.0204

0.0198

0.0002

0.0200

0.0195

0.0187

0.0002

0.0190

0.0181

0.0182

0.0002

0.0186

0.0177

0.0174

0.0002

0.0180

0.0168

DTLZ6

0.0231

0.0010

0.0251

0.0216

0.0232

0.0010

0.0254

0.0217

0.0230

0.0015

0.0252

0.0183

0.0238

0.0009

0.0255

0.0223

0.0239

0.0011

0.0262

0.0212

DTLZ7

0.1041

0.0012

0.1067

0.1025

0.1441

0.0018

0.1481

0.1408

0.2399

0.0013

0.2428

0.2363

0.0984

0.0004

0.0993

0.0975

0.1444

0.0005

0.1451

0.1433

WFG1

0.0388

0.0030

0.0462

0.0360

0.0499

0.0019

0.0562

0.0484

0.0818

0.0020

0.0860

0.0786

0.0808

0.0010

0.0822

0.0783

0.1324

0.0002

0.1326

0.1321

WFG2

0.0460

0.0011

0.0488

0.0442

0.0578

0.0010

0.0597

0.0558

0.0925

0.0013

0.0957

0.0907

0.0882

0.0010

0.0910

0.0861

0.1369

0.0008

0.1383

0.1355

WFG3

0.0766

0.0016

0.0801

0.0736

0.1406

0.0007

0.1431

0.1396

0.2429

0.0004

0.2439

0.2420

0.3121

0.0015

0.3168

0.3109

0.4850

0.0010

0.4870

0.4837
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Table D.11: Average, Standard Deviation, Maximum, and Minimum IGD for
the CDAS-SMPSO algorithm (continue)

CDAS-SMPSO IGD

Benchmark

Function

nm

3 5 8 10 15

WFG4

0.0881

0.0001

0.0883

0.0879

0.1542

0.0002

0.1546

0.1537

0.2732

0.0002

0.2736

0.2728

0.3042

0.0003

0.3051

0.3036

0.4692

0.0007

0.4706

0.4680

WFG5

0.0888

0.0002

0.0893

0.0884

0.1542

0.0001

0.1544

0.1540

0.2741

0.0002

0.2747

0.2737

0.3047

0.0003

0.3053

0.3041

0.4708

0.0004

0.4717

0.4703

WFG6

0.0880

0.0002

0.0884

0.0874

0.1538

0.0002

0.1541

0.1534

0.2736

0.0003

0.2742

0.2732

0.3045

0.0004

0.3054

0.3039

0.4697

0.0005

0.4714

0.4689

WFG7

0.0885

0.0001

0.0886

0.0883

0.1544

0.0002

0.1548

0.1541

0.2742

0.0002

0.2747

0.2737

0.3039

0.0002

0.3045

0.3036

0.4686

0.0005

0.4698

0.4673

WFG8

0.0889

0.0001

0.0893

0.0886

0.1547

0.0004

0.1564

0.1540

0.2735

0.0001

0.2737

0.2731

0.3037

0.0002

0.3043

0.3034

0.4692

0.0003

0.4700

0.4689

WFG9

0.0900

0.0002

0.0906

0.0894

0.1542

0.0002

0.1546

0.1538

0.2737

0.0006

0.2762

0.2730

0.3052

0.0023

0.3136

0.3035

0.4694

0.0008

0.4720

0.4683



APPENDIX D. PERFORMANCE MEASURE VALUES FOR CHAPTER 4 284

Table D.12: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnEA

KnEA IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0024

0.0001

0.0027

0.0021

-

-

-

-

0.0065

0.0005

0.0075

0.0055

0.0057

0.0005

0.0066

0.0049

0.0070

0.0003

0.0077

0.0064

DTLZ2

0.0162

0.0004

0.0172

0.0151

0.0167

0.0018

0.0208

0.0143

0.0267

0.0012

0.0291

0.0237

0.0195

0.0026

0.0260

0.0156

0.0270

0.0010

0.0281

0.0243

DTLZ3

0.0168

0.0005

0.0183

0.0158

0.0218

0.0013

0.0248

0.0192

0.0261

0.0013

0.0286

0.0223

0.0230

0.0016

0.0254

0.0197

0.0254

0.0007

0.0267

0.0233

DTLZ4

0.0146

0.0015

0.0189

0.0130

0.0230

0.0019

0.0250

0.0191

0.0291

0.0001

0.0294

0.0290

0.0261

0.0001

0.0263

0.0259

0.0281

0.0002

0.0284

0.0271

DTLZ5

0.0175

0.0005

0.0181

0.0166

0.0207

0.0013

0.0214

0.0149

0.0202

0.0004

0.0209

0.0190

0.0201

0.0012

0.0208

0.0147

0.0188

0.0021

0.0215

0.0128

DTLZ6

0.0057

0.0004

0.0063

0.0050

0.0225

0.0041

0.0257

0.0128

0.0222

0.0035

0.0256

0.0159

0.0222

0.0029

0.0270

0.0157

0.0216

0.0033

0.0253

0.0153
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Table D.12: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnEA (continue)

KnEA IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.0996

0.0003

0.1002

0.0991

0.1338

0.0013

0.1360

0.1307

0.2249

0.0013

0.2268

0.2215

0.0933

0.0006

0.0943

0.0920

0.1384

0.0004

0.1395

0.1374

WFG1

0.0471

0.0026

0.0489

0.0358

0.0591

0.0014

0.0611

0.0562

0.0861

0.0022

0.0891

0.0814

0.0831

0.0013

0.0853

0.0805

0.1327

0.0011

0.1339

0.1299

WFG2

0.0450

0.0013

0.0472

0.0412

0.0610

0.0009

0.0629

0.0587

0.0895

0.0010

0.0923

0.0880

0.0852

0.0008

0.0872

0.0839

0.1356

0.0010

0.1382

0.1335

WFG3

0.0783

0.0017

0.0818

0.0755

0.1480

0.0014

0.1510

0.1457

0.2486

0.0024

0.2532

0.2435

0.3178

0.0030

0.3244

0.3125

0.4878

0.0013

0.4907

0.4851

WFG4

0.0882

0.0001

0.0884

0.0881

0.1546

0.0002

0.1551

0.1543

0.2759

0.0015

0.2804

0.2740

0.3048

0.0007

0.3067

0.3038

0.4731

0.0015

0.4770

0.4702

WFG5

0.0891

0.0001

0.0893

0.0888

0.1550

0.0003

0.1563

0.1547

0.2811

0.0034

0.2876

0.2755

0.3071

0.0019

0.3109

0.3041

0.4721

0.0016

0.4769

0.4698
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Table D.12: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnEA (continue)

KnEA IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0881

0.0001

0.0884

0.0878

0.1546

0.0013

0.1606

0.1539

0.2814

0.0028

0.2871

0.2756

0.3084

0.0015

0.3119

0.3046

0.4736

0.0029

0.4822

0.4701

WFG7

0.0884

0.0001

0.0887

0.0882

0.1548

0.0002

0.1558

0.1544

0.2801

0.0018

0.2839

0.2766

0.3066

0.0021

0.3114

0.3036

0.4703

0.0011

0.4729

0.4682

WFG8

0.0892

0.0001

0.0894

0.0890

0.1550

0.0008

0.1570

0.1543

0.2798

0.0021

0.2849

0.2763

0.3075

0.0024

0.3123

0.3032

0.4712

0.0011

0.4737

0.4694

WFG9

0.0894

0.0003

0.0901

0.0888

0.1545

0.0004

0.1556

0.1539

0.2768

0.0017

0.2819

0.2738

0.3050

0.0013

0.3086

0.3032

0.4696

0.0015

0.4741

0.4675
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Table D.13: Average, Standard Deviation, Maximum, and Minimum IGD for
the MGPSOR

MGPSOR IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0011

0.0001

0.0014

0.0009

0.0053

0.0003

0.0058

0.0048

0.0095

0.0005

0.0104

0.0085

0.0088

0.0006

0.0097

0.0072

0.0095

0.0005

0.0105

0.0087

DTLZ2

0.0188

0.0003

0.0193

0.0181

0.0153

0.0004

0.0161

0.0143

0.0167

0.0005

0.0176

0.0158

0.0156

0.0005

0.0165

0.0147

0.0202

0.0006

0.0212

0.0194

DTLZ3

0.0113

0.0007

0.0136

0.0104

0.0103

0.0003

0.0108

0.0097

0.0150

0.0006

0.0160

0.0140

0.0158

0.0006

0.0168

0.0147

0.0220

0.0007

0.0231

0.0206

DTLZ4

0.0221

0.0019

0.0238

0.0190

0.0234

0.0010

0.0257

0.0220

0.0288

0.0005

0.0295

0.0268

0.0260

0.0001

0.0265

0.0258

0.0280

0.0002

0.0285

0.0277

DTLZ5

0.0211

0.0003

0.0214

0.0204

0.0165

0.0005

0.0172

0.0152

0.0142

0.0004

0.0148

0.0132

0.0137

0.0004

0.0144

0.0130

0.0127

0.0005

0.0135

0.0117

DTLZ6

0.0018

0.0002

0.0022

0.0015

0.0039

0.0005

0.0050

0.0029

0.0053

0.0005

0.0062

0.0046

0.0065

0.0007

0.0081

0.0052

0.0072

0.0009

0.0098

0.0056
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Table D.13: Average, Standard Deviation, Maximum, and Minimum IGD for
the MGPSOR (continue)

MGPSOR IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.1184

0.0013

0.1204

0.1159

0.1411

0.0038

0.1474

0.1351

0.2255

0.0005

0.2264

0.2247

0.0925

0.0002

0.0929

0.0922

0.1377

0.0002

0.1383

0.1373

WFG1

0.0502

0.0004

0.0513

0.0496

0.0614

0.0005

0.0640

0.0610

0.0881

0.0004

0.0899

0.0877

0.0842

0.0003

0.0856

0.0838

0.1336

0.0002

0.1342

0.1335

WFG2

0.0497

0.0006

0.0513

0.0487

0.0614

0.0005

0.0625

0.0607

0.0903

0.0003

0.0913

0.0899

0.0860

0.0003

0.0866

0.0855

0.1359

0.0002

0.1362

0.1356

WFG3

0.0750

0.0001

0.0752

0.0748

0.1410

0.0001

0.1411

0.1408

0.2435

0.0001

0.2437

0.2433

0.3120

0.0001

0.3121

0.3118

0.4845

0.0001

0.4846

0.4844

WFG4

0.0890

0.0000

0.0891

0.0889

0.1561

0.0001

0.1564

0.1560

0.2783

0.0002

0.2787

0.2779

0.3089

0.0003

0.3093

0.3084

0.4772

0.0003

0.4779

0.4765

WFG5

0.0886

0.0004

0.0893

0.0878

0.1541

0.0002

0.1545

0.1538

0.2739

0.0002

0.2742

0.2736

0.3040

0.0001

0.3043

0.3037

0.4701

0.0003

0.4707

0.4695
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Table D.13: Average, Standard Deviation, Maximum, and Minimum IGD for
the MGPSOR (continue)

MGPSOR IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0909

0.0002

0.0911

0.0905

0.1566

0.0002

0.1569

0.1563

0.2760

0.0002

0.2764

0.2757

0.3059

0.0002

0.3063

0.3055

0.4731

0.0002

0.4734

0.4726

WFG7

0.0902

0.0001

0.0903

0.0900

0.1572

0.0001

0.1574

0.1570

0.2779

0.0002

0.2785

0.2774

0.3074

0.0002

0.3078

0.3070

0.4729

0.0003

0.4735

0.4725

WFG8

0.0906

0.0001

0.0909

0.0904

0.1573

0.0002

0.1577

0.1569

0.2771

0.0002

0.2774

0.2766

0.3066

0.0002

0.3070

0.3063

0.4737

0.0003

0.4745

0.4731

WFG9

0.0910

0.0002

0.0914

0.0903

0.1552

0.0003

0.1558

0.1547

0.2735

0.0001

0.2738

0.2732

0.3034

0.0002

0.3038

0.3031

0.4676

0.0002

0.4680

0.4672
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Table D.14: Average, Standard Deviation, Maximum, and Minimum IGD for
the MGPSORI

MGPSORI IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0011

0.0001

0.0014

0.0009

0.0053

0.0003

0.0059

0.0048

0.0095

0.0005

0.0104

0.0084

0.0089

0.0006

0.0103

0.0072

0.0096

0.0006

0.0110

0.0082

DTLZ2

0.0188

0.0003

0.0193

0.0181

0.0154

0.0004

0.0165

0.0143

0.0167

0.0004

0.0176

0.0157

0.0156

0.0004

0.0165

0.0147

0.0202

0.0005

0.0212

0.0194

DTLZ3

0.0112

0.0007

0.0136

0.0098

0.0102

0.0003

0.0109

0.0095

0.0150

0.0005

0.0163

0.0140

0.0159

0.0006

0.0173

0.0147

0.0220

0.0006

0.0231

0.0206

DTLZ4

0.0221

0.0018

0.0238

0.0190

0.0235

0.0010

0.0257

0.0220

0.0288

0.0006

0.0301

0.0264

0.0260

0.0001

0.0265

0.0258

0.0280

0.0002

0.0285

0.0277

DTLZ5

0.0211

0.0003

0.0214

0.0201

0.0165

0.0005

0.0174

0.0152

0.0142

0.0004

0.0149

0.0132

0.0137

0.0004

0.0146

0.0127

0.0127

0.0005

0.0136

0.0117

DTLZ6

0.0018

0.0002

0.0023

0.0014

0.0038

0.0005

0.0050

0.0028

0.0053

0.0005

0.0064

0.0043

0.0064

0.0007

0.0082

0.0048

0.0071

0.0008

0.0098

0.0056
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Table D.14: Average, Standard Deviation, Maximum, and Minimum IGD for
the MGPSORI (continue)

MGPSORI IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.1182

0.0013

0.1204

0.1151

0.1416

0.0038

0.1474

0.1351

0.2255

0.0004

0.2264

0.2247

0.0925

0.0002

0.0930

0.0922

0.1378

0.0003

0.1384

0.1370

WFG1

0.0502

0.0004

0.0513

0.0496

0.0615

0.0008

0.0645

0.0610

0.0881

0.0005

0.0903

0.0877

0.0842

0.0004

0.0859

0.0838

0.1336

0.0001

0.1342

0.1335

WFG2

0.0498

0.0006

0.0513

0.0487

0.0614

0.0005

0.0628

0.0607

0.0902

0.0003

0.0913

0.0897

0.0860

0.0002

0.0866

0.0855

0.1359

0.0002

0.1363

0.1355

WFG3

0.0750

0.0001

0.0752

0.0748

0.1410

0.0001

0.1411

0.1408

0.2435

0.0001

0.2437

0.2433

0.3120

0.0001

0.3122

0.3118

0.4845

0.0001

0.4847

0.4844

WFG4

0.0890

0.0000

0.0891

0.0889

0.1561

0.0001

0.1565

0.1559

0.2782

0.0002

0.2787

0.2779

0.3088

0.0002

0.3093

0.3084

0.4771

0.0003

0.4779

0.4765

WFG5

0.0886

0.0004

0.0893

0.0878

0.1541

0.0002

0.1545

0.1536

0.2738

0.0002

0.2743

0.2736

0.3040

0.0002

0.3044

0.3036

0.4700

0.0003

0.4707

0.4695
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Table D.14: Average, Standard Deviation, Maximum, and Minimum IGD for
the MGPSORI (continue)

MGPSORI IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0909

0.0001

0.0911

0.0905

0.1566

0.0002

0.1569

0.1561

0.2760

0.0002

0.2764

0.2757

0.3059

0.0002

0.3063

0.3055

0.4731

0.0002

0.4735

0.4726

WFG7

0.0902

0.0001

0.0904

0.0899

0.1572

0.0001

0.1574

0.1570

0.2779

0.0002

0.2785

0.2774

0.3075

0.0002

0.3079

0.3070

0.4729

0.0003

0.4735

0.4722

WFG8

0.0906

0.0001

0.0909

0.0903

0.1573

0.0002

0.1577

0.1568

0.2771

0.0002

0.2776

0.2766

0.3066

0.0002

0.3070

0.3063

0.4737

0.0003

0.4745

0.4731

WFG9

0.0910

0.0002

0.0914

0.0903

0.1551

0.0003

0.1558

0.1547

0.2735

0.0001

0.2740

0.2732

0.3034

0.0001

0.3038

0.3031

0.4676

0.0002

0.4680

0.4671
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Table D.15: Average, Standard Deviation, Maximum, and Minimum IGD for
the MGPSOSTD

MGPSOSTD IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0018

0.0013

0.0070

0.0009

0.0052

0.0003

0.0059

0.0043

0.0094

0.0005

0.0105

0.0077

0.0089

0.0007

0.0103

0.0059

0.0095

0.0006

0.0110

0.0082

DTLZ2

0.0187

0.0004

0.0193

0.0175

0.0153

0.0004

0.0165

0.0143

0.0167

0.0004

0.0179

0.0157

0.0156

0.0004

0.0165

0.0146

0.0202

0.0005

0.0212

0.0194

DTLZ3

0.0123

0.0021

0.0202

0.0098

0.0104

0.0005

0.0133

0.0095

0.0152

0.0014

0.0271

0.0140

0.0159

0.0006

0.0177

0.0147

0.0220

0.0006

0.0231

0.0206

DTLZ4

0.0221

0.0018

0.0238

0.0190

0.0236

0.0011

0.0257

0.0220

0.0286

0.0006

0.0301

0.0264

0.0260

0.0001

0.0265

0.0257

0.0279

0.0002

0.0285

0.0276

DTLZ5

0.0210

0.0004

0.0214

0.0196

0.0164

0.0005

0.0174

0.0152

0.0142

0.0004

0.0150

0.0132

0.0137

0.0004

0.0146

0.0124

0.0127

0.0005

0.0137

0.0117

DTLZ6

0.0018

0.0002

0.0023

0.0014

0.0039

0.0005

0.0057

0.0028

0.0052

0.0005

0.0064

0.0039

0.0064

0.0007

0.0082

0.0048

0.0071

0.0009

0.0098

0.0051



APPENDIX D. PERFORMANCE MEASURE VALUES FOR CHAPTER 4 294

Table D.15: Average, Standard Deviation, Maximum, and Minimum IGD for
the MGPSOSTD (continue)

MGPSOSTD IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.1176

0.0015

0.1204

0.1142

0.1419

0.0036

0.1474

0.1334

0.2258

0.0008

0.2284

0.2247

0.0926

0.0003

0.0934

0.0922

0.1380

0.0005

0.1401

0.1370

WFG1

0.0499

0.0005

0.0513

0.0492

0.0614

0.0007

0.0645

0.0608

0.0880

0.0004

0.0903

0.0876

0.0843

0.0003

0.0859

0.0838

0.1337

0.0002

0.1351

0.1335

WFG2

0.0498

0.0006

0.0513

0.0487

0.0614

0.0005

0.0628

0.0607

0.0902

0.0003

0.0913

0.0897

0.0860

0.0003

0.0873

0.0855

0.1359

0.0002

0.1363

0.1351

WFG3

0.0750

0.0001

0.0752

0.0747

0.1409

0.0001

0.1412

0.1407

0.2435

0.0001

0.2437

0.2433

0.3120

0.0001

0.3122

0.3118

0.4845

0.0001

0.4847

0.4843

WFG4

0.0890

0.0000

0.0892

0.0889

0.1561

0.0001

0.1565

0.1559

0.2782

0.0002

0.2788

0.2778

0.3088

0.0002

0.3093

0.3083

0.4771

0.0003

0.4779

0.4763

WFG5

0.0885

0.0005

0.0900

0.0876

0.1541

0.0002

0.1545

0.1536

0.2738

0.0002

0.2743

0.2736

0.3040

0.0002

0.3044

0.3036

0.4700

0.0003

0.4707

0.4695
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Table D.15: Average, Standard Deviation, Maximum, and Minimum IGD for
the MGPSOSTD (continue)

MGPSOSTD IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0908

0.0002

0.0911

0.0901

0.1565

0.0002

0.1569

0.1561

0.2760

0.0002

0.2764

0.2757

0.3059

0.0002

0.3063

0.3055

0.4731

0.0002

0.4735

0.4726

WFG7

0.0901

0.0001

0.0904

0.0897

0.1572

0.0001

0.1575

0.1569

0.2778

0.0002

0.2785

0.2773

0.3074

0.0002

0.3079

0.3069

0.4729

0.0003

0.4737

0.4722

WFG8

0.0906

0.0001

0.0909

0.0903

0.1573

0.0002

0.1578

0.1568

0.2771

0.0002

0.2776

0.2766

0.3066

0.0002

0.3071

0.3063

0.4737

0.0003

0.4746

0.4731

WFG9

0.0910

0.0002

0.0914

0.0903

0.1551

0.0003

0.1559

0.1546

0.2735

0.0001

0.2740

0.2732

0.3034

0.0001

0.3038

0.3031

0.4676

0.0002

0.4681

0.4671
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Table D.16: Average, Standard Deviation, Maximum, and Minimum IGD for
the MOEA/DD

MOEA/DD IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0012

0.0001

0.0015

0.0010

0.0025

0.0001

0.0029

0.0023

0.0054

0.0003

0.0065

0.0047

0.0054

0.0004

0.0067

0.0047

0.0067

0.0008

0.0103

0.0059

DTLZ2

0.0125

0.0006

0.0137

0.0114

0.0128

0.0004

0.0137

0.0118

0.0168

0.0008

0.0184

0.0150

0.0202

0.0021

0.0247

0.0162

0.0262

0.0022

0.0321

0.0232

DTLZ3

0.0124

0.0004

0.0131

0.0116

0.0144

0.0005

0.0157

0.0136

0.0187

0.0007

0.0201

0.0171

0.0204

0.0009

0.0219

0.0186

0.0235

0.0008

0.0257

0.0217

DTLZ4

0.0101

0.0011

0.0122

0.0079

0.0134

0.0018

0.0170

0.0111

0.0196

0.0018

0.0230

0.0169

0.0224

0.0015

0.0255

0.0194

0.0286

0.0000

0.0286

0.0286

DTLZ5

0.0125

0.0006

0.0138

0.0112

0.0132

0.0006

0.0143

0.0121

0.0128

0.0006

0.0140

0.0115

0.0153

0.0022

0.0207

0.0129

0.0155

0.0006

0.0167

0.0146

DTLZ6

0.0038

0.0003

0.0045

0.0032

0.0069

0.0005

0.0079

0.0058

0.0088

0.0007

0.0101

0.0072

0.0190

0.0052

0.0314

0.0128

0.0273

0.0055

0.0332

0.0153
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Table D.16: Average, Standard Deviation, Maximum, and Minimum IGD for
the MOEA/DD (continue)

MOEA/DD IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.1002

0.0004

0.1009

0.0995

0.1401

0.0005

0.1409

0.1391

0.2353

0.0008

0.2371

0.2341

0.0980

0.0003

0.0985

0.0972

0.1435

0.0002

0.1442

0.1430

WFG1

0.0389

0.0033

0.0451

0.0349

0.0538

0.0029

0.0577

0.0483

0.0882

0.0005

0.0890

0.0870

0.0843

0.0002

0.0848

0.0838

0.1343

0.0000

0.1343

0.1343

WFG2

0.0442

0.0009

0.0458

0.0417

0.0618

0.0012

0.0649

0.0604

0.0907

0.0021

0.0960

0.0879

0.0881

0.0015

0.0903

0.0849

0.1351

0.0011

0.1370

0.1327

WFG3

0.0770

0.0011

0.0787

0.0743

0.1463

0.0013

0.1486

0.1439

0.2467

0.0028

0.2498

0.2426

0.3186

0.0014

0.3224

0.3130

0.4894

0.0027

0.4990

0.4843

WFG4

0.0883

0.0004

0.0893

0.0877

0.1544

0.0002

0.1551

0.1541

0.2744

0.0004

0.2750

0.2736

0.3051

0.0006

0.3063

0.3042

0.4739

0.0015

0.4782

0.4715

WFG5

0.0886

0.0001

0.0889

0.0884

0.1555

0.0007

0.1572

0.1545

0.2744

0.0005

0.2761

0.2738

0.3103

0.0037

0.3198

0.3041

0.4736

0.0017

0.4771

0.4707
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Table D.16: Average, Standard Deviation, Maximum, and Minimum IGD for
the MOEA/DD (continue)

MOEA/DD IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0875

0.0002

0.0878

0.0871

0.1543

0.0006

0.1556

0.1536

0.2737

0.0004

0.2751

0.2732

0.3080

0.0029

0.3156

0.3044

0.4733

0.0020

0.4787

0.4703

WFG7

0.0880

0.0002

0.0888

0.0876

0.1552

0.0007

0.1565

0.1542

0.2740

0.0002

0.2744

0.2735

0.3053

0.0012

0.3094

0.3036

0.4714

0.0013

0.4760

0.4698

WFG8

0.0888

0.0002

0.0892

0.0884

0.1543

0.0002

0.1550

0.1539

0.2736

0.0003

0.2742

0.2732

0.3062

0.0028

0.3123

0.3031

0.4721

0.0016

0.4761

0.4695

WFG9

0.0881

0.0004

0.0888

0.0874

0.1538

0.0002

0.1543

0.1534

0.2732

0.0002

0.2737

0.2728

0.3040

0.0007

0.3067

0.3031

0.4707

0.0009

0.4729

0.4679
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Table D.17: Average, Standard Deviation, Maximum, and Minimum IGD for
the NSGA-III

NSGA-III IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0013

0.0001

0.0016

0.0011

0.0031

0.0003

0.0041

0.0027

0.0074

0.0006

0.0089

0.0065

0.0069

0.0009

0.0100

0.0056

0.0087

0.0010

0.0109

0.0071

DTLZ2

0.0138

0.0004

0.0145

0.0126

0.0111

0.0004

0.0120

0.0106

0.0162

0.0022

0.0221

0.0138

0.0173

0.0014

0.0206

0.0148

0.0216

0.0011

0.0238

0.0198

DTLZ3

0.0144

0.0004

0.0152

0.0138

0.0132

0.0005

0.0140

0.0122

0.0176

0.0017

0.0203

0.0148

0.0178

0.0011

0.0198

0.0159

0.0203

0.0007

0.0223

0.0191

DTLZ4

0.0132

0.0029

0.0177

0.0104

0.0140

0.0035

0.0217

0.0096

0.0206

0.0027

0.0262

0.0156

0.0229

0.0021

0.0267

0.0193

0.0297

0.0009

0.0310

0.0282

DTLZ5

0.0151

0.0005

0.0161

0.0141

0.0126

0.0009

0.0150

0.0109

0.0110

0.0012

0.0136

0.0089

0.0163

0.0027

0.0242

0.0128

0.0140

0.0025

0.0230

0.0112

DTLZ6

0.0041

0.0004

0.0052

0.0035

0.0073

0.0006

0.0081

0.0060

0.0099

0.0019

0.0145

0.0070

0.0152

0.0044

0.0230

0.0079

0.0176

0.0050

0.0284

0.0085
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Table D.17: Average, Standard Deviation, Maximum, and Minimum IGD for
the NSGA-III (continue)

NSGA-III IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.0980

0.0004

0.0987

0.0969

0.1318

0.0010

0.1338

0.1300

0.2221

0.0008

0.2233

0.2204

0.0930

0.0003

0.0937

0.0925

0.1385

0.0004

0.1394

0.1379

WFG1

0.0394

0.0035

0.0474

0.0350

0.0514

0.0026

0.0563

0.0476

0.0836

0.0028

0.0880

0.0758

0.0814

0.0020

0.0833

0.0765

0.1328

0.0012

0.1341

0.1309

WFG2

0.0439

0.0009

0.0460

0.0421

0.0589

0.0013

0.0606

0.0554

0.0877

0.0010

0.0893

0.0854

0.0843

0.0009

0.0861

0.0823

0.1332

0.0006

0.1343

0.1316

WFG3

0.0736

0.0007

0.0752

0.0726

0.1400

0.0004

0.1410

0.1393

0.2451

0.0012

0.2484

0.2431

0.3169

0.0015

0.3205

0.3131

0.4882

0.0018

0.4911

0.4854

WFG4

0.0878

0.0001

0.0880

0.0877

0.1542

0.0002

0.1550

0.1539

0.2743

0.0002

0.2748

0.2739

0.3049

0.0002

0.3054

0.3045

0.4725

0.0005

0.4737

0.4715

WFG5

0.0886

0.0001

0.0888

0.0884

0.1543

0.0001

0.1546

0.1540

0.2739

0.0002

0.2741

0.2734

0.3047

0.0004

0.3057

0.3042

0.4711

0.0005

0.4725

0.4696
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Table D.17: Average, Standard Deviation, Maximum, and Minimum IGD for
the NSGA-III (continue)

NSGA-III IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0875

0.0001

0.0877

0.0872

0.1536

0.0001

0.1538

0.1534

0.2732

0.0002

0.2735

0.2728

0.3045

0.0005

0.3058

0.3036

0.4713

0.0006

0.4723

0.4702

WFG7

0.0879

0.0001

0.0882

0.0878

0.1543

0.0002

0.1552

0.1539

0.2739

0.0002

0.2741

0.2736

0.3041

0.0003

0.3051

0.3036

0.4706

0.0005

0.4715

0.4698

WFG8

0.0888

0.0001

0.0890

0.0885

0.1540

0.0001

0.1544

0.1538

0.2736

0.0002

0.2745

0.2733

0.3038

0.0003

0.3046

0.3035

0.4706

0.0005

0.4715

0.4699

WFG9

0.0887

0.0002

0.0893

0.0883

0.1535

0.0002

0.1539

0.1532

0.2731

0.0002

0.2734

0.2727

0.3040

0.0004

0.3049

0.3035

0.4707

0.0005

0.4715

0.4695
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Table D.18: Average, Standard Deviation, Maximum, and Minimum IGD for
the PMGPSOR

PMGPSOR IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0033

0.0002

0.0039

0.0030

0.0076

0.0004

0.0083

0.0068

0.0121

0.0009

0.0136

0.0100

0.0112

0.0008

0.0126

0.0098

0.0121

0.0013

0.0147

0.0094

DTLZ2

0.0047

0.0002

0.0051

0.0045

0.0084

0.0002

0.0087

0.0080

0.0139

0.0003

0.0149

0.0135

0.0145

0.0003

0.0150

0.0140

0.0202

0.0004

0.0210

0.0195

DTLZ3

0.0043

0.0002

0.0048

0.0038

0.0076

0.0002

0.0080

0.0073

0.0136

0.0003

0.0142

0.0129

0.0151

0.0003

0.0158

0.0144

0.0211

0.0003

0.0216

0.0206

DTLZ4

0.0105

0.0006

0.0120

0.0095

0.0235

0.0006

0.0244

0.0219

0.0289

0.0001

0.0292

0.0287

0.0260

0.0001

0.0263

0.0258

0.0279

0.0001

0.0282

0.0277

DTLZ5

0.0048

0.0005

0.0064

0.0040

0.0060

0.0006

0.0070

0.0046

0.0064

0.0005

0.0076

0.0054

0.0070

0.0005

0.0080

0.0062

0.0073

0.0006

0.0089

0.0063

DTLZ6

0.0015

0.0001

0.0019

0.0013

0.0039

0.0005

0.0048

0.0030

0.0052

0.0006

0.0065

0.0043

0.0063

0.0006

0.0079

0.0051

0.0070

0.0007

0.0078

0.0057
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Table D.18: Average, Standard Deviation, Maximum, and Minimum IGD for
the PMGPSOR (continue)

PMGPSOR IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.0968

0.0004

0.0979

0.0963

0.1306

0.0003

0.1310

0.1300

0.2240

0.0002

0.2244

0.2235

0.0922

0.0001

0.0924

0.0921

0.1374

0.0001

0.1376

0.1372

WFG1

0.0495

0.0002

0.0502

0.0493

0.0612

0.0001

0.0615

0.0609

0.0879

0.0001

0.0882

0.0877

0.0843

0.0001

0.0846

0.0841

0.1336

0.0001

0.1338

0.1334

WFG2

0.0439

0.0004

0.0446

0.0429

0.0574

0.0002

0.0578

0.0568

0.0871

0.0002

0.0874

0.0866

0.0839

0.0002

0.0843

0.0834

0.1334

0.0002

0.1337

0.1331

WFG3

0.0725

0.0003

0.0730

0.0720

0.1396

0.0002

0.1398

0.1392

0.2429

0.0001

0.2431

0.2428

0.3117

0.0001

0.3120

0.3115

0.4844

0.0001

0.4846

0.4843

WFG4

0.0882

0.0002

0.0885

0.0879

0.1558

0.0002

0.1562

0.1553

0.2780

0.0002

0.2787

0.2776

0.3086

0.0003

0.3093

0.3083

0.4763

0.0003

0.4768

0.4758

WFG5

0.0871

0.0002

0.0875

0.0868

0.1537

0.0001

0.1540

0.1534

0.2737

0.0001

0.2740

0.2734

0.3037

0.0002

0.3042

0.3034

0.4697

0.0002

0.4702

0.4693
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Table D.18: Average, Standard Deviation, Maximum, and Minimum IGD for
the PMGPSOR (continue)

PMGPSOR IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0875

0.0002

0.0879

0.0872

0.1551

0.0001

0.1554

0.1548

0.2756

0.0001

0.2759

0.2754

0.3057

0.0001

0.3059

0.3055

0.4729

0.0002

0.4734

0.4725

WFG7

0.0884

0.0002

0.0886

0.0881

0.1565

0.0002

0.1568

0.1561

0.2774

0.0001

0.2779

0.2772

0.3073

0.0002

0.3077

0.3068

0.4727

0.0003

0.4733

0.4722

WFG8

0.0879

0.0003

0.0885

0.0873

0.1558

0.0003

0.1563

0.1552

0.2765

0.0002

0.2769

0.2761

0.3062

0.0002

0.3065

0.3059

0.4734

0.0002

0.4739

0.4728

WFG9

0.0868

0.0002

0.0871

0.0864

0.1533

0.0001

0.1536

0.1531

0.2729

0.0001

0.2731

0.2727

0.3030

0.0001

0.3033

0.3028

0.4674

0.0002

0.4678

0.4670
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Table D.19: Average, Standard Deviation, Maximum, and Minimum IGD for
the PMGPSORI

PMGPSORI IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0033

0.0002

0.0039

0.0029

0.0076

0.0003

0.0083

0.0068

0.0123

0.0008

0.0136

0.0100

0.0113

0.0008

0.0128

0.0093

0.0120

0.0011

0.0147

0.0094

DTLZ2

0.0047

0.0002

0.0051

0.0044

0.0084

0.0002

0.0090

0.0080

0.0139

0.0003

0.0149

0.0133

0.0145

0.0003

0.0151

0.0140

0.0202

0.0004

0.0214

0.0195

DTLZ3

0.0043

0.0002

0.0048

0.0038

0.0077

0.0002

0.0081

0.0073

0.0136

0.0003

0.0144

0.0129

0.0150

0.0003

0.0158

0.0143

0.0211

0.0003

0.0218

0.0202

DTLZ4

0.0106

0.0006

0.0120

0.0095

0.0234

0.0006

0.0245

0.0219

0.0290

0.0002

0.0294

0.0287

0.0260

0.0001

0.0263

0.0258

0.0279

0.0001

0.0283

0.0276

DTLZ5

0.0048

0.0005

0.0064

0.0039

0.0060

0.0006

0.0072

0.0046

0.0063

0.0005

0.0076

0.0052

0.0069

0.0005

0.0080

0.0060

0.0073

0.0007

0.0089

0.0055

DTLZ6

0.0015

0.0001

0.0019

0.0012

0.0038

0.0004

0.0048

0.0030

0.0051

0.0006

0.0065

0.0040

0.0063

0.0006

0.0079

0.0047

0.0069

0.0007

0.0081

0.0052
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Table D.19: Average, Standard Deviation, Maximum, and Minimum IGD for
the PMGPSORI (continue)

PMGPSORI IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.0968

0.0004

0.0986

0.0959

0.1305

0.0003

0.1312

0.1296

0.2240

0.0002

0.2244

0.2233

0.0922

0.0001

0.0924

0.0920

0.1373

0.0001

0.1376

0.1370

WFG1

0.0495

0.0002

0.0502

0.0493

0.0613

0.0002

0.0617

0.0609

0.0879

0.0001

0.0883

0.0876

0.0843

0.0001

0.0846

0.0841

0.1336

0.0001

0.1338

0.1333

WFG2

0.0439

0.0004

0.0448

0.0428

0.0573

0.0002

0.0578

0.0567

0.0871

0.0002

0.0875

0.0866

0.0839

0.0002

0.0843

0.0834

0.1335

0.0002

0.1339

0.1331

WFG3

0.0724

0.0002

0.0730

0.0720

0.1396

0.0002

0.1399

0.1392

0.2429

0.0001

0.2431

0.2428

0.3117

0.0001

0.3120

0.3114

0.4844

0.0001

0.4846

0.4843

WFG4

0.0882

0.0001

0.0885

0.0878

0.1558

0.0002

0.1562

0.1553

0.2780

0.0002

0.2787

0.2776

0.3087

0.0002

0.3093

0.3082

0.4763

0.0003

0.4769

0.4758

WFG5

0.0871

0.0002

0.0875

0.0868

0.1538

0.0001

0.1541

0.1534

0.2737

0.0001

0.2740

0.2734

0.3038

0.0002

0.3042

0.3034

0.4696

0.0002

0.4702

0.4692
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Table D.19: Average, Standard Deviation, Maximum, and Minimum IGD for
the PMGPSORI (continue)

PMGPSORI IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0875

0.0002

0.0880

0.0871

0.1551

0.0001

0.1554

0.1548

0.2756

0.0001

0.2759

0.2754

0.3057

0.0001

0.3060

0.3054

0.4729

0.0002

0.4734

0.4722

WFG7

0.0884

0.0002

0.0888

0.0881

0.1565

0.0002

0.1568

0.1561

0.2775

0.0002

0.2779

0.2772

0.3073

0.0002

0.3077

0.3068

0.4727

0.0002

0.4733

0.4722

WFG8

0.0879

0.0003

0.0885

0.0871

0.1557

0.0003

0.1563

0.1552

0.2765

0.0002

0.2770

0.2760

0.3062

0.0002

0.3065

0.3059

0.4734

0.0002

0.4739

0.4728

WFG9

0.0867

0.0002

0.0871

0.0863

0.1533

0.0001

0.1536

0.1529

0.2729

0.0001

0.2731

0.2726

0.3030

0.0001

0.3033

0.3028

0.4673

0.0002

0.4678

0.4667
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Table D.20: Average, Standard Deviation, Maximum, and Minimum IGD for
the PMGPSOSTD

PMGPSOSTD IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0033

0.0002

0.0039

0.0028

0.0075

0.0003

0.0083

0.0068

0.0122

0.0010

0.0138

0.0077

0.0111

0.0010

0.0128

0.0063

0.0119

0.0012

0.0147

0.0089

DTLZ2

0.0047

0.0002

0.0052

0.0044

0.0084

0.0002

0.0090

0.0080

0.0140

0.0003

0.0149

0.0133

0.0145

0.0003

0.0153

0.0140

0.0202

0.0004

0.0214

0.0195

DTLZ3

0.0043

0.0002

0.0048

0.0038

0.0077

0.0002

0.0084

0.0073

0.0136

0.0003

0.0144

0.0129

0.0150

0.0003

0.0158

0.0143

0.0211

0.0003

0.0218

0.0202

DTLZ4

0.0107

0.0006

0.0124

0.0095

0.0234

0.0007

0.0245

0.0211

0.0289

0.0002

0.0294

0.0286

0.0260

0.0001

0.0263

0.0257

0.0279

0.0002

0.0283

0.0274

DTLZ5

0.0047

0.0005

0.0064

0.0039

0.0060

0.0006

0.0075

0.0046

0.0064

0.0005

0.0076

0.0049

0.0069

0.0005

0.0080

0.0058

0.0072

0.0006

0.0089

0.0055

DTLZ6

0.0015

0.0002

0.0019

0.0010

0.0038

0.0004

0.0048

0.0030

0.0051

0.0006

0.0065

0.0040

0.0062

0.0006

0.0079

0.0047

0.0069

0.0008

0.0091

0.0051
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Table D.20: Average, Standard Deviation, Maximum, and Minimum IGD for
the PMGPSOSTD (continue)

PMGPSOSTD IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.0969

0.0004

0.0986

0.0959

0.1305

0.0003

0.1317

0.1296

0.2240

0.0002

0.2245

0.2233

0.0922

0.0001

0.0925

0.0920

0.1374

0.0001

0.1376

0.1369

WFG1

0.0495

0.0002

0.0503

0.0491

0.0613

0.0002

0.0617

0.0609

0.0879

0.0001

0.0883

0.0876

0.0843

0.0001

0.0848

0.0840

0.1336

0.0001

0.1339

0.1333

WFG2

0.0438

0.0004

0.0448

0.0426

0.0573

0.0002

0.0578

0.0567

0.0871

0.0002

0.0875

0.0866

0.0839

0.0002

0.0843

0.0834

0.1335

0.0002

0.1339

0.1331

WFG3

0.0724

0.0002

0.0730

0.0720

0.1396

0.0001

0.1399

0.1392

0.2430

0.0001

0.2431

0.2427

0.3117

0.0001

0.3120

0.3114

0.4844

0.0001

0.4846

0.4843

WFG4

0.0882

0.0001

0.0885

0.0878

0.1558

0.0002

0.1562

0.1553

0.2780

0.0002

0.2787

0.2776

0.3086

0.0002

0.3093

0.3082

0.4763

0.0003

0.4769

0.4757

WFG5

0.0870

0.0002

0.0875

0.0865

0.1538

0.0001

0.1541

0.1534

0.2737

0.0001

0.2740

0.2733

0.3038

0.0002

0.3042

0.3034

0.4696

0.0002

0.4702

0.4691
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Table D.20: Average, Standard Deviation, Maximum, and Minimum IGD for
the PMGPSOSTD (continue)

PMGPSOSTD IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0875

0.0002

0.0880

0.0871

0.1551

0.0001

0.1554

0.1547

0.2756

0.0001

0.2759

0.2753

0.3057

0.0001

0.3060

0.3054

0.4729

0.0002

0.4734

0.4722

WFG7

0.0884

0.0002

0.0889

0.0881

0.1565

0.0002

0.1568

0.1561

0.2775

0.0002

0.2779

0.2771

0.3072

0.0002

0.3077

0.3068

0.4727

0.0002

0.4733

0.4722

WFG8

0.0879

0.0003

0.0889

0.0871

0.1557

0.0003

0.1563

0.1550

0.2765

0.0002

0.2770

0.2760

0.3063

0.0002

0.3067

0.3058

0.4735

0.0002

0.4740

0.4728

WFG9

0.0867

0.0002

0.0871

0.0863

0.1533

0.0001

0.1536

0.1529

0.2729

0.0001

0.2731

0.2726

0.3030

0.0001

0.3033

0.3028

0.4673

0.0002

0.4678

0.4667



Appendix E

Performance Measure Values for
Chapter 5

This appendix provides the average, standard deviation, maximum, and min-
imum HV and IGD performance measure values for each algorithm on each
problem instance for Chapter 5. Section E.1 lists the HV performance mea-
sure tables; that is, tables E.1 to E.10. Section E.2 lists the IGD performance
measure tables; that is, tables E.11 to E.20. Note that the tables are listed
alphabetically according to algorithm name. Also, note that some of the al-
gorithms had no valid solutions left over after outlier removal; that is, no
solutions in any of the independent samples for that specific problem. In these
rare cases no performance measure value could be calculated; indicated with
“-”.

E.1 Hypervolume Values
The average, standard deviation, maximum, and minimum HV performance
measure values for each algorithm on each problem instance are listed in ta-
bles E.1 to E.10. Note that these performance measure values are associated
with Chapter 5.
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Table E.1: Average, Standard Deviation, Maximum, and Minimum HV for the
CDAS-SMPSO algorithm

CDAS-SMPSO HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.0941

0.0486

1.1766

0.9934

1.2817

0.0827

1.4209

1.0753

1.4167

0.2052

1.8138

0.9296

1.7194

0.4640

2.4583

0.6545

3.3188

0.4119

3.9321

2.2346

DTLZ2

1.2243

0.0511

1.2845

1.0922

1.4855

0.0440

1.5472

1.3863

1.9212

0.0660

2.0267

1.8188

2.2898

0.0977

2.4558

2.0307

3.0435

0.3960

3.7286

1.6853

DTLZ3

1.2189

0.1106

1.3155

0.8201

1.3641

0.0659

1.6096

1.2178

1.7461

0.0926

1.8919

1.4001

2.2471

0.2288

2.5491

1.6172

3.4356

0.3836

3.7275

2.1305

DTLZ4

1.0878

0.1719

1.2851

0.7033

1.4515

0.1227

1.5678

1.1385

1.7830

0.2550

2.0827

1.0120

1.9503

0.3885

2.5701

1.1566

2.7113

0.5150

3.8472

1.6532

DTLZ5

1.0250

0.0591

1.1664

0.9388

1.2324

0.0829

1.4190

1.1079

1.4294

0.1732

1.7924

1.1511

1.3960

0.1087

1.7150

1.2393

1.8080

0.3269

2.5238

1.1624

DTLZ6

0.9103

0.0895

1.0760

0.7181

1.1034

0.1115

1.3248

0.7987

1.5296

0.1693

1.9013

1.2924

1.9142

0.1512

2.2552

1.6357

3.0994

0.4337

3.9437

2.1727
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Table E.1: Average, Standard Deviation, Maximum, and Minimum HV for the
CDAS-SMPSO algorithm (continue)

CDAS-SMPSO HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.0973

0.1143

0.3913

0.0141

0.0363

0.0660

0.2787

0.0004

0.0024

0.0078

0.0422

0.0000

0.0017

0.0071

0.0391

0.0000

0.0010

0.0033

0.0150

0.0000

WFG1

1.0194

0.0526

1.0606

0.8621

1.1905

0.0397

1.2460

1.0688

0.5574

0.1280

0.8675

0.4181

0.2986

0.1523

0.6118

0.0894

0.0166

0.0071

0.0222

0.0062

WFG2

0.9680

0.0310

1.0401

0.8805

1.0257

0.0445

1.0976

0.9262

0.7053

0.1129

0.8923

0.4078

0.4518

0.2085

0.8964

0.0619

1.7194

0.6063

2.6557

0.2073

WFG3

0.7521

0.0213

0.7988

0.7050

0.7549

0.0191

0.7923

0.7064

0.6782

0.0384

0.7645

0.5931

0.7866

0.0528

0.8858

0.6842

1.8335

0.1254

2.0427

1.5362

WFG4

0.7458

0.0153

0.7735

0.7185

0.9165

0.0417

1.0156

0.8302

1.0255

0.0351

1.1050

0.9485

1.0900

0.1035

1.3017

0.8384

1.6461

0.2800

1.9732

0.7266

WFG5

0.7369

0.0202

0.7763

0.7079

0.8234

0.0330

0.8916

0.7678

0.8922

0.0454

0.9949

0.7871

0.7547

0.0765

0.9142

0.5851

0.6917

0.2511

1.1190

0.2417
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Table E.1: Average, Standard Deviation, Maximum, and Minimum HV for the
CDAS-SMPSO algorithm (continue)

CDAS-SMPSO HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.6739

0.0231

0.7007

0.6067

0.7361

0.0292

0.8116

0.6841

0.7455

0.0392

0.8297

0.6663

0.7234

0.0691

0.9039

0.5430

0.9328

0.2262

1.3526

0.2910

WFG7

0.7783

0.0118

0.7992

0.7496

0.8453

0.0309

0.8953

0.7837

0.8506

0.0326

0.9237

0.7883

0.8201

0.0769

0.9620

0.6800

1.3267

0.1734

1.5891

0.9408

WFG8

0.7522

0.0167

0.7837

0.7156

0.7547

0.0378

0.8037

0.6046

0.7900

0.0345

0.8506

0.7190

0.7531

0.0694

0.8715

0.6007

1.2953

0.1447

1.5829

0.9480

WFG9

0.8125

0.0295

0.8782

0.7442

0.8365

0.0306

0.8991

0.7713

0.8896

0.0731

0.9976

0.6241

0.7665

0.2133

1.0648

0.2041

1.2477

0.2562

1.6825

0.2899
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Table E.2: Average, Standard Deviation, Maximum, and Minimum HV for the
KnEA

KnEA HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.3204

0.0013

1.3226

1.3167

-

-

-

-

2.0657

0.0394

2.1084

1.8940

2.4574

0.0781

2.5722

2.2504

3.9287

0.1549

4.1215

3.6251

DTLZ2

1.2694

0.0056

1.2796

1.2573

1.5341

0.0755

1.5992

1.3120

1.5939

0.2512

1.9268

1.0863

2.1676

0.2427

2.5194

1.6222

2.2516

0.6605

3.5368

1.5373

DTLZ3

1.3118

0.0112

1.3190

1.2542

1.4498

0.1473

1.5941

1.0769

1.8570

0.2269

2.0599

1.2762

2.2247

0.2989

2.5266

1.0583

3.7817

0.3399

4.1265

2.8645

DTLZ4

1.2456

0.0578

1.2839

0.9872

1.2123

0.2203

1.5410

0.9473

1.3460

0.0424

1.4051

1.2364

1.6821

0.0430

1.7442

1.5277

2.4787

0.0726

2.5925

2.3423

DTLZ5

1.0110

0.1263

1.1251

0.8004

1.0012

0.0984

1.4249

0.8591

1.0994

0.0697

1.2030

0.9409

1.0426

0.1491

1.6182

0.7472

1.4565

0.3465

2.5582

1.0598

DTLZ6

1.0190

0.0173

1.0429

0.9885

0.6180

0.2074

1.2334

0.4179

0.6955

0.2049

1.1712

0.4935

0.9507

0.1928

1.5353

0.7375

1.5787

0.4509

2.6329

1.0292
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Table E.2: Average, Standard Deviation, Maximum, and Minimum HV for the
KnEA (continue)

KnEA HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.3713

0.0395

0.4032

0.1714

0.8387

0.0400

0.9303

0.7738

0.9364

0.1736

1.2319

0.4949

0.5275

0.1605

0.9730

0.2984

0.1051

0.0580

0.2435

0.0110

WFG1

0.8071

0.0521

1.0353

0.7283

0.9341

0.1881

1.2399

0.6636

0.6571

0.1728

0.9954

0.4340

0.6027

0.1400

0.8966

0.3476

0.0683

0.0194

0.1046

0.0401

WFG2

0.9421

0.0607

1.0114

0.8456

0.9838

0.0725

1.1255

0.8254

0.6932

0.0909

0.9428

0.5068

0.6601

0.1491

0.9745

0.3481

1.8837

0.5389

2.7972

0.8076

WFG3

0.7028

0.0291

0.7461

0.6398

0.6161

0.0365

0.6849

0.5425

0.4548

0.0529

0.5628

0.3469

0.3814

0.1094

0.6594

0.2150

0.4419

0.4225

1.5560

0.0041

WFG4

0.7835

0.0140

0.8062

0.7328

1.0124

0.0362

1.0794

0.9414

0.7814

0.1239

1.0050

0.4321

0.9472

0.1284

1.1623

0.6454

0.7251

0.2874

1.3178

0.2606

WFG5

0.7990

0.0135

0.8372

0.7799

0.9866

0.0399

1.0499

0.8860

0.5221

0.1937

0.8459

0.2011

0.8136

0.1543

1.0764

0.4489

0.6276

0.2713

1.1634

0.1513
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Table E.2: Average, Standard Deviation, Maximum, and Minimum HV for the
KnEA (continue)

KnEA HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.7152

0.0172

0.7639

0.6907

0.8661

0.0385

0.9322

0.7562

0.4991

0.1533

0.8058

0.1649

0.7077

0.1367

1.0005

0.4762

0.6349

0.2831

1.3844

0.2280

WFG7

0.7964

0.0149

0.8221

0.7664

0.9727

0.0381

1.0508

0.9009

0.6043

0.0937

0.7905

0.4255

0.6263

0.1406

0.9627

0.3578

0.3819

0.2780

1.3023

0.0692

WFG8

0.7970

0.0155

0.8326

0.7506

0.8532

0.0654

0.9890

0.6932

0.5060

0.1240

0.7001

0.2713

0.5224

0.1733

0.8768

0.2178

0.5932

0.4385

1.3684

0.0615

WFG9

0.7779

0.0258

0.8529

0.7265

0.8666

0.0486

1.0154

0.7824

0.6273

0.1078

0.8998

0.4732

0.6883

0.1619

1.0845

0.3372

0.6861

0.4042

1.5077

0.1022
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Table E.3: Average, Standard Deviation, Maximum, and Minimum HV for the
KnMGPSOR

KnMGPSOR HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.2986

0.0063

1.3144

1.2872

1.4954

0.0163

1.5208

1.4537

1.9681

0.0277

2.0173

1.8934

2.2516

0.0442

2.3508

2.1706

3.7483

0.0609

3.8895

3.6244

DTLZ2

1.3036

0.0012

1.3055

1.3002

1.5672

0.0060

1.5823

1.5540

2.0450

0.0157

2.0719

2.0065

2.3813

0.0382

2.4396

2.3158

3.3631

0.1339

3.5903

3.1155

DTLZ3

1.2895

0.0051

1.2980

1.2786

1.4683

0.0215

1.5175

1.4300

1.8577

0.0388

1.9368

1.7678

2.1216

0.0918

2.2738

1.9358

3.4617

0.1197

3.7277

3.2303

DTLZ4

1.1547

0.1643

1.3119

0.9590

1.5025

0.1253

1.5872

1.1702

1.4499

0.0956

1.5243

1.0169

1.6694

0.0679

1.7482

1.4702

2.5645

0.0450

2.6543

2.4530

DTLZ5

1.1918

0.0013

1.1935

1.1887

1.4489

0.0034

1.4558

1.4426

1.8472

0.0072

1.8605

1.8342

1.9361

0.0168

1.9611

1.9050

2.6921

0.0390

2.7703

2.6177

DTLZ6

0.7637

0.0079

0.7802

0.7527

1.0623

0.0125

1.0826

1.0340

1.3049

0.0284

1.3539

1.2420

1.3415

0.0712

1.5230

1.2106

1.8013

0.1631

2.0673

1.4164
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Table E.3: Average, Standard Deviation, Maximum, and Minimum HV for the
KnMGPSOR (continue)

KnMGPSOR HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

1.1215

0.0551

1.3000

0.9748

1.3200

0.0263

1.3917

1.2808

1.2956

0.0665

1.4305

1.1840

1.0280

0.1224

1.2530

0.8371

1.2287

0.2104

1.7945

0.7448

WFG1

0.5108

0.0227

0.5524

0.4624

0.5300

0.0345

0.6045

0.4641

0.6787

0.0682

0.8526

0.5314

0.6570

0.1616

1.0481

0.4841

3.3568

0.6341

3.7126

0.1781

WFG2

0.8410

0.0369

0.8648

0.6545

0.9750

0.0130

1.0031

0.9516

1.2514

0.0204

1.2993

1.2060

1.4601

0.0199

1.4990

1.4145

2.4015

0.0280

2.4613

2.3514

WFG3

0.7827

0.0100

0.8015

0.7616

0.8999

0.0122

0.9272

0.8747

1.1150

0.0159

1.1513

1.0780

1.2656

0.0320

1.3249

1.1935

2.1150

0.0590

2.2094

1.9400

WFG4

0.7703

0.0183

0.8081

0.7290

0.8079

0.0168

0.8360

0.7740

1.0513

0.0210

1.0913

0.9957

1.1847

0.0315

1.2338

1.1088

1.9276

0.0621

2.0496

1.8007

WFG5

0.6871

0.0458

0.7789

0.5870

0.6781

0.0154

0.7126

0.6486

0.7510

0.0265

0.8044

0.7075

0.7528

0.0490

0.8942

0.6543

1.3473

0.0861

1.5216

1.2002
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Table E.3: Average, Standard Deviation, Maximum, and Minimum HV for the
KnMGPSOR (continue)

KnMGPSOR HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.6886

0.0137

0.7077

0.6461

0.7168

0.0117

0.7406

0.6868

0.8210

0.0192

0.8532

0.7468

0.9036

0.0337

0.9666

0.8151

1.4517

0.0417

1.5624

1.3779

WFG7

0.5574

0.0189

0.5904

0.5081

0.6141

0.0169

0.6614

0.5873

0.7329

0.0187

0.7747

0.6937

0.8145

0.0299

0.8825

0.7558

1.2609

0.0472

1.3588

1.1158

WFG8

0.5235

0.0065

0.5356

0.5091

0.5802

0.0133

0.6149

0.5539

0.7004

0.0172

0.7301

0.6611

0.7993

0.0261

0.8591

0.7414

1.2701

0.0443

1.3576

1.1670

WFG9

0.9509

0.0140

0.9756

0.9163

0.9635

0.0228

1.0248

0.9239

1.1211

0.0333

1.2020

1.0439

1.2420

0.0636

1.3951

1.1013

1.9128

0.0883

2.1089

1.7583
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Table E.4: Average, Standard Deviation, Maximum, and Minimum HV for the
KnMGPSORI

KnMGPSORI HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.3003

0.0064

1.3202

1.2872

1.4947

0.0138

1.5208

1.4537

1.9631

0.0258

2.0173

1.8901

2.2506

0.0477

2.3598

2.1203

3.7456

0.0593

3.8895

3.6244

DTLZ2

1.3036

0.0012

1.3056

1.3001

1.5668

0.0065

1.5823

1.5505

2.0486

0.0158

2.0792

2.0065

2.3862

0.0398

2.4459

2.2424

3.3825

0.1236

3.6089

3.1155

DTLZ3

1.2905

0.0053

1.3083

1.2786

1.4672

0.0188

1.5175

1.4300

1.8581

0.0423

1.9626

1.7470

2.1242

0.0930

2.3109

1.8980

3.4407

0.1293

3.7277

3.1399

DTLZ4

1.1448

0.1654

1.3119

0.9590

1.5048

0.1092

1.5872

1.1702

1.4600

0.0718

1.5243

1.0169

1.6737

0.0678

1.7547

1.4277

2.5644

0.0430

2.6543

2.4530

DTLZ5

1.1919

0.0011

1.1937

1.1887

1.4485

0.0033

1.4558

1.4418

1.8482

0.0072

1.8619

1.8342

1.9328

0.0174

1.9656

1.9009

2.6913

0.0408

2.7947

2.6177

DTLZ6

0.7631

0.0077

0.7802

0.7489

1.0650

0.0118

1.0864

1.0340

1.3069

0.0290

1.3601

1.2354

1.3406

0.0636

1.5230

1.2106

1.8168

0.1441

2.0673

1.4164
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Table E.4: Average, Standard Deviation, Maximum, and Minimum HV for the
KnMGPSORI (continue)

KnMGPSORI HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

1.1186

0.0577

1.3000

0.9748

1.3235

0.0309

1.3941

1.2525

1.2890

0.0583

1.4305

1.1679

1.0040

0.1052

1.2530

0.8318

1.2130

0.2001

1.7945

0.7448

WFG1

0.5131

0.0227

0.5714

0.4624

0.5371

0.0386

0.6820

0.4641

0.6731

0.0667

0.8526

0.5314

0.6458

0.1448

1.0481

0.4393

3.2994

0.7268

3.8296

0.1570

WFG2

0.8452

0.0267

0.8648

0.6545

0.9744

0.0129

1.0031

0.9499

1.2549

0.0181

1.2993

1.2060

1.4574

0.0485

1.5176

1.1422

2.4014

0.0311

2.4613

2.3021

WFG3

0.7824

0.0115

0.8074

0.7529

0.8987

0.0109

0.9272

0.8747

1.1133

0.0158

1.1513

1.0780

1.2681

0.0328

1.3249

1.1916

2.1252

0.0673

2.2498

1.9400

WFG4

0.7709

0.0192

0.8142

0.7290

0.8046

0.0191

0.8360

0.7426

1.0475

0.0221

1.0913

0.9930

1.1790

0.0353

1.2523

1.0893

1.9302

0.0578

2.0496

1.8007

WFG5

0.6810

0.0441

0.7789

0.5870

0.6783

0.0219

0.7326

0.6191

0.7447

0.0309

0.8119

0.6847

0.7476

0.0449

0.8942

0.6543

1.3314

0.0976

1.5511

1.1515
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Table E.4: Average, Standard Deviation, Maximum, and Minimum HV for the
KnMGPSORI (continue)

KnMGPSORI HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.6897

0.0135

0.7085

0.6461

0.7144

0.0142

0.7595

0.6739

0.8218

0.0185

0.8565

0.7468

0.9066

0.0332

0.9666

0.8151

1.4480

0.0460

1.5624

1.3496

WFG7

0.5582

0.0169

0.5906

0.5081

0.6106

0.0174

0.6614

0.5819

0.7364

0.0216

0.7945

0.6749

0.8124

0.0265

0.8825

0.7558

1.2711

0.0446

1.3646

1.1158

WFG8

0.5230

0.0078

0.5412

0.5086

0.5817

0.0141

0.6149

0.5539

0.7018

0.0177

0.7410

0.6554

0.8080

0.0243

0.8631

0.7414

1.2635

0.0433

1.3576

1.1670

WFG9

0.9514

0.0129

0.9756

0.9163

0.9659

0.0215

1.0316

0.9239

1.1183

0.0318

1.2020

1.0439

1.2433

0.0688

1.3951

1.0981

1.9035

0.0802

2.1224

1.7583
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Table E.5: Average, Standard Deviation, Maximum, and Minimum HV for the
KnMGPSOSTD

KnMGPSOSTD HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.3067

0.0118

1.3309

1.2872

1.4985

0.0150

1.5423

1.4537

1.9725

0.0355

2.1074

1.8901

2.2576

0.0535

2.4510

2.1203

3.7469

0.0701

4.0730

3.5366

DTLZ2

1.3034

0.0017

1.3057

1.2968

1.5668

0.0067

1.5823

1.5505

2.0487

0.0169

2.0792

1.9959

2.3857

0.0432

2.4584

2.2424

3.3683

0.1312

3.6089

2.9870

DTLZ3

1.2949

0.0126

1.3306

1.2348

1.4731

0.0216

1.5496

1.4300

1.8679

0.0444

1.9701

1.7470

2.1323

0.0995

2.3595

1.8980

3.4511

0.1400

3.7548

3.1072

DTLZ4

1.1517

0.1636

1.3119

0.9590

1.4935

0.1104

1.5872

1.1702

1.4852

0.0776

1.8693

1.0169

1.6980

0.0677

1.7951

1.4277

2.5892

0.0514

2.6792

2.4530

DTLZ5

1.1912

0.0017

1.1937

1.1848

1.4485

0.0035

1.4570

1.4361

1.8508

0.0085

1.8713

1.8342

1.9362

0.0185

1.9739

1.9000

2.6923

0.0442

2.8190

2.6168

DTLZ6

0.7601

0.0093

0.7825

0.7355

1.0651

0.0124

1.0925

1.0332

1.3113

0.0289

1.3749

1.2354

1.3511

0.0637

1.5230

1.2106

1.8488

0.1484

2.1125

1.4164
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Table E.5: Average, Standard Deviation, Maximum, and Minimum HV for the
KnMGPSOSTD (continue)

KnMGPSOSTD HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

1.1156

0.0598

1.3000

0.9748

1.3316

0.0382

1.4279

1.2505

1.3224

0.0815

1.5195

1.1679

1.0999

0.1795

1.5625

0.8318

1.4694

0.4657

2.7198

0.7448

WFG1

0.4993

0.0291

0.5714

0.4167

0.5189

0.0466

0.6820

0.3783

0.6347

0.0862

0.8526

0.4698

0.6015

0.1373

1.0481

0.3962

3.0150

1.1086

3.8296

0.0733

WFG2

0.8435

0.0223

0.8648

0.6545

0.9701

0.0156

1.0031

0.9317

1.2543

0.0189

1.2993

1.2060

1.4540

0.0540

1.5208

1.1411

2.4032

0.0366

2.4803

2.3021

WFG3

0.7778

0.0136

0.8074

0.7444

0.8933

0.0136

0.9272

0.8396

1.1195

0.0197

1.1776

1.0780

1.2779

0.0376

1.3600

1.1916

2.1193

0.0675

2.2498

1.9400

WFG4

0.7654

0.0236

0.8142

0.6781

0.8016

0.0193

0.8360

0.7426

1.0443

0.0253

1.1014

0.9765

1.1671

0.0384

1.2523

1.0893

1.9223

0.0621

2.0496

1.7606

WFG5

0.6834

0.0503

0.8876

0.5870

0.6810

0.0248

0.7490

0.6191

0.7582

0.0372

0.8583

0.6847

0.7707

0.0538

0.9056

0.6543

1.3673

0.1118

1.6550

1.1515
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Table E.5: Average, Standard Deviation, Maximum, and Minimum HV for the
KnMGPSOSTD (continue)

KnMGPSOSTD HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.6794

0.0210

0.7085

0.6130

0.7071

0.0198

0.7595

0.6506

0.8162

0.0221

0.8565

0.7468

0.9015

0.0351

0.9666

0.8029

1.4419

0.0459

1.5624

1.3426

WFG7

0.5597

0.0166

0.5932

0.5081

0.6132

0.0187

0.6614

0.5682

0.7446

0.0261

0.8130

0.6749

0.8228

0.0365

0.9270

0.7558

1.2698

0.0451

1.3646

1.1158

WFG8

0.5221

0.0077

0.5412

0.5072

0.5820

0.0136

0.6149

0.5534

0.7061

0.0176

0.7444

0.6554

0.8120

0.0292

0.8788

0.7217

1.2675

0.0488

1.3887

1.0895

WFG9

0.9473

0.0148

0.9756

0.8952

0.9675

0.0218

1.0316

0.9239

1.1210

0.0335

1.2129

1.0439

1.2344

0.0648

1.3951

1.0981

1.9081

0.0801

2.1224

1.7583
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Table E.6: Average, Standard Deviation, Maximum, and Minimum HV for the
MGPSOR

MGPSOR HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.2971

0.0043

1.3075

1.2895

1.4956

0.0148

1.5260

1.4509

1.9808

0.0268

2.0172

1.8861

2.2813

0.0409

2.3546

2.1740

3.7539

0.0486

3.8483

3.6676

DTLZ2

1.3040

0.0010

1.3058

1.3015

1.5675

0.0059

1.5763

1.5532

2.0523

0.0135

2.0784

2.0231

2.3965

0.0311

2.4546

2.3131

3.3928

0.1154

3.5980

3.1167

DTLZ3

1.2893

0.0048

1.2978

1.2808

1.4643

0.0128

1.4928

1.4357

1.8550

0.0458

1.9720

1.7737

2.1680

0.0982

2.3192

1.8757

3.5192

0.1587

3.7660

3.2273

DTLZ4

1.1263

0.1609

1.3105

0.9590

1.4886

0.1191

1.5892

1.1702

1.4697

0.1164

1.9672

1.1746

1.6680

0.0549

1.7596

1.4759

2.5076

0.0891

2.6329

2.2881

DTLZ5

1.1926

0.0009

1.1941

1.1907

1.4510

0.0040

1.4577

1.4405

1.8536

0.0050

1.8649

1.8458

1.9391

0.0141

1.9801

1.9168

2.6958

0.0380

2.7976

2.6322

DTLZ6

0.7673

0.0089

0.7862

0.7493

1.0669

0.0121

1.0887

1.0405

1.3260

0.0381

1.3999

1.2560

1.3458

0.0648

1.4486

1.1425

1.9174

0.1358

2.1762

1.5751



APPENDIX E. PERFORMANCE MEASURE VALUES FOR CHAPTER 5 328

Table E.6: Average, Standard Deviation, Maximum, and Minimum HV for the
MGPSOR (continue)

MGPSOR HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

1.1234

0.0578

1.2050

0.9951

1.3239

0.0422

1.3926

1.2255

1.2659

0.0560

1.3542

1.1536

1.0182

0.1470

1.3383

0.7735

1.2965

0.2150

1.8046

0.8764

WFG1

0.5093

0.0196

0.5455

0.4658

0.5429

0.0498

0.7106

0.4517

0.7189

0.1001

0.9894

0.5323

0.7044

0.1770

1.2410

0.4480

3.4177

0.2962

3.8951

2.7277

WFG2

0.8387

0.0377

0.8637

0.6489

0.9687

0.0298

1.0080

0.8334

1.2527

0.0208

1.2888

1.2140

1.4589

0.0209

1.5012

1.4175

2.3887

0.0332

2.4383

2.3154

WFG3

0.7750

0.0157

0.8096

0.7386

0.9000

0.0093

0.9181

0.8780

1.1126

0.0227

1.1490

1.0593

1.2500

0.0322

1.3114

1.1924

2.0973

0.0496

2.1734

2.0121

WFG4

0.7513

0.0218

0.7912

0.7049

0.7861

0.0221

0.8319

0.7449

1.0364

0.0179

1.0815

1.0070

1.1798

0.0338

1.2360

1.1060

1.9556

0.0503

2.0697

1.8731

WFG5

0.7060

0.0413

0.7864

0.6375

0.7089

0.0264

0.7566

0.6497

0.7658

0.0236

0.8115

0.7216

0.7690

0.0357

0.8402

0.6973

1.3268

0.1030

1.5099

1.1170
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Table E.6: Average, Standard Deviation, Maximum, and Minimum HV for the
MGPSOR (continue)

MGPSOR HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.6914

0.0153

0.7139

0.6469

0.7193

0.0178

0.7551

0.6792

0.8243

0.0253

0.8683

0.7730

0.8953

0.0291

0.9507

0.8327

1.4473

0.0429

1.5194

1.3444

WFG7

0.5683

0.0112

0.5876

0.5446

0.6082

0.0107

0.6372

0.5888

0.7320

0.0227

0.8016

0.6820

0.8131

0.0235

0.8617

0.7622

1.2669

0.0429

1.3812

1.1997

WFG8

0.5256

0.0069

0.5407

0.5131

0.5800

0.0130

0.6063

0.5554

0.6983

0.0223

0.7382

0.6545

0.8012

0.0265

0.8477

0.7439

1.2313

0.0482

1.3258

1.1338

WFG9

0.9482

0.0194

0.9862

0.9022

0.9840

0.0316

1.0902

0.9274

1.1378

0.0382

1.2384

1.0713

1.2383

0.0655

1.4074

1.0978

1.9208

0.1013

2.0635

1.7161
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Table E.7: Average, Standard Deviation, Maximum, and Minimum HV for the
MGPSORI

MGPSORI HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.2964

0.0043

1.3087

1.2895

1.4959

0.0142

1.5260

1.4509

1.9793

0.0256

2.0188

1.8861

2.2752

0.0405

2.3546

2.1740

3.7526

0.0500

3.8642

3.6178

DTLZ2

1.3041

0.0011

1.3062

1.3011

1.5674

0.0071

1.5812

1.5485

2.0557

0.0139

2.0784

2.0231

2.4090

0.0326

2.4739

2.3131

3.4094

0.1203

3.6238

3.0735

DTLZ3

1.2892

0.0048

1.2978

1.2765

1.4615

0.0165

1.4998

1.4124

1.8650

0.0487

1.9803

1.7487

2.1586

0.0907

2.3195

1.8757

3.5350

0.1378

3.8767

3.2273

DTLZ4

1.1244

0.1577

1.3114

0.9590

1.4917

0.1166

1.5894

1.1702

1.4636

0.1367

1.9672

1.0378

1.6723

0.0500

1.7596

1.4759

2.5188

0.0769

2.6329

2.2881

DTLZ5

1.1927

0.0008

1.1941

1.1907

1.4503

0.0066

1.4577

1.4087

1.8530

0.0065

1.8666

1.8360

1.9403

0.0128

1.9801

1.9168

2.7012

0.0368

2.7976

2.6322

DTLZ6

0.7665

0.0084

0.7864

0.7493

1.0664

0.0116

1.0960

1.0405

1.3216

0.0353

1.3999

1.2336

1.3554

0.0602

1.4771

1.1425

1.8985

0.1311

2.1762

1.5751
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Table E.7: Average, Standard Deviation, Maximum, and Minimum HV for the
MGPSORI (continue)

MGPSORI HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

1.1152

0.0550

1.2050

0.9951

1.3332

0.0393

1.4191

1.2255

1.2683

0.0543

1.3909

1.1536

0.9892

0.1299

1.3383

0.7279

1.2662

0.2230

1.8046

0.7360

WFG1

0.5135

0.0220

0.5564

0.4633

0.5479

0.0529

0.7106

0.4517

0.7384

0.1216

1.2122

0.5323

0.7014

0.2096

1.6224

0.4480

3.3864

0.2758

3.8951

2.7277

WFG2

0.8442

0.0276

0.8662

0.6489

0.9637

0.0477

1.0080

0.7393

1.2551

0.0194

1.2978

1.1996

1.4643

0.0196

1.5012

1.4175

2.3923

0.0339

2.4817

2.3154

WFG3

0.7772

0.0144

0.8129

0.7386

0.8964

0.0112

0.9181

0.8681

1.1137

0.0209

1.1652

1.0593

1.2536

0.0344

1.3387

1.1863

2.1126

0.0544

2.2208

1.9947

WFG4

0.7535

0.0200

0.7912

0.7029

0.7876

0.0211

0.8319

0.7449

1.0385

0.0229

1.0818

0.9884

1.1815

0.0312

1.2541

1.1060

1.9504

0.0511

2.0697

1.8268

WFG5

0.7054

0.0414

0.7864

0.6175

0.7056

0.0269

0.7657

0.6497

0.7699

0.0301

0.8568

0.7216

0.7700

0.0401

0.8786

0.6948

1.3232

0.1064

1.5099

1.0948
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Table E.7: Average, Standard Deviation, Maximum, and Minimum HV for the
MGPSORI (continue)

MGPSORI HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.6928

0.0132

0.7167

0.6469

0.7209

0.0191

0.7614

0.6642

0.8247

0.0240

0.8683

0.7730

0.9028

0.0310

0.9697

0.8327

1.4432

0.0500

1.5416

1.2947

WFG7

0.5681

0.0135

0.5988

0.5382

0.6109

0.0145

0.6650

0.5888

0.7302

0.0253

0.8114

0.6736

0.8125

0.0246

0.8683

0.7546

1.2622

0.0448

1.3812

1.1509

WFG8

0.5245

0.0076

0.5431

0.5086

0.5806

0.0128

0.6150

0.5554

0.6988

0.0211

0.7382

0.6545

0.7966

0.0330

0.8477

0.6637

1.2358

0.0494

1.3258

1.1336

WFG9

0.9501

0.0166

0.9862

0.9022

0.9788

0.0282

1.0902

0.9092

1.1301

0.0372

1.2384

1.0713

1.2402

0.0650

1.4074

1.0432

1.9087

0.1040

2.0888

1.6335
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Table E.8: Average, Standard Deviation, Maximum, and Minimum HV for the
MGPSOSTD

MGPSOSTD HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.3040

0.0124

1.3291

1.2895

1.5012

0.0188

1.5834

1.4509

1.9879

0.0307

2.1295

1.8861

2.2832

0.0505

2.4531

2.1740

3.7610

0.0538

3.8642

3.6178

DTLZ2

1.3035

0.0018

1.3062

1.2957

1.5670

0.0072

1.5833

1.5485

2.0541

0.0153

2.0791

2.0005

2.4072

0.0367

2.4804

2.2867

3.3942

0.1172

3.6238

3.0735

DTLZ3

1.2954

0.0113

1.3264

1.2765

1.4716

0.0269

1.5922

1.4124

1.8779

0.0535

2.1251

1.7487

2.1650

0.0924

2.3460

1.8757

3.5462

0.1421

3.9395

3.2273

DTLZ4

1.1278

0.1569

1.3114

0.9590

1.4668

0.1297

1.5894

1.1700

1.5051

0.1468

1.9672

1.0378

1.6930

0.0542

1.7964

1.4759

2.5567

0.0847

2.6795

2.2881

DTLZ5

1.1920

0.0013

1.1941

1.1876

1.4501

0.0059

1.4577

1.4087

1.8539

0.0068

1.8746

1.8360

1.9420

0.0183

2.0010

1.8986

2.7035

0.0437

2.8301

2.6027

DTLZ6

0.7638

0.0094

0.7864

0.7438

1.0648

0.0116

1.0960

1.0405

1.3239

0.0332

1.3999

1.2336

1.3648

0.0579

1.5035

1.1425

1.9051

0.1325

2.1762

1.5751
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Table E.8: Average, Standard Deviation, Maximum, and Minimum HV for the
MGPSOSTD (continue)

MGPSOSTD HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

1.1078

0.0560

1.2050

0.9948

1.3310

0.0379

1.4191

1.2255

1.2968

0.0796

1.5493

1.0987

1.1093

0.2303

1.8103

0.7279

1.4855

0.4298

2.6843

0.7360

WFG1

0.5007

0.0279

0.5564

0.4439

0.5290

0.0552

0.7106

0.4244

0.6817

0.1328

1.2122

0.4511

0.6345

0.2000

1.6224

0.3673

3.2519

0.6149

3.8951

0.2085

WFG2

0.8408

0.0284

0.8662

0.6489

0.9608

0.0468

1.0080

0.7382

1.2542

0.0179

1.2978

1.1996

1.4591

0.0421

1.5177

1.1385

2.3867

0.0356

2.4817

2.3154

WFG3

0.7722

0.0165

0.8129

0.7349

0.8908

0.0145

0.9181

0.8449

1.1170

0.0237

1.1672

1.0513

1.2513

0.0431

1.3508

1.1494

2.1085

0.0590

2.2208

1.9523

WFG4

0.7513

0.0226

0.7923

0.6986

0.7856

0.0222

0.8387

0.7211

1.0358

0.0241

1.0818

0.9823

1.1740

0.0316

1.2541

1.1060

1.9385

0.0557

2.0697

1.7902

WFG5

0.7115

0.0543

0.9094

0.6175

0.7059

0.0293

0.7974

0.6497

0.7803

0.0339

0.9074

0.7216

0.7866

0.0463

0.9030

0.6948

1.3665

0.1253

1.6628

1.0948
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Table E.8: Average, Standard Deviation, Maximum, and Minimum HV for the
MGPSOSTD (continue)

MGPSOSTD HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.6846

0.0182

0.7167

0.6327

0.7146

0.0214

0.7614

0.6501

0.8189

0.0272

0.8683

0.7465

0.8989

0.0326

0.9960

0.8300

1.4299

0.0541

1.5416

1.2504

WFG7

0.5661

0.0147

0.6011

0.5271

0.6111

0.0164

0.6650

0.5828

0.7336

0.0286

0.8114

0.6725

0.8165

0.0287

0.8977

0.7546

1.2598

0.0472

1.3963

1.1509

WFG8

0.5223

0.0087

0.5431

0.5024

0.5799

0.0129

0.6150

0.5525

0.7015

0.0217

0.7546

0.6545

0.8082

0.0364

0.8815

0.6637

1.2404

0.0514

1.3679

1.1336

WFG9

0.9465

0.0171

0.9862

0.9022

0.9796

0.0294

1.0902

0.9092

1.1269

0.0342

1.2384

1.0568

1.2374

0.0654

1.4074

1.0432

1.9043

0.1003

2.0888

1.6335
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Table E.9: Average, Standard Deviation, Maximum, and Minimum HV for the
MOEA/DD

MOEA/DD HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.3113

0.0026

1.3158

1.3028

1.5804

0.0088

1.6002

1.5609

2.0418

0.0314

2.1044

1.9648

2.2454

0.1112

2.4835

2.0727

3.8671

0.2200

4.0922

2.9342

DTLZ2

1.2400

0.0094

1.2600

1.2168

1.5823

0.0064

1.5927

1.5681

2.0466

0.0232

2.0963

1.9954

1.8116

0.3530

2.4257

1.0625

1.7342

0.7580

3.2490

0.6005

DTLZ3

1.2904

0.0059

1.3000

1.2778

1.5849

0.0077

1.6006

1.5706

2.0916

0.0179

2.1217

2.0553

2.3829

0.1399

2.5458

1.7597

3.9084

0.1592

4.1037

3.5378

DTLZ4

1.2402

0.0151

1.2712

1.2108

1.5958

0.0066

1.6039

1.5750

2.1083

0.0337

2.1415

1.9732

2.1748

0.4036

2.5809

1.2824

2.2679

0.0000

2.2679

2.2679

DTLZ5

1.0677

0.0098

1.0925

1.0444

1.3550

0.0167

1.3819

1.3196

1.4940

0.1770

1.7355

1.2011

1.0242

0.2418

1.6695

0.5881

1.2879

0.2680

2.4431

0.8739

DTLZ6

0.9726

0.0141

0.9963

0.9387

1.3326

0.0138

1.3637

1.3069

1.6600

0.0544

1.7685

1.5328

0.8106

0.3634

1.3343

0.0878

0.6773

0.6836

2.1841

0.1489
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Table E.9: Average, Standard Deviation, Maximum, and Minimum HV for the
MOEA/DD (continue)

MOEA/DD HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.3815

0.0197

0.4195

0.3454

0.7886

0.0981

0.9595

0.6015

0.2905

0.2867

1.1049

0.0030

0.0254

0.0601

0.2422

0.0001

0.0026

0.0054

0.0242

0.0000

WFG1

1.0276

0.0409

1.0698

0.9277

1.1818

0.0593

1.2550

0.9882

0.5786

0.0941

0.8061

0.4675

0.5626

0.0817

0.7570

0.4576

0.0327

0.0000

0.0327

0.0327

WFG2

0.9080

0.0397

0.9557

0.7775

0.8634

0.0761

0.9840

0.7201

0.4565

0.0813

0.6023

0.2301

0.2755

0.1187

0.7367

0.1241

1.4486

0.5160

2.4893

0.0605

WFG3

0.6375

0.0223

0.6848

0.5811

0.5784

0.0231

0.6332

0.5472

0.4169

0.0487

0.5132

0.3338

0.1417

0.0373

0.2602

0.0854

0.2523

0.2397

0.9288

0.0007

WFG4

0.6741

0.0199

0.7101

0.6363

0.8951

0.0438

0.9733

0.8076

0.9374

0.0318

1.0155

0.8720

0.9987

0.0725

1.1107

0.7562

1.9033

0.1856

2.2662

1.4929

WFG5

0.7108

0.0150

0.7403

0.6774

0.8589

0.0283

0.9077

0.8030

0.8295

0.0552

0.9107

0.6752

0.3661

0.1803

0.8415

0.0999

1.2225

0.5333

2.1637

0.4127
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Table E.9: Average, Standard Deviation, Maximum, and Minimum HV for the
MOEA/DD (continue)

MOEA/DD HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.6346

0.0209

0.6664

0.5857

0.7643

0.0253

0.8327

0.7056

0.7219

0.0372

0.8018

0.6443

0.4335

0.1380

0.6830

0.1529

1.0567

0.4185

1.9528

0.1751

WFG7

0.7000

0.0131

0.7278

0.6686

0.8690

0.0318

0.9359

0.8052

0.7859

0.0436

0.8643

0.6925

0.6611

0.1431

0.9016

0.3632

1.5943

0.4144

2.2333

0.3574

WFG8

0.7180

0.0150

0.7563

0.6931

0.8034

0.0363

0.8723

0.6794

0.7623

0.0493

0.8751

0.6742

0.3964

0.2255

0.8081

0.0771

1.3210

0.4402

2.0524

0.5845

WFG9

0.7166

0.0429

0.8012

0.6541

0.7758

0.0425

0.8853

0.6732

0.7489

0.0604

0.8687

0.6331

0.6768

0.0992

0.8697

0.3905

1.6904

0.3925

2.2785

0.3939
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Table E.10: Average, Standard Deviation, Maximum, and Minimum HV for
the NSGA-III

NSGA-III HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.3117

0.0024

1.3164

1.3071

1.5837

0.0052

1.5966

1.5735

2.0467

0.0231

2.1021

2.0023

2.2924

0.1878

2.4614

1.5699

3.5823

0.2595

3.8891

3.0202

DTLZ2

1.2252

0.0098

1.2413

1.2025

1.5568

0.0142

1.5758

1.5081

1.9916

0.0527

2.0926

1.8707

2.2019

0.2880

2.4618

1.1474

2.6027

0.4380

3.3597

1.5604

DTLZ3

1.2975

0.0040

1.3043

1.2892

1.5932

0.0055

1.6005

1.5792

2.0765

0.0195

2.1108

2.0204

2.4280

0.0893

2.5637

2.2463

3.8088

0.1647

4.0712

3.4639

DTLZ4

1.1474

0.0910

1.2294

0.8550

1.5272

0.0697

1.5864

1.3213

1.9720

0.1384

2.1159

1.5874

2.0879

0.4162

2.5415

0.9714

1.8883

0.1995

2.3132

1.7039

DTLZ5

1.0414

0.0172

1.0689

0.9932

1.2624

0.0736

1.3572

1.0601

1.4586

0.1689

1.6576

1.0025

0.6885

0.1964

1.2784

0.3098

1.0844

0.1955

1.3708

0.6677

DTLZ6

0.9534

0.0192

0.9985

0.9158

1.2815

0.0162

1.3050

1.2419

1.5468

0.0698

1.6816

1.3857

1.4838

0.2768

1.9114

0.5712

1.5716

0.5072

2.3948

0.2084
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Table E.10: Average, Standard Deviation, Maximum, and Minimum HV for
the NSGA-III (continue)

NSGA-III HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.3201

0.0114

0.3465

0.2929

0.7358

0.0372

0.8257

0.6683

0.8692

0.0897

1.0080

0.6734

0.6842

0.1550

1.0291

0.4115

0.5736

0.1490

0.9209

0.2854

WFG1

0.9867

0.0793

1.0516

0.7331

1.1938

0.0660

1.2561

1.0098

0.6913

0.1756

0.9712

0.3571

0.4976

0.1645

0.7397

0.1481

0.1019

0.1419

0.3556

0.0317

WFG2

0.8674

0.0597

0.9820

0.7975

0.9233

0.0593

1.0317

0.8148

0.6562

0.0538

0.8004

0.5539

0.7056

0.1123

0.9795

0.5297

2.5314

0.3813

3.2615

1.4984

WFG3

0.7233

0.0073

0.7370

0.7085

0.6826

0.0166

0.7159

0.6527

0.5109

0.0400

0.5893

0.4292

0.4787

0.0652

0.6466

0.3922

1.6071

0.2507

2.0853

1.0878

WFG4

0.7211

0.0140

0.7526

0.6941

0.8292

0.0382

0.9324

0.7525

0.9097

0.0292

0.9621

0.8552

0.9637

0.0868

1.1069

0.7647

1.8601

0.1198

2.0818

1.6638

WFG5

0.7274

0.0132

0.7635

0.7013

0.8727

0.0247

0.9239

0.8233

0.8619

0.0378

0.9463

0.8039

0.6595

0.0789

0.8153

0.4917

1.6597

0.1407

1.8621

1.3849
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Table E.10: Average, Standard Deviation, Maximum, and Minimum HV for
the NSGA-III (continue)

NSGA-III HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.6430

0.0128

0.6712

0.6170

0.7540

0.0267

0.7950

0.6906

0.7434

0.0292

0.8368

0.7000

0.5949

0.0802

0.7588

0.4385

1.6817

0.1521

1.9541

1.4132

WFG7

0.7264

0.0162

0.7575

0.6754

0.8648

0.0491

0.9405

0.7434

0.8374

0.0274

0.8970

0.7823

0.8067

0.0932

1.0035

0.5460

1.7969

0.1550

2.0440

1.3142

WFG8

0.7326

0.0154

0.7585

0.6969

0.7815

0.0252

0.8293

0.7066

0.8241

0.0432

0.9131

0.7437

0.6830

0.0931

0.8680

0.4687

1.6023

0.1129

1.8314

1.4172

WFG9

0.7161

0.0254

0.7989

0.6850

0.7892

0.0481

0.9174

0.6853

0.8566

0.0525

0.9754

0.7393

0.7470

0.0901

0.9103

0.5584

1.9191

0.1436

2.2073

1.6881
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E.2 Inverted Generational Distance Values
The average, standard deviation, maximum, and minimum IGD performance
measure values for each algorithm on each problem instance are listed in ta-
bles E.11 to E.20. Note that these performance measure values are associated
with Chapter 5.

Table E.11: Average, Standard Deviation, Maximum, and Minimum IGD for
the CDAS-SMPSO algorithm

CDAS-SMPSO IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0069

0.0009

0.0077

0.0045

0.0068

0.0006

0.0076

0.0056

0.0078

0.0012

0.0130

0.0066

0.0078

0.0025

0.0156

0.0059

0.0071

0.0003

0.0079

0.0068

DTLZ2

0.0155

0.0005

0.0165

0.0147

0.0171

0.0006

0.0183

0.0160

0.0203

0.0010

0.0232

0.0191

0.0185

0.0007

0.0200

0.0172

0.0211

0.0009

0.0234

0.0195

DTLZ3

0.0221

0.0020

0.0252

0.0175

0.0256

0.0007

0.0271

0.0231

0.0288

0.0008

0.0292

0.0249

0.0247

0.0012

0.0260

0.0226

0.0265

0.0006

0.0269

0.0248

DTLZ4

0.0187

0.0025

0.0232

0.0129

0.0222

0.0014

0.0255

0.0200

0.0275

0.0013

0.0307

0.0253

0.0254

0.0012

0.0280

0.0225

0.0277

0.0010

0.0301

0.0258
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Table E.11: Average, Standard Deviation, Maximum, and Minimum IGD for
the CDAS-SMPSO algorithm (continue)

CDAS-SMPSO IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ5

0.0171

0.0003

0.0176

0.0165

0.0185

0.0002

0.0188

0.0181

0.0177

0.0003

0.0181

0.0172

0.0150

0.0003

0.0156

0.0144

0.0144

0.0003

0.0152

0.0137

DTLZ6

0.0230

0.0010

0.0251

0.0215

0.0232

0.0010

0.0254

0.0217

0.0229

0.0015

0.0252

0.0183

0.0238

0.0010

0.0255

0.0222

0.0239

0.0011

0.0262

0.0212

DTLZ7

0.1036

0.0012

0.1061

0.1020

0.1438

0.0018

0.1477

0.1405

0.2399

0.0013

0.2428

0.2363

0.0984

0.0004

0.0993

0.0975

0.1444

0.0005

0.1451

0.1433

WFG1

0.0387

0.0030

0.0462

0.0360

0.0499

0.0019

0.0562

0.0484

0.0819

0.0021

0.0861

0.0786

0.0809

0.0010

0.0824

0.0784

0.1328

0.0004

0.1331

0.1322

WFG2

0.0455

0.0012

0.0482

0.0436

0.0575

0.0010

0.0595

0.0554

0.0925

0.0013

0.0957

0.0906

0.0884

0.0011

0.0915

0.0862

0.1370

0.0007

0.1382

0.1356

WFG3

0.0763

0.0016

0.0798

0.0732

0.1406

0.0007

0.1431

0.1396

0.2428

0.0004

0.2438

0.2419

0.3121

0.0015

0.3168

0.3109

0.4848

0.0010

0.4868

0.4834
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Table E.11: Average, Standard Deviation, Maximum, and Minimum IGD for
the CDAS-SMPSO algorithm (continue)

CDAS-SMPSO IGD

Benchmark

Function

nm

3 5 8 10 15

WFG4

0.0877

0.0001

0.0879

0.0875

0.1541

0.0002

0.1545

0.1537

0.2732

0.0002

0.2736

0.2728

0.3042

0.0003

0.3051

0.3036

0.4692

0.0007

0.4706

0.4680

WFG5

0.0882

0.0002

0.0887

0.0879

0.1541

0.0001

0.1543

0.1538

0.2741

0.0002

0.2747

0.2737

0.3047

0.0003

0.3053

0.3041

0.4708

0.0004

0.4717

0.4703

WFG6

0.0877

0.0002

0.0882

0.0871

0.1538

0.0002

0.1541

0.1534

0.2736

0.0003

0.2742

0.2732

0.3045

0.0004

0.3054

0.3039

0.4697

0.0005

0.4714

0.4689

WFG7

0.0879

0.0001

0.0881

0.0878

0.1542

0.0002

0.1546

0.1538

0.2741

0.0002

0.2745

0.2735

0.3039

0.0002

0.3045

0.3035

0.4686

0.0005

0.4698

0.4673

WFG8

0.0881

0.0002

0.0885

0.0878

0.1546

0.0004

0.1563

0.1539

0.2734

0.0001

0.2736

0.2731

0.3037

0.0002

0.3043

0.3034

0.4692

0.0003

0.4700

0.4689

WFG9

0.0894

0.0002

0.0900

0.0888

0.1539

0.0002

0.1543

0.1535

0.2736

0.0006

0.2761

0.2728

0.3052

0.0023

0.3135

0.3034

0.4693

0.0008

0.4720

0.4683
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Table E.12: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnEA

KnEA IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0015

0.0001

0.0018

0.0013

-

-

-

-

0.0065

0.0006

0.0076

0.0055

0.0058

0.0005

0.0072

0.0048

0.0072

0.0004

0.0082

0.0066

DTLZ2

0.0124

0.0005

0.0137

0.0112

0.0154

0.0023

0.0203

0.0125

0.0269

0.0015

0.0299

0.0236

0.0195

0.0027

0.0263

0.0155

0.0286

0.0017

0.0308

0.0248

DTLZ3

0.0154

0.0006

0.0172

0.0143

0.0213

0.0016

0.0249

0.0187

0.0260

0.0015

0.0293

0.0220

0.0230

0.0017

0.0255

0.0192

0.0254

0.0008

0.0273

0.0231

DTLZ4

0.0124

0.0019

0.0178

0.0104

0.0231

0.0022

0.0254

0.0188

0.0294

0.0001

0.0297

0.0292

0.0263

0.0001

0.0266

0.0261

0.0281

0.0002

0.0284

0.0271

DTLZ5

0.0124

0.0008

0.0140

0.0109

0.0204

0.0017

0.0213

0.0133

0.0200

0.0004

0.0209

0.0187

0.0195

0.0018

0.0208

0.0127

0.0177

0.0030

0.0206

0.0095

DTLZ6

0.0055

0.0004

0.0061

0.0048

0.0224

0.0041

0.0257

0.0128

0.0223

0.0035

0.0257

0.0159

0.0222

0.0029

0.0270

0.0156

0.0216

0.0033

0.0253

0.0153
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Table E.12: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnEA (continue)

KnEA IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.0992

0.0003

0.0997

0.0986

0.1337

0.0012

0.1358

0.1307

0.2249

0.0013

0.2268

0.2215

0.0933

0.0006

0.0943

0.0920

0.1384

0.0004

0.1395

0.1374

WFG1

0.0471

0.0026

0.0488

0.0358

0.0591

0.0014

0.0611

0.0561

0.0862

0.0022

0.0894

0.0815

0.0832

0.0013

0.0854

0.0805

0.1329

0.0011

0.1347

0.1300

WFG2

0.0445

0.0014

0.0467

0.0405

0.0607

0.0009

0.0627

0.0584

0.0893

0.0010

0.0922

0.0879

0.0852

0.0008

0.0873

0.0839

0.1355

0.0010

0.1381

0.1335

WFG3

0.0781

0.0017

0.0816

0.0752

0.1480

0.0014

0.1510

0.1456

0.2486

0.0024

0.2531

0.2434

0.3178

0.0030

0.3244

0.3125

0.4875

0.0014

0.4905

0.4849

WFG4

0.0878

0.0001

0.0880

0.0877

0.1545

0.0002

0.1551

0.1542

0.2759

0.0015

0.2804

0.2740

0.3049

0.0007

0.3067

0.3038

0.4731

0.0015

0.4770

0.4702

WFG5

0.0886

0.0001

0.0888

0.0882

0.1549

0.0003

0.1562

0.1546

0.2811

0.0034

0.2876

0.2755

0.3070

0.0019

0.3109

0.3041

0.4721

0.0016

0.4769

0.4698
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Table E.12: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnEA (continue)

KnEA IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0878

0.0001

0.0882

0.0876

0.1546

0.0013

0.1606

0.1539

0.2814

0.0028

0.2871

0.2756

0.3084

0.0015

0.3119

0.3046

0.4736

0.0029

0.4822

0.4701

WFG7

0.0879

0.0001

0.0882

0.0877

0.1545

0.0002

0.1556

0.1542

0.2800

0.0018

0.2839

0.2765

0.3066

0.0021

0.3114

0.3036

0.4703

0.0011

0.4729

0.4682

WFG8

0.0884

0.0001

0.0886

0.0882

0.1549

0.0008

0.1569

0.1542

0.2797

0.0021

0.2849

0.2763

0.3075

0.0024

0.3123

0.3031

0.4712

0.0011

0.4737

0.4694

WFG9

0.0888

0.0003

0.0895

0.0882

0.1542

0.0004

0.1553

0.1536

0.2767

0.0017

0.2818

0.2736

0.3049

0.0013

0.3086

0.3031

0.4696

0.0015

0.4741

0.4675
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Table E.13: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnMGPSOR

KnMGPSOR IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0012

0.0001

0.0014

0.0010

0.0068

0.0004

0.0077

0.0060

0.0099

0.0006

0.0110

0.0084

0.0105

0.0010

0.0121

0.0082

0.0113

0.0009

0.0132

0.0092

DTLZ2

0.0157

0.0004

0.0164

0.0150

0.0134

0.0004

0.0142

0.0123

0.0158

0.0004

0.0164

0.0146

0.0152

0.0004

0.0161

0.0146

0.0202

0.0004

0.0212

0.0196

DTLZ3

0.0096

0.0005

0.0107

0.0085

0.0086

0.0004

0.0095

0.0079

0.0141

0.0004

0.0149

0.0135

0.0152

0.0002

0.0158

0.0148

0.0211

0.0006

0.0224

0.0202

DTLZ4

0.0205

0.0024

0.0232

0.0178

0.0227

0.0011

0.0256

0.0215

0.0291

0.0004

0.0308

0.0288

0.0263

0.0002

0.0268

0.0261

0.0279

0.0001

0.0282

0.0277

DTLZ5

0.0173

0.0004

0.0178

0.0165

0.0146

0.0005

0.0154

0.0136

0.0126

0.0006

0.0135

0.0114

0.0092

0.0007

0.0104

0.0080

0.0082

0.0005

0.0093

0.0074

DTLZ6

0.0017

0.0002

0.0022

0.0012

0.0040

0.0006

0.0053

0.0031

0.0052

0.0007

0.0066

0.0041

0.0064

0.0006

0.0076

0.0053

0.0078

0.0010

0.0095

0.0061
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Table E.13: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnMGPSOR (continue)

KnMGPSOR IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.1173

0.0011

0.1193

0.1133

0.1373

0.0015

0.1407

0.1330

0.2261

0.0005

0.2272

0.2248

0.0926

0.0002

0.0930

0.0923

0.1378

0.0002

0.1385

0.1373

WFG1

0.0499

0.0002

0.0507

0.0496

0.0615

0.0003

0.0623

0.0612

0.0882

0.0002

0.0889

0.0879

0.0845

0.0003

0.0852

0.0841

0.1337

0.0003

0.1347

0.1335

WFG2

0.0490

0.0009

0.0518

0.0474

0.0608

0.0004

0.0620

0.0604

0.0899

0.0002

0.0906

0.0895

0.0857

0.0002

0.0863

0.0853

0.1356

0.0003

0.1360

0.1351

WFG3

0.0746

0.0001

0.0747

0.0745

0.1409

0.0001

0.1410

0.1407

0.2434

0.0000

0.2435

0.2433

0.3120

0.0001

0.3121

0.3118

0.4842

0.0001

0.4844

0.4841

WFG4

0.0886

0.0001

0.0887

0.0885

0.1559

0.0001

0.1561

0.1557

0.2779

0.0002

0.2783

0.2773

0.3086

0.0003

0.3092

0.3079

0.4771

0.0003

0.4776

0.4765

WFG5

0.0878

0.0004

0.0886

0.0869

0.1538

0.0001

0.1541

0.1535

0.2737

0.0001

0.2740

0.2735

0.3040

0.0001

0.3043

0.3037

0.4701

0.0003

0.4709

0.4697
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Table E.13: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnMGPSOR (continue)

KnMGPSOR IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0905

0.0001

0.0908

0.0902

0.1564

0.0002

0.1567

0.1561

0.2759

0.0002

0.2761

0.2756

0.3058

0.0002

0.3062

0.3055

0.4730

0.0003

0.4734

0.4722

WFG7

0.0895

0.0001

0.0898

0.0892

0.1568

0.0001

0.1571

0.1566

0.2777

0.0002

0.2780

0.2770

0.3074

0.0002

0.3078

0.3069

0.4728

0.0003

0.4736

0.4723

WFG8

0.0898

0.0001

0.0901

0.0897

0.1570

0.0002

0.1574

0.1567

0.2769

0.0002

0.2774

0.2766

0.3064

0.0002

0.3070

0.3059

0.4736

0.0003

0.4741

0.4731

WFG9

0.0905

0.0002

0.0906

0.0898

0.1546

0.0002

0.1551

0.1542

0.2733

0.0001

0.2737

0.2731

0.3033

0.0002

0.3037

0.3030

0.4678

0.0003

0.4684

0.4671
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Table E.14: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnMGPSORI

KnMGPSORI IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0011

0.0001

0.0016

0.0010

0.0067

0.0004

0.0077

0.0059

0.0098

0.0006

0.0110

0.0084

0.0105

0.0010

0.0123

0.0079

0.0113

0.0007

0.0132

0.0092

DTLZ2

0.0159

0.0005

0.0167

0.0150

0.0134

0.0004

0.0142

0.0123

0.0159

0.0004

0.0166

0.0146

0.0151

0.0003

0.0161

0.0146

0.0202

0.0004

0.0212

0.0194

DTLZ3

0.0096

0.0006

0.0109

0.0085

0.0086

0.0003

0.0095

0.0079

0.0142

0.0004

0.0150

0.0131

0.0153

0.0003

0.0162

0.0146

0.0211

0.0005

0.0226

0.0201

DTLZ4

0.0206

0.0024

0.0232

0.0172

0.0227

0.0010

0.0256

0.0215

0.0291

0.0003

0.0308

0.0288

0.0263

0.0002

0.0270

0.0260

0.0279

0.0001

0.0282

0.0274

DTLZ5

0.0173

0.0004

0.0178

0.0165

0.0146

0.0006

0.0159

0.0130

0.0126

0.0006

0.0138

0.0114

0.0092

0.0006

0.0104

0.0080

0.0082

0.0005

0.0094

0.0072

DTLZ6

0.0017

0.0002

0.0022

0.0012

0.0039

0.0005

0.0053

0.0031

0.0052

0.0006

0.0066

0.0039

0.0064

0.0007

0.0080

0.0051

0.0075

0.0009

0.0095

0.0056
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Table E.14: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnMGPSORI (continue)

KnMGPSORI IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.1170

0.0015

0.1197

0.1120

0.1374

0.0017

0.1420

0.1330

0.2260

0.0005

0.2272

0.2248

0.0926

0.0002

0.0932

0.0922

0.1378

0.0002

0.1385

0.1373

WFG1

0.0499

0.0003

0.0508

0.0496

0.0615

0.0002

0.0623

0.0611

0.0882

0.0003

0.0891

0.0879

0.0845

0.0003

0.0852

0.0841

0.1337

0.0003

0.1351

0.1335

WFG2

0.0489

0.0007

0.0518

0.0474

0.0608

0.0004

0.0620

0.0604

0.0898

0.0002

0.0906

0.0893

0.0857

0.0003

0.0872

0.0853

0.1356

0.0002

0.1360

0.1351

WFG3

0.0746

0.0001

0.0748

0.0744

0.1409

0.0001

0.1410

0.1407

0.2434

0.0000

0.2435

0.2433

0.3119

0.0001

0.3121

0.3117

0.4842

0.0001

0.4845

0.4841

WFG4

0.0886

0.0001

0.0887

0.0885

0.1559

0.0001

0.1562

0.1557

0.2779

0.0002

0.2784

0.2773

0.3086

0.0003

0.3093

0.3079

0.4771

0.0003

0.4777

0.4765

WFG5

0.0878

0.0004

0.0886

0.0869

0.1538

0.0002

0.1543

0.1534

0.2737

0.0001

0.2741

0.2735

0.3040

0.0002

0.3043

0.3036

0.4701

0.0002

0.4709

0.4696
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Table E.14: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnMGPSORI (continue)

KnMGPSORI IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0905

0.0001

0.0908

0.0902

0.1564

0.0002

0.1568

0.1558

0.2759

0.0002

0.2762

0.2756

0.3058

0.0002

0.3062

0.3055

0.4730

0.0002

0.4734

0.4722

WFG7

0.0895

0.0001

0.0898

0.0892

0.1569

0.0001

0.1571

0.1566

0.2777

0.0002

0.2780

0.2770

0.3074

0.0002

0.3078

0.3068

0.4728

0.0003

0.4736

0.4722

WFG8

0.0898

0.0001

0.0901

0.0896

0.1570

0.0002

0.1574

0.1566

0.2769

0.0002

0.2774

0.2764

0.3064

0.0002

0.3070

0.3059

0.4736

0.0003

0.4743

0.4731

WFG9

0.0905

0.0002

0.0907

0.0898

0.1546

0.0002

0.1552

0.1542

0.2733

0.0001

0.2737

0.2730

0.3034

0.0002

0.3037

0.3030

0.4678

0.0002

0.4684

0.4671
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Table E.15: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnMGPSOSTD

KnMGPSOSTD IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0019

0.0016

0.0086

0.0010

0.0066

0.0004

0.0077

0.0054

0.0097

0.0007

0.0110

0.0070

0.0104

0.0010

0.0123

0.0063

0.0112

0.0009

0.0132

0.0069

DTLZ2

0.0159

0.0005

0.0168

0.0148

0.0133

0.0004

0.0142

0.0123

0.0158

0.0004

0.0166

0.0146

0.0151

0.0003

0.0161

0.0144

0.0202

0.0004

0.0215

0.0194

DTLZ3

0.0109

0.0027

0.0224

0.0085

0.0087

0.0004

0.0098

0.0079

0.0142

0.0005

0.0157

0.0131

0.0153

0.0003

0.0163

0.0146

0.0211

0.0006

0.0226

0.0199

DTLZ4

0.0206

0.0024

0.0232

0.0172

0.0228

0.0010

0.0256

0.0215

0.0290

0.0004

0.0308

0.0268

0.0262

0.0002

0.0270

0.0260

0.0278

0.0001

0.0282

0.0273

DTLZ5

0.0172

0.0005

0.0178

0.0159

0.0146

0.0006

0.0159

0.0130

0.0127

0.0006

0.0142

0.0114

0.0092

0.0005

0.0104

0.0078

0.0082

0.0006

0.0098

0.0070

DTLZ6

0.0016

0.0002

0.0022

0.0011

0.0039

0.0005

0.0053

0.0031

0.0052

0.0006

0.0066

0.0039

0.0064

0.0007

0.0080

0.0051

0.0075

0.0010

0.0095

0.0056
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Table E.15: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnMGPSOSTD (continue)

KnMGPSOSTD IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.1165

0.0016

0.1197

0.1119

0.1385

0.0025

0.1467

0.1330

0.2263

0.0008

0.2283

0.2248

0.0927

0.0003

0.0937

0.0922

0.1380

0.0004

0.1398

0.1373

WFG1

0.0497

0.0003

0.0508

0.0492

0.0615

0.0003

0.0625

0.0611

0.0883

0.0004

0.0898

0.0876

0.0846

0.0003

0.0859

0.0841

0.1338

0.0004

0.1351

0.1335

WFG2

0.0489

0.0006

0.0518

0.0474

0.0608

0.0004

0.0620

0.0603

0.0898

0.0002

0.0906

0.0893

0.0857

0.0003

0.0872

0.0852

0.1356

0.0002

0.1361

0.1350

WFG3

0.0746

0.0001

0.0748

0.0743

0.1409

0.0001

0.1410

0.1407

0.2434

0.0000

0.2435

0.2433

0.3119

0.0001

0.3122

0.3117

0.4842

0.0001

0.4845

0.4840

WFG4

0.0886

0.0001

0.0887

0.0884

0.1559

0.0001

0.1563

0.1557

0.2779

0.0002

0.2784

0.2773

0.3087

0.0003

0.3093

0.3079

0.4770

0.0003

0.4777

0.4762

WFG5

0.0877

0.0005

0.0892

0.0866

0.1537

0.0002

0.1543

0.1533

0.2737

0.0001

0.2741

0.2735

0.3040

0.0001

0.3043

0.3036

0.4701

0.0003

0.4709

0.4696
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Table E.15: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnMGPSOSTD (continue)

KnMGPSOSTD IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0904

0.0002

0.0908

0.0899

0.1563

0.0002

0.1568

0.1558

0.2759

0.0002

0.2762

0.2756

0.3058

0.0002

0.3062

0.3055

0.4730

0.0002

0.4735

0.4722

WFG7

0.0895

0.0001

0.0898

0.0892

0.1569

0.0001

0.1572

0.1564

0.2776

0.0002

0.2780

0.2770

0.3074

0.0002

0.3078

0.3067

0.4728

0.0003

0.4740

0.4722

WFG8

0.0898

0.0001

0.0901

0.0896

0.1570

0.0002

0.1575

0.1566

0.2769

0.0002

0.2777

0.2764

0.3064

0.0002

0.3070

0.3059

0.4736

0.0003

0.4743

0.4730

WFG9

0.0904

0.0002

0.0907

0.0898

0.1546

0.0002

0.1552

0.1542

0.2733

0.0001

0.2737

0.2729

0.3033

0.0002

0.3037

0.3030

0.4678

0.0002

0.4684

0.4671
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Table E.16: Average, Standard Deviation, Maximum, and Minimum IGD for
the MGPSOR

MGPSOR IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0011

0.0001

0.0014

0.0010

0.0067

0.0003

0.0075

0.0060

0.0097

0.0006

0.0107

0.0086

0.0104

0.0010

0.0125

0.0082

0.0109

0.0007

0.0121

0.0095

DTLZ2

0.0159

0.0004

0.0165

0.0150

0.0136

0.0004

0.0145

0.0125

0.0162

0.0005

0.0172

0.0153

0.0153

0.0005

0.0163

0.0145

0.0206

0.0006

0.0220

0.0197

DTLZ3

0.0095

0.0007

0.0119

0.0088

0.0087

0.0003

0.0093

0.0081

0.0145

0.0006

0.0155

0.0135

0.0155

0.0005

0.0165

0.0145

0.0221

0.0008

0.0233

0.0206

DTLZ4

0.0211

0.0022

0.0232

0.0176

0.0231

0.0011

0.0256

0.0217

0.0289

0.0005

0.0300

0.0269

0.0263

0.0002

0.0268

0.0260

0.0280

0.0002

0.0285

0.0277

DTLZ5

0.0174

0.0003

0.0179

0.0166

0.0149

0.0006

0.0157

0.0134

0.0129

0.0005

0.0136

0.0116

0.0094

0.0005

0.0102

0.0085

0.0084

0.0006

0.0095

0.0074

DTLZ6

0.0016

0.0002

0.0021

0.0014

0.0039

0.0005

0.0050

0.0029

0.0053

0.0005

0.0062

0.0046

0.0065

0.0007

0.0082

0.0052

0.0072

0.0009

0.0097

0.0056
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Table E.16: Average, Standard Deviation, Maximum, and Minimum IGD for
the MGPSOR (continue)

MGPSOR IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.1173

0.0012

0.1192

0.1149

0.1408

0.0037

0.1470

0.1350

0.2255

0.0005

0.2264

0.2247

0.0925

0.0002

0.0929

0.0922

0.1377

0.0002

0.1383

0.1373

WFG1

0.0503

0.0004

0.0514

0.0497

0.0618

0.0005

0.0642

0.0613

0.0884

0.0004

0.0902

0.0881

0.0846

0.0003

0.0858

0.0842

0.1337

0.0002

0.1342

0.1335

WFG2

0.0492

0.0006

0.0508

0.0482

0.0611

0.0005

0.0622

0.0604

0.0902

0.0003

0.0912

0.0898

0.0859

0.0003

0.0864

0.0854

0.1357

0.0002

0.1361

0.1355

WFG3

0.0746

0.0001

0.0748

0.0745

0.1409

0.0001

0.1410

0.1408

0.2435

0.0001

0.2436

0.2433

0.3120

0.0001

0.3121

0.3118

0.4842

0.0001

0.4843

0.4841

WFG4

0.0886

0.0000

0.0887

0.0886

0.1561

0.0001

0.1563

0.1559

0.2783

0.0002

0.2787

0.2779

0.3089

0.0003

0.3093

0.3084

0.4772

0.0003

0.4779

0.4765

WFG5

0.0880

0.0004

0.0887

0.0872

0.1540

0.0002

0.1544

0.1537

0.2739

0.0002

0.2742

0.2736

0.3040

0.0001

0.3043

0.3037

0.4701

0.0003

0.4707

0.4695
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Table E.16: Average, Standard Deviation, Maximum, and Minimum IGD for
the MGPSOR (continue)

MGPSOR IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0907

0.0002

0.0909

0.0902

0.1566

0.0002

0.1569

0.1563

0.2760

0.0002

0.2764

0.2756

0.3059

0.0002

0.3063

0.3055

0.4730

0.0002

0.4734

0.4726

WFG7

0.0897

0.0001

0.0898

0.0895

0.1569

0.0001

0.1572

0.1568

0.2777

0.0002

0.2783

0.2773

0.3074

0.0002

0.3077

0.3069

0.4729

0.0003

0.4735

0.4724

WFG8

0.0899

0.0001

0.0902

0.0897

0.1572

0.0002

0.1576

0.1568

0.2771

0.0002

0.2774

0.2765

0.3066

0.0002

0.3070

0.3063

0.4737

0.0003

0.4745

0.4731

WFG9

0.0904

0.0002

0.0908

0.0898

0.1549

0.0003

0.1555

0.1544

0.2734

0.0001

0.2737

0.2731

0.3033

0.0002

0.3037

0.3030

0.4676

0.0002

0.4681

0.4672
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Table E.17: Average, Standard Deviation, Maximum, and Minimum IGD for
the MGPSORI

MGPSORI IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0012

0.0001

0.0015

0.0010

0.0066

0.0004

0.0075

0.0060

0.0097

0.0005

0.0107

0.0086

0.0106

0.0008

0.0125

0.0082

0.0111

0.0008

0.0124

0.0095

DTLZ2

0.0160

0.0004

0.0166

0.0150

0.0137

0.0005

0.0149

0.0125

0.0163

0.0005

0.0172

0.0153

0.0154

0.0004

0.0163

0.0145

0.0206

0.0006

0.0220

0.0197

DTLZ3

0.0095

0.0007

0.0119

0.0081

0.0086

0.0003

0.0094

0.0080

0.0145

0.0005

0.0159

0.0135

0.0156

0.0005

0.0170

0.0145

0.0221

0.0007

0.0233

0.0206

DTLZ4

0.0212

0.0021

0.0232

0.0176

0.0231

0.0011

0.0256

0.0217

0.0290

0.0006

0.0307

0.0265

0.0263

0.0001

0.0268

0.0260

0.0280

0.0002

0.0285

0.0277

DTLZ5

0.0174

0.0004

0.0179

0.0162

0.0149

0.0006

0.0160

0.0134

0.0128

0.0005

0.0137

0.0116

0.0093

0.0006

0.0104

0.0081

0.0083

0.0006

0.0095

0.0071

DTLZ6

0.0016

0.0002

0.0022

0.0013

0.0038

0.0005

0.0050

0.0027

0.0053

0.0005

0.0064

0.0043

0.0064

0.0007

0.0083

0.0048

0.0071

0.0008

0.0097

0.0055
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Table E.17: Average, Standard Deviation, Maximum, and Minimum IGD for
the MGPSORI (continue)

MGPSORI IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.1171

0.0013

0.1192

0.1141

0.1413

0.0037

0.1470

0.1350

0.2255

0.0004

0.2264

0.2247

0.0925

0.0002

0.0930

0.0922

0.1378

0.0003

0.1384

0.1370

WFG1

0.0502

0.0004

0.0514

0.0497

0.0619

0.0008

0.0648

0.0613

0.0885

0.0004

0.0905

0.0880

0.0846

0.0003

0.0860

0.0841

0.1337

0.0001

0.1342

0.1335

WFG2

0.0493

0.0006

0.0508

0.0482

0.0612

0.0005

0.0626

0.0604

0.0901

0.0003

0.0912

0.0896

0.0858

0.0002

0.0864

0.0854

0.1357

0.0002

0.1362

0.1354

WFG3

0.0747

0.0001

0.0749

0.0745

0.1409

0.0001

0.1411

0.1408

0.2435

0.0001

0.2436

0.2433

0.3120

0.0001

0.3121

0.3118

0.4842

0.0001

0.4844

0.4841

WFG4

0.0886

0.0000

0.0887

0.0885

0.1561

0.0001

0.1565

0.1559

0.2782

0.0002

0.2787

0.2779

0.3088

0.0002

0.3093

0.3084

0.4771

0.0003

0.4779

0.4765

WFG5

0.0880

0.0004

0.0887

0.0872

0.1540

0.0002

0.1544

0.1535

0.2738

0.0002

0.2743

0.2736

0.3040

0.0002

0.3044

0.3036

0.4700

0.0003

0.4707

0.4695



APPENDIX E. PERFORMANCE MEASURE VALUES FOR CHAPTER 5 362

Table E.17: Average, Standard Deviation, Maximum, and Minimum IGD for
the MGPSORI (continue)

MGPSORI IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0907

0.0001

0.0909

0.0902

0.1566

0.0002

0.1569

0.1561

0.2760

0.0002

0.2764

0.2756

0.3059

0.0002

0.3063

0.3055

0.4730

0.0002

0.4735

0.4726

WFG7

0.0897

0.0001

0.0899

0.0894

0.1570

0.0001

0.1572

0.1567

0.2777

0.0002

0.2783

0.2773

0.3074

0.0002

0.3079

0.3069

0.4729

0.0003

0.4735

0.4722

WFG8

0.0899

0.0001

0.0902

0.0896

0.1571

0.0002

0.1576

0.1566

0.2771

0.0002

0.2776

0.2765

0.3066

0.0002

0.3070

0.3063

0.4737

0.0003

0.4745

0.4731

WFG9

0.0905

0.0002

0.0908

0.0898

0.1548

0.0003

0.1555

0.1544

0.2733

0.0001

0.2738

0.2731

0.3033

0.0001

0.3037

0.3030

0.4676

0.0002

0.4681

0.4671
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Table E.18: Average, Standard Deviation, Maximum, and Minimum IGD for
the MGPSOSTD

MGPSOSTD IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0017

0.0012

0.0069

0.0010

0.0065

0.0004

0.0075

0.0052

0.0097

0.0005

0.0108

0.0077

0.0104

0.0010

0.0125

0.0060

0.0110

0.0008

0.0124

0.0092

DTLZ2

0.0158

0.0005

0.0166

0.0143

0.0136

0.0005

0.0149

0.0124

0.0162

0.0005

0.0175

0.0153

0.0154

0.0004

0.0163

0.0144

0.0206

0.0005

0.0220

0.0197

DTLZ3

0.0107

0.0023

0.0197

0.0081

0.0088

0.0005

0.0124

0.0080

0.0147

0.0014

0.0269

0.0135

0.0156

0.0006

0.0173

0.0145

0.0220

0.0007

0.0235

0.0206

DTLZ4

0.0211

0.0021

0.0232

0.0176

0.0233

0.0011

0.0256

0.0216

0.0288

0.0007

0.0307

0.0265

0.0262

0.0001

0.0268

0.0259

0.0279

0.0002

0.0285

0.0276

DTLZ5

0.0173

0.0005

0.0179

0.0155

0.0148

0.0006

0.0160

0.0134

0.0128

0.0005

0.0138

0.0116

0.0093

0.0006

0.0104

0.0079

0.0084

0.0006

0.0096

0.0071

DTLZ6

0.0016

0.0002

0.0022

0.0012

0.0039

0.0006

0.0057

0.0027

0.0052

0.0005

0.0064

0.0039

0.0064

0.0007

0.0083

0.0048

0.0071

0.0009

0.0097

0.0051
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Table E.18: Average, Standard Deviation, Maximum, and Minimum IGD for
the MGPSOSTD (continue)

MGPSOSTD IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.1165

0.0015

0.1192

0.1133

0.1417

0.0035

0.1470

0.1333

0.2258

0.0008

0.2284

0.2247

0.0926

0.0003

0.0934

0.0922

0.1380

0.0005

0.1401

0.1370

WFG1

0.0500

0.0005

0.0514

0.0493

0.0618

0.0007

0.0648

0.0611

0.0885

0.0004

0.0905

0.0880

0.0846

0.0003

0.0860

0.0841

0.1337

0.0003

0.1354

0.1335

WFG2

0.0492

0.0006

0.0508

0.0482

0.0611

0.0005

0.0626

0.0604

0.0901

0.0003

0.0912

0.0896

0.0858

0.0003

0.0872

0.0854

0.1357

0.0002

0.1362

0.1350

WFG3

0.0746

0.0001

0.0749

0.0744

0.1409

0.0001

0.1411

0.1407

0.2435

0.0001

0.2436

0.2432

0.3120

0.0001

0.3122

0.3118

0.4842

0.0001

0.4844

0.4840

WFG4

0.0886

0.0000

0.0888

0.0885

0.1561

0.0001

0.1565

0.1558

0.2782

0.0002

0.2788

0.2778

0.3088

0.0002

0.3093

0.3083

0.4771

0.0003

0.4779

0.4763

WFG5

0.0879

0.0005

0.0895

0.0870

0.1540

0.0002

0.1544

0.1535

0.2738

0.0002

0.2743

0.2736

0.3040

0.0002

0.3044

0.3036

0.4700

0.0003

0.4707

0.4695
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Table E.18: Average, Standard Deviation, Maximum, and Minimum IGD for
the MGPSOSTD (continue)

MGPSOSTD IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0906

0.0002

0.0909

0.0899

0.1565

0.0002

0.1569

0.1561

0.2760

0.0002

0.2764

0.2756

0.3059

0.0002

0.3063

0.3055

0.4731

0.0002

0.4735

0.4726

WFG7

0.0896

0.0001

0.0899

0.0892

0.1570

0.0001

0.1572

0.1566

0.2777

0.0002

0.2783

0.2772

0.3074

0.0002

0.3079

0.3069

0.4729

0.0003

0.4737

0.4722

WFG8

0.0899

0.0001

0.0902

0.0896

0.1571

0.0002

0.1576

0.1566

0.2771

0.0002

0.2776

0.2765

0.3066

0.0002

0.3071

0.3063

0.4737

0.0003

0.4746

0.4731

WFG9

0.0904

0.0002

0.0908

0.0897

0.1548

0.0003

0.1557

0.1543

0.2733

0.0001

0.2738

0.2731

0.3033

0.0001

0.3037

0.3030

0.4676

0.0002

0.4681

0.4671
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Table E.19: Average, Standard Deviation, Maximum, and Minimum IGD for
the MOEA/DD

MOEA/DD IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0009

0.0000

0.0010

0.0008

0.0026

0.0001

0.0030

0.0023

0.0054

0.0003

0.0065

0.0047

0.0054

0.0005

0.0067

0.0047

0.0068

0.0008

0.0103

0.0059

DTLZ2

0.0077

0.0006

0.0090

0.0067

0.0107

0.0005

0.0118

0.0098

0.0165

0.0008

0.0182

0.0147

0.0202

0.0022

0.0254

0.0160

0.0263

0.0022

0.0321

0.0234

DTLZ3

0.0105

0.0004

0.0112

0.0096

0.0129

0.0005

0.0144

0.0121

0.0180

0.0007

0.0195

0.0164

0.0199

0.0010

0.0216

0.0180

0.0231

0.0009

0.0256

0.0209

DTLZ4

0.0071

0.0011

0.0095

0.0055

0.0126

0.0019

0.0164

0.0103

0.0195

0.0018

0.0229

0.0168

0.0224

0.0016

0.0257

0.0193

0.0286

0.0000

0.0286

0.0286

DTLZ5

0.0069

0.0008

0.0080

0.0047

0.0110

0.0006

0.0121

0.0099

0.0112

0.0006

0.0126

0.0101

0.0119

0.0029

0.0191

0.0090

0.0121

0.0009

0.0140

0.0106

DTLZ6

0.0036

0.0003

0.0043

0.0030

0.0068

0.0005

0.0079

0.0057

0.0088

0.0007

0.0101

0.0071

0.0190

0.0052

0.0315

0.0128

0.0274

0.0056

0.0333

0.0153
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Table E.19: Average, Standard Deviation, Maximum, and Minimum IGD for
the MOEA/DD (continue)

MOEA/DD IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.0997

0.0004

0.1004

0.0991

0.1398

0.0004

0.1407

0.1388

0.2353

0.0008

0.2371

0.2341

0.0980

0.0003

0.0985

0.0972

0.1435

0.0002

0.1442

0.1430

WFG1

0.0389

0.0033

0.0451

0.0348

0.0538

0.0029

0.0577

0.0483

0.0884

0.0006

0.0894

0.0871

0.0845

0.0002

0.0849

0.0839

0.1344

0.0000

0.1344

0.1344

WFG2

0.0437

0.0009

0.0452

0.0410

0.0616

0.0012

0.0648

0.0602

0.0907

0.0021

0.0960

0.0878

0.0883

0.0016

0.0906

0.0850

0.1351

0.0011

0.1372

0.1327

WFG3

0.0768

0.0011

0.0784

0.0739

0.1463

0.0013

0.1486

0.1438

0.2467

0.0028

0.2498

0.2425

0.3186

0.0014

0.3224

0.3130

0.4892

0.0028

0.4989

0.4841

WFG4

0.0880

0.0005

0.0890

0.0873

0.1543

0.0002

0.1551

0.1540

0.2744

0.0004

0.2750

0.2736

0.3051

0.0006

0.3064

0.3042

0.4739

0.0015

0.4782

0.4715

WFG5

0.0880

0.0001

0.0883

0.0878

0.1554

0.0008

0.1572

0.1544

0.2744

0.0005

0.2761

0.2738

0.3103

0.0037

0.3198

0.3041

0.4736

0.0017

0.4771

0.4707
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Table E.19: Average, Standard Deviation, Maximum, and Minimum IGD for
the MOEA/DD (continue)

MOEA/DD IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0872

0.0002

0.0876

0.0869

0.1543

0.0006

0.1556

0.1536

0.2737

0.0004

0.2751

0.2732

0.3080

0.0029

0.3156

0.3044

0.4733

0.0020

0.4787

0.4703

WFG7

0.0874

0.0002

0.0883

0.0871

0.1550

0.0008

0.1564

0.1540

0.2739

0.0002

0.2743

0.2733

0.3052

0.0012

0.3094

0.3035

0.4714

0.0013

0.4760

0.4698

WFG8

0.0880

0.0002

0.0884

0.0876

0.1542

0.0002

0.1549

0.1538

0.2735

0.0003

0.2742

0.2731

0.3062

0.0028

0.3123

0.3031

0.4720

0.0016

0.4761

0.4695

WFG9

0.0875

0.0004

0.0882

0.0868

0.1535

0.0002

0.1540

0.1531

0.2731

0.0002

0.2736

0.2727

0.3039

0.0007

0.3066

0.3030

0.4707

0.0009

0.4729

0.4679
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Table E.20: Average, Standard Deviation, Maximum, and Minimum IGD for
the NSGA-III

NSGA-III IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0009

0.0001

0.0010

0.0008

0.0037

0.0003

0.0043

0.0032

0.0075

0.0006

0.0090

0.0066

0.0072

0.0010

0.0106

0.0059

0.0092

0.0009

0.0114

0.0074

DTLZ2

0.0092

0.0005

0.0100

0.0080

0.0090

0.0004

0.0098

0.0084

0.0159

0.0023

0.0222

0.0134

0.0172

0.0014

0.0205

0.0147

0.0224

0.0012

0.0251

0.0203

DTLZ3

0.0128

0.0004

0.0135

0.0122

0.0117

0.0005

0.0126

0.0105

0.0171

0.0018

0.0201

0.0140

0.0174

0.0011

0.0196

0.0154

0.0201

0.0007

0.0222

0.0188

DTLZ4

0.0110

0.0037

0.0166

0.0075

0.0135

0.0038

0.0217

0.0089

0.0207

0.0028

0.0265

0.0156

0.0230

0.0022

0.0271

0.0193

0.0297

0.0009

0.0310

0.0282

DTLZ5

0.0090

0.0006

0.0101

0.0076

0.0102

0.0010

0.0129

0.0084

0.0094

0.0012

0.0121

0.0074

0.0132

0.0035

0.0233

0.0082

0.0107

0.0032

0.0230

0.0071

DTLZ6

0.0039

0.0004

0.0050

0.0033

0.0073

0.0006

0.0081

0.0059

0.0099

0.0019

0.0145

0.0070

0.0152

0.0044

0.0231

0.0080

0.0176

0.0050

0.0284

0.0085
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Table E.20: Average, Standard Deviation, Maximum, and Minimum IGD for
the NSGA-III (continue)

NSGA-III IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.0976

0.0004

0.0983

0.0966

0.1317

0.0010

0.1337

0.1300

0.2221

0.0008

0.2233

0.2204

0.0930

0.0003

0.0937

0.0925

0.1385

0.0004

0.1394

0.1379

WFG1

0.0393

0.0035

0.0474

0.0350

0.0514

0.0026

0.0563

0.0476

0.0836

0.0028

0.0880

0.0758

0.0815

0.0020

0.0834

0.0765

0.1332

0.0014

0.1348

0.1312

WFG2

0.0433

0.0010

0.0454

0.0414

0.0586

0.0013

0.0603

0.0551

0.0876

0.0010

0.0891

0.0852

0.0843

0.0009

0.0860

0.0823

0.1332

0.0006

0.1342

0.1317

WFG3

0.0733

0.0007

0.0749

0.0722

0.1400

0.0004

0.1409

0.1392

0.2451

0.0013

0.2484

0.2430

0.3169

0.0015

0.3205

0.3130

0.4880

0.0019

0.4909

0.4851

WFG4

0.0874

0.0001

0.0876

0.0873

0.1542

0.0002

0.1550

0.1539

0.2743

0.0002

0.2748

0.2739

0.3049

0.0002

0.3054

0.3045

0.4725

0.0005

0.4737

0.4715

WFG5

0.0880

0.0001

0.0882

0.0878

0.1542

0.0001

0.1545

0.1539

0.2739

0.0002

0.2742

0.2734

0.3047

0.0004

0.3057

0.3041

0.4711

0.0005

0.4725

0.4696
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Table E.20: Average, Standard Deviation, Maximum, and Minimum IGD for
the NSGA-III (continue)

NSGA-III IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0872

0.0001

0.0874

0.0870

0.1536

0.0001

0.1538

0.1534

0.2732

0.0002

0.2735

0.2728

0.3045

0.0005

0.3058

0.3036

0.4712

0.0006

0.4722

0.4702

WFG7

0.0874

0.0001

0.0877

0.0872

0.1540

0.0002

0.1549

0.1537

0.2737

0.0002

0.2740

0.2734

0.3041

0.0003

0.3051

0.3036

0.4706

0.0005

0.4715

0.4698

WFG8

0.0880

0.0001

0.0882

0.0877

0.1539

0.0001

0.1542

0.1537

0.2735

0.0002

0.2745

0.2732

0.3038

0.0003

0.3046

0.3035

0.4705

0.0005

0.4715

0.4699

WFG9

0.0881

0.0002

0.0888

0.0876

0.1532

0.0002

0.1536

0.1528

0.2730

0.0002

0.2733

0.2726

0.3039

0.0004

0.3049

0.3034

0.4707

0.0005

0.4715

0.4695



Appendix F

Performance Measure Values for
Chapter 6

This appendix provides the average, standard deviation, maximum, and min-
imum HV and IGD performance measure values for each algorithm on each
problem instance for Chapter 6. Section F.1 lists the HV performance mea-
sure tables; that is, tables F.1 to F.6. Section F.2 lists the IGD performance
measure tables; that is, tables F.7 to F.12. Note that the tables are listed
alphabetically according to algorithm name.

F.1 Hypervolume Values
The average, standard deviation, maximum, and minimum HV performance
measure values for each algorithm on each problem instance are listed in ta-
bles F.1 to F.6. Note that these performance measure values are associated
with Chapter 6.
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Table F.1: Average, Standard Deviation, Maximum, and Minimum HV for the
KnMGPSOR

KnMGPSOR HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.3128

0.0035

1.3215

1.3064

1.5339

0.0120

1.5535

1.5064

1.9658

0.0292

2.0187

1.8908

2.3460

0.0492

2.4340

2.2035

3.8769

0.0458

3.9722

3.7871

DTLZ2

1.3213

0.0005

1.3219

1.3196

1.5884

0.0033

1.5964

1.5813

2.0553

0.0163

2.0816

2.0078

2.3936

0.0419

2.4585

2.3206

3.6928

0.0984

3.8502

3.4986

DTLZ3

1.3043

0.0033

1.3097

1.2972

1.5300

0.0123

1.5575

1.5077

1.9684

0.0284

2.0227

1.8841

2.2668

0.0795

2.3631

2.0902

3.7586

0.0850

3.9242

3.5033

DTLZ4

1.2132

0.1120

1.3193

1.0797

1.4366

0.0591

1.4960

1.2898

1.6303

0.0900

1.7003

1.2226

2.4376

0.0843

2.5355

2.1902

3.9240

0.0993

4.1222

3.6777

DTLZ5

1.2707

0.0006

1.2715

1.2693

1.4918

0.0025

1.4972

1.4867

1.8887

0.0063

1.8993

1.8771

2.2175

0.0105

2.2338

2.1991

3.3282

0.0245

3.3810

3.2796

DTLZ6

0.7795

0.0077

0.7956

0.7687

1.0696

0.0124

1.0891

1.0409

1.2673

0.0286

1.3162

1.2066

1.2702

0.0758

1.4557

1.1426

1.7473

0.1712

2.0098

1.3451
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Table F.1: Average, Standard Deviation, Maximum, and Minimum HV for the
KnMGPSOR (continue)

KnMGPSOR HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

1.1238

0.0545

1.3003

0.9787

1.3195

0.0264

1.3913

1.2801

1.3259

0.0851

1.5021

1.1701

1.2377

0.1564

1.5225

0.9940

1.4467

0.2521

2.1225

0.8603

WFG1

0.7997

0.0891

0.9636

0.6296

0.5584

0.1372

0.9260

0.2943

0.5760

0.3509

1.8411

0.1390

0.3148

0.5219

2.3630

0.0173

3.3295

0.6368

3.6117

0.0003

WFG2

1.1746

0.0487

1.2153

0.9590

1.3603

0.0329

1.4362

1.2877

1.7957

0.0307

1.8446

1.7112

2.1131

0.0348

2.1860

2.0361

3.5793

0.0396

3.6359

3.5052

WFG3

1.0489

0.0167

1.0814

1.0116

1.1342

0.0230

1.1830

1.0816

1.3046

0.0351

1.3941

1.2187

1.3936

0.0655

1.5059

1.2844

2.4540

0.1001

2.6431

2.2563

WFG4

0.6977

0.0122

0.7239

0.6715

0.6417

0.0145

0.6715

0.6175

0.6227

0.0244

0.6776

0.5733

0.6261

0.0418

0.7036

0.5374

1.4612

0.0705

1.5703

1.3125

WFG5

0.7571

0.0455

0.8485

0.6573

0.7929

0.0177

0.8334

0.7602

0.7633

0.0309

0.8275

0.7093

0.7320

0.0619

0.9118

0.6091

1.0833

0.0910

1.2645

0.9390
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Table F.1: Average, Standard Deviation, Maximum, and Minimum HV for the
KnMGPSOR (continue)

KnMGPSOR HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.9104

0.0197

0.9399

0.8499

0.8793

0.0184

0.9150

0.8335

0.9216

0.0308

0.9727

0.8123

0.9654

0.0622

1.0947

0.8330

1.5325

0.0818

1.7286

1.3883

WFG7

0.7426

0.0251

0.7838

0.6806

0.7675

0.0219

0.8243

0.7359

0.8693

0.0228

0.9195

0.8129

0.9211

0.0509

1.0449

0.8279

1.5080

0.0711

1.6677

1.2810

WFG8

0.9058

0.0122

0.9272

0.8794

0.8896

0.0274

0.9638

0.8376

0.9940

0.0368

1.0547

0.9192

1.0573

0.0524

1.1505

0.9376

1.6805

0.1047

1.8872

1.4178

WFG9

0.9709

0.0137

0.9953

0.9370

0.9842

0.0230

1.0453

0.9465

1.1148

0.0354

1.2000

1.0291

1.1988

0.0682

1.3606

1.0410

1.8305

0.0902

2.0322

1.6534
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Table F.2: Average, Standard Deviation, Maximum, and Minimum HV for the
KnMGPSORI

KnMGPSORI HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.3137

0.0036

1.3249

1.3064

1.5335

0.0107

1.5535

1.5064

1.9603

0.0276

2.0187

1.8752

2.3437

0.0514

2.4340

2.1738

3.8745

0.0458

3.9722

3.7633

DTLZ2

1.3213

0.0005

1.3220

1.3196

1.5882

0.0035

1.5964

1.5791

2.0585

0.0156

2.0844

2.0078

2.3995

0.0444

2.4650

2.2240

3.7038

0.1042

3.8596

3.3158

DTLZ3

1.3049

0.0034

1.3164

1.2972

1.5292

0.0110

1.5575

1.5077

1.9668

0.0336

2.0324

1.8402

2.2720

0.0798

2.4075

2.0172

3.7437

0.0905

3.9242

3.4654

DTLZ4

1.2062

0.1126

1.3193

1.0797

1.4374

0.0513

1.4960

1.2898

1.6397

0.0675

1.7003

1.2226

2.4429

0.0842

2.5435

2.1374

3.9237

0.0949

4.1222

3.6777

DTLZ5

1.2708

0.0005

1.2715

1.2693

1.4916

0.0024

1.4972

1.4867

1.8895

0.0062

1.9012

1.8771

2.2155

0.0111

2.2374

2.1960

3.3279

0.0257

3.3916

3.2796

DTLZ6

0.7789

0.0075

0.7956

0.7651

1.0724

0.0117

1.0939

1.0409

1.2687

0.0291

1.3175

1.1997

1.2681

0.0683

1.4557

1.1426

1.7622

0.1527

2.0125

1.3451
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Table F.2: Average, Standard Deviation, Maximum, and Minimum HV for the
KnMGPSORI (continue)

KnMGPSORI HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

1.1209

0.0570

1.3003

0.9787

1.3230

0.0310

1.3942

1.2515

1.3172

0.0755

1.5021

1.1555

1.2065

0.1349

1.5225

0.9897

1.4279

0.2402

2.1225

0.8603

WFG1

0.8158

0.0967

1.0669

0.6296

0.5932

0.1754

1.4261

0.2943

0.5609

0.3413

1.8411

0.1390

0.2569

0.4112

2.3630

0.0173

3.2661

0.7641

3.7226

0.0001

WFG2

1.1804

0.0365

1.2196

0.9590

1.3602

0.0318

1.4362

1.2877

1.8009

0.0281

1.8692

1.7112

2.1120

0.0663

2.2024

1.7313

3.5812

0.0464

3.6710

3.4376

WFG3

1.0484

0.0205

1.0867

1.0004

1.1317

0.0220

1.1830

1.0816

1.3026

0.0330

1.3941

1.2108

1.3996

0.0664

1.5185

1.2581

2.4687

0.1084

2.6625

2.2289

WFG4

0.6981

0.0128

0.7270

0.6715

0.6396

0.0154

0.6772

0.6062

0.6197

0.0281

0.6800

0.5618

0.6255

0.0405

0.7115

0.5374

1.4658

0.0676

1.5882

1.3125

WFG5

0.7511

0.0439

0.8485

0.6573

0.7931

0.0255

0.8564

0.7239

0.7555

0.0373

0.8336

0.6902

0.7253

0.0565

0.9118

0.6091

1.0685

0.0972

1.2697

0.9063
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Table F.2: Average, Standard Deviation, Maximum, and Minimum HV for the
KnMGPSORI (continue)

KnMGPSORI HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.9117

0.0197

0.9399

0.8499

0.8759

0.0220

0.9456

0.8138

0.9238

0.0300

0.9869

0.8123

0.9711

0.0590

1.0947

0.8314

1.5248

0.0828

1.7286

1.3595

WFG7

0.7432

0.0225

0.7875

0.6806

0.7636

0.0208

0.8243

0.7294

0.8719

0.0315

0.9247

0.7568

0.9178

0.0459

1.0449

0.8093

1.5227

0.0756

1.6941

1.2810

WFG8

0.9044

0.0153

0.9430

0.8767

0.8930

0.0287

0.9638

0.8375

0.9987

0.0396

1.0892

0.9067

1.0695

0.0488

1.1911

0.9376

1.6658

0.1000

1.8872

1.4178

WFG9

0.9714

0.0126

0.9953

0.9370

0.9867

0.0218

1.0540

0.9465

1.1120

0.0336

1.2000

1.0291

1.1995

0.0736

1.3606

1.0410

1.8204

0.0835

2.0524

1.6534
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Table F.3: Average, Standard Deviation, Maximum, and Minimum HV for the
KnMGPSOSTD

KnMGPSOSTD HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.3173

0.0066

1.3309

1.3064

1.5367

0.0113

1.5671

1.5064

1.9695

0.0377

2.1102

1.8752

2.3483

0.0539

2.5057

2.1738

3.8743

0.0562

4.1078

3.6786

DTLZ2

1.3211

0.0007

1.3220

1.3183

1.5883

0.0035

1.5964

1.5791

2.0583

0.0172

2.0844

1.9947

2.4003

0.0475

2.4809

2.2240

3.6931

0.1116

3.8596

3.2707

DTLZ3

1.3074

0.0097

1.3307

1.2444

1.5328

0.0125

1.5764

1.5077

1.9740

0.0345

2.0397

1.8402

2.2767

0.0843

2.4439

2.0172

3.7513

0.0938

3.9432

3.4654

DTLZ4

1.2111

0.1114

1.3193

1.0797

1.4304

0.0515

1.4960

1.2898

1.6621

0.0673

1.9084

1.2226

2.4731

0.0841

2.5937

2.1374

3.9785

0.1135

4.1772

3.6777

DTLZ5

1.2705

0.0007

1.2715

1.2676

1.4916

0.0025

1.4978

1.4827

1.8918

0.0074

1.9097

1.8771

2.2188

0.0129

2.2462

2.1960

3.3291

0.0280

3.4111

3.2796

DTLZ6

0.7759

0.0091

0.7978

0.7521

1.0726

0.0122

1.0997

1.0409

1.2734

0.0297

1.3434

1.1997

1.2801

0.0686

1.4557

1.1426

1.7972

0.1569

2.0659

1.3451
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Table F.3: Average, Standard Deviation, Maximum, and Minimum HV for the
KnMGPSOSTD (continue)

KnMGPSOSTD HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

1.1179

0.0592

1.3003

0.9787

1.3311

0.0383

1.4275

1.2497

1.3567

0.1032

1.6064

1.1555

1.3279

0.2293

1.9255

0.9897

1.7321

0.5564

3.2312

0.8603

WFG1

0.6895

0.2014

1.0669

0.2481

0.4829

0.2173

1.4261

0.0999

0.4211

0.3464

1.8411

0.0436

0.1813

0.3520

2.3630

0.0046

2.9611

1.1705

3.7226

0.0000

WFG2

1.1744

0.0326

1.2196

0.9590

1.3469

0.0416

1.4362

1.2107

1.7948

0.0321

1.8692

1.7105

2.1006

0.0742

2.2024

1.7262

3.5821

0.0553

3.6973

3.4302

WFG3

1.0395

0.0242

1.0867

0.9810

1.1180

0.0301

1.1830

1.0137

1.3124

0.0388

1.4129

1.2108

1.4250

0.0766

1.5851

1.2581

2.4630

0.1067

2.6625

2.2289

WFG4

0.6948

0.0165

0.7270

0.6287

0.6401

0.0156

0.6772

0.5998

0.6258

0.0314

0.7024

0.5618

0.6265

0.0397

0.7115

0.5374

1.4557

0.0727

1.5882

1.2534

WFG5

0.7541

0.0501

0.9587

0.6573

0.7961

0.0288

0.8768

0.7239

0.7735

0.0459

0.8885

0.6902

0.7569

0.0707

0.9422

0.6091

1.1076

0.1113

1.3793

0.9063
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Table F.3: Average, Standard Deviation, Maximum, and Minimum HV for the
KnMGPSOSTD (continue)

KnMGPSOSTD HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.8961

0.0312

0.9399

0.7986

0.8651

0.0296

0.9456

0.7823

0.9187

0.0333

0.9869

0.8123

0.9661

0.0605

1.0947

0.8023

1.5172

0.0820

1.7286

1.3533

WFG7

0.7441

0.0223

0.7903

0.6806

0.7652

0.0219

0.8243

0.7131

0.8772

0.0332

0.9357

0.7568

0.9316

0.0546

1.0747

0.8093

1.5213

0.0785

1.6941

1.2810

WFG8

0.9026

0.0150

0.9430

0.8713

0.8934

0.0277

0.9638

0.8370

1.0085

0.0390

1.0995

0.9067

1.0775

0.0566

1.2150

0.9256

1.6739

0.1086

1.8872

1.2692

WFG9

0.9674

0.0144

0.9953

0.9170

0.9881

0.0221

1.0540

0.9465

1.1154

0.0354

1.2095

1.0291

1.1901

0.0700

1.3606

1.0410

1.8251

0.0838

2.0524

1.6534



APPENDIX F. PERFORMANCE MEASURE VALUES FOR CHAPTER 6 382

Table F.4: Average, Standard Deviation, Maximum, and Minimum HV for the
PMGPSOR

PMGPSOR HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.2315

0.0052

1.2402

1.2208

1.4676

0.0127

1.4944

1.4333

1.8499

0.0296

1.9467

1.7910

2.2262

0.0417

2.3213

2.1590

3.5740

0.0844

3.7919

3.3776

DTLZ2

1.2529

0.0093

1.2648

1.2178

1.4911

0.0221

1.5384

1.4584

1.8927

0.0367

1.9464

1.8091

2.1854

0.0737

2.3038

2.0230

3.3265

0.1363

3.5527

3.0707

DTLZ3

1.1372

0.0191

1.1809

1.1053

1.3785

0.0292

1.4438

1.3356

1.7709

0.0430

1.8672

1.7111

2.0091

0.0920

2.2177

1.7895

3.1574

0.2251

3.6398

2.6980

DTLZ4

1.2960

0.0051

1.3062

1.2822

1.2243

0.0274

1.2629

1.1606

1.5929

0.0429

1.6731

1.5103

2.4023

0.0666

2.5216

2.2664

3.8437

0.1314

4.0731

3.5575

DTLZ5

1.2034

0.0101

1.2204

1.1675

1.3571

0.0263

1.3974

1.2678

1.6725

0.0334

1.7542

1.5924

1.9228

0.0476

2.0211

1.8140

2.8920

0.1010

3.0902

2.6462

DTLZ6

0.7533

0.0096

0.7702

0.7240

1.0586

0.0149

1.0900

1.0285

1.2885

0.0306

1.3378

1.2083

1.3341

0.0556

1.4394

1.1921

1.8842

0.1045

2.0820

1.6136



APPENDIX F. PERFORMANCE MEASURE VALUES FOR CHAPTER 6 383

Table F.4: Average, Standard Deviation, Maximum, and Minimum HV for the
PMGPSOR (continue)

PMGPSOR HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.9864

0.0709

1.1210

0.8395

1.1765

0.0722

1.2765

1.0143

1.2531

0.1570

1.4870

0.8595

1.2870

0.1979

1.5813

0.8782

1.4743

0.2852

2.0590

0.7661

WFG1

0.2956

0.0177

0.3251

0.2596

0.1309

0.0135

0.1598

0.1074

0.0273

0.0036

0.0337

0.0204

0.0041

0.0009

0.0061

0.0028

0.0000

0.0000

0.0000

0.0000

WFG2

1.0281

0.0160

1.0570

0.9982

1.1028

0.0316

1.1729

1.0414

1.3512

0.0523

1.4637

1.2426

1.5618

0.0962

1.7336

1.3330

3.0107

0.1720

3.3104

2.7376

WFG3

0.8910

0.0179

0.9247

0.8522

0.9365

0.0300

0.9871

0.8743

1.0898

0.0576

1.2011

0.9449

1.1766

0.0857

1.3403

0.9827

2.2056

0.1299

2.4326

1.9744

WFG4

0.6574

0.0153

0.6866

0.6250

0.6059

0.0156

0.6376

0.5818

0.6086

0.0223

0.6475

0.5738

0.6250

0.0342

0.6835

0.5506

1.3826

0.0623

1.4960

1.2710

WFG5

0.6651

0.0338

0.7403

0.5780

0.7960

0.0310

0.8461

0.7197

0.7904

0.0352

0.8988

0.7320

0.7530

0.0414

0.8132

0.6413

1.1467

0.0611

1.3198

1.0362
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Table F.4: Average, Standard Deviation, Maximum, and Minimum HV for the
PMGPSOR (continue)

PMGPSOR HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.7545

0.0247

0.7950

0.7091

0.7768

0.0313

0.8326

0.7162

0.8635

0.0412

0.9303

0.7690

0.9223

0.0481

1.0084

0.8318

1.4286

0.0980

1.5943

1.1628

WFG7

0.6867

0.0199

0.7459

0.6571

0.7357

0.0189

0.7806

0.7115

0.8475

0.0317

0.8976

0.7570

0.8836

0.0507

0.9728

0.7823

1.4723

0.0841

1.6911

1.2506

WFG8

0.8162

0.0150

0.8385

0.7740

0.8235

0.0348

0.8882

0.7512

0.9468

0.0322

1.0302

0.8851

0.9827

0.0521

1.0729

0.8737

1.5479

0.0848

1.6868

1.3447

WFG9

0.8625

0.0230

0.9118

0.8194

0.8901

0.0217

0.9227

0.8430

1.0576

0.0265

1.1130

1.0028

1.1336

0.0722

1.2594

0.9760

1.8196

0.0893

1.9832

1.6531
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Table F.5: Average, Standard Deviation, Maximum, and Minimum HV for the
PMGPSORI

PMGPSORI HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.2313

0.0059

1.2449

1.2176

1.4687

0.0122

1.4949

1.4333

1.8484

0.0298

1.9467

1.7904

2.2255

0.0398

2.3213

2.1476

3.5653

0.0824

3.7919

3.3471

DTLZ2

1.2525

0.0109

1.2715

1.2178

1.4920

0.0199

1.5411

1.4584

1.8938

0.0387

1.9783

1.8091

2.1889

0.0664

2.3041

2.0230

3.3386

0.1384

3.6129

3.0707

DTLZ3

1.1376

0.0179

1.1809

1.1010

1.3810

0.0294

1.4573

1.3266

1.7725

0.0515

1.9270

1.6780

2.0271

0.0923

2.2667

1.7895

3.1979

0.2039

3.6683

2.6980

DTLZ4

1.2970

0.0046

1.3062

1.2822

1.2277

0.0247

1.2840

1.1606

1.5773

0.0528

1.6731

1.4160

2.4009

0.0605

2.5216

2.2664

3.8325

0.1246

4.0731

3.5558

DTLZ5

1.2024

0.0095

1.2204

1.1675

1.3611

0.0226

1.4065

1.2678

1.6728

0.0359

1.7542

1.5924

1.9284

0.0568

2.0383

1.7919

2.8986

0.0930

3.0902

2.6462

DTLZ6

0.7544

0.0085

0.7702

0.7240

1.0595

0.0133

1.0900

1.0285

1.2897

0.0303

1.3568

1.2083

1.3203

0.0543

1.4394

1.1916

1.8764

0.1042

2.0820

1.6136
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Table F.5: Average, Standard Deviation, Maximum, and Minimum HV for the
PMGPSORI (continue)

PMGPSORI HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.9878

0.0733

1.1784

0.8395

1.1825

0.0839

1.3232

0.9121

1.2472

0.1575

1.5690

0.8358

1.2411

0.2068

1.5813

0.7338

1.4261

0.2749

2.0590

0.7661

WFG1

0.2967

0.0185

0.3340

0.2565

0.1307

0.0122

0.1598

0.1074

0.0266

0.0038

0.0360

0.0185

0.0042

0.0009

0.0061

0.0028

0.0000

0.0000

0.0000

0.0000

WFG2

1.0270

0.0167

1.0647

0.9944

1.1054

0.0335

1.1925

1.0414

1.3505

0.0554

1.4637

1.2426

1.5651

0.1023

1.7717

1.2986

3.0038

0.1706

3.3403

2.6030

WFG3

0.8910

0.0178

0.9247

0.8522

0.9385

0.0275

0.9874

0.8743

1.1002

0.0522

1.2011

0.9449

1.1824

0.0775

1.3403

0.9827

2.1871

0.1462

2.4326

1.8330

WFG4

0.6556

0.0161

0.6900

0.6130

0.6086

0.0179

0.6501

0.5664

0.6067

0.0238

0.6626

0.5516

0.6144

0.0346

0.7023

0.5506

1.3824

0.0611

1.4960

1.2625

WFG5

0.6612

0.0315

0.7403

0.5780

0.7992

0.0304

0.8642

0.7197

0.7902

0.0356

0.8988

0.7282

0.7632

0.0435

0.8655

0.6413

1.1413

0.0729

1.3198

0.8868
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Table F.5: Average, Standard Deviation, Maximum, and Minimum HV for the
PMGPSORI (continue)

PMGPSORI HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.7542

0.0278

0.8093

0.7046

0.7791

0.0272

0.8326

0.7036

0.8690

0.0403

0.9419

0.7690

0.9216

0.0477

1.0084

0.8182

1.4429

0.0948

1.6454

1.1628

WFG7

0.6854

0.0187

0.7459

0.6517

0.7353

0.0204

0.7806

0.6925

0.8499

0.0327

0.9142

0.7570

0.8851

0.0518

0.9768

0.7785

1.4708

0.0785

1.6911

1.2506

WFG8

0.8173

0.0175

0.8611

0.7740

0.8175

0.0324

0.8882

0.7303

0.9434

0.0340

1.0302

0.8851

0.9856

0.0521

1.0759

0.8535

1.5625

0.1043

1.8373

1.3447

WFG9

0.8625

0.0252

0.9345

0.8081

0.8886

0.0226

0.9337

0.8430

1.0626

0.0275

1.1353

1.0028

1.1364

0.0629

1.2594

0.9760

1.8147

0.0967

1.9832

1.4814
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Table F.6: Average, Standard Deviation, Maximum, and Minimum HV for the
PMGPSOSTD

PMGPSOSTD HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

1.2378

0.0186

1.3201

1.2176

1.4677

0.0120

1.4949

1.4333

1.8540

0.0412

2.0809

1.7861

2.2241

0.0457

2.3720

2.1232

3.5681

0.0781

3.7919

3.3336

DTLZ2

1.2569

0.0129

1.2871

1.2178

1.4956

0.0207

1.5487

1.4561

1.8959

0.0414

1.9783

1.8068

2.1943

0.0711

2.3427

2.0229

3.3468

0.1381

3.6720

3.0707

DTLZ3

1.1530

0.0325

1.2553

1.1003

1.3874

0.0308

1.4573

1.3266

1.7730

0.0540

1.9270

1.6035

2.0190

0.0867

2.2667

1.7895

3.2190

0.2008

3.6683

2.6980

DTLZ4

1.2952

0.0077

1.3062

1.2480

1.2374

0.0273

1.2887

1.1606

1.5956

0.0530

1.6958

1.4160

2.4288

0.0706

2.5923

2.2664

3.8916

0.1439

4.1724

3.5558

DTLZ5

1.2078

0.0139

1.2441

1.1675

1.3661

0.0275

1.4382

1.2678

1.6833

0.0419

1.7781

1.5843

1.9390

0.0644

2.0801

1.7728

2.8974

0.0999

3.0902

2.5608

DTLZ6

0.7531

0.0091

0.7702

0.7240

1.0583

0.0130

1.0900

1.0285

1.2928

0.0302

1.3568

1.2083

1.3191

0.0533

1.4394

1.1916

1.8911

0.1054

2.2008

1.6136
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Table F.6: Average, Standard Deviation, Maximum, and Minimum HV for the
PMGPSOSTD (continue)

PMGPSOSTD HV

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.9799

0.0721

1.1784

0.8311

1.1850

0.0927

1.3671

0.9121

1.2829

0.1777

1.6896

0.8358

1.3751

0.3175

2.1026

0.7338

1.7269

0.5383

2.8645

0.7661

WFG1

0.2960

0.0261

0.3653

0.2066

0.1268

0.0177

0.1598

0.0720

0.0253

0.0071

0.0455

0.0090

0.0038

0.0014

0.0093

0.0012

0.0000

0.0000

0.0000

0.0000

WFG2

1.0264

0.0191

1.0672

0.9666

1.1179

0.0386

1.1980

1.0414

1.3727

0.0628

1.5057

1.2426

1.5838

0.1027

1.7717

1.2986

2.9955

0.1739

3.3403

2.6030

WFG3

0.8921

0.0222

0.9543

0.8375

0.9476

0.0317

1.0263

0.8743

1.1133

0.0617

1.2478

0.9449

1.2051

0.0925

1.4536

0.9827

2.1662

0.1429

2.4326

1.8330

WFG4

0.6532

0.0168

0.6900

0.6056

0.6099

0.0199

0.6501

0.5642

0.6093

0.0260

0.6836

0.5516

0.6183

0.0348

0.7044

0.5506

1.3725

0.0666

1.4960

1.2262

WFG5

0.6618

0.0311

0.7412

0.5780

0.8022

0.0312

0.8827

0.7197

0.8037

0.0470

0.9427

0.7128

0.7898

0.0658

1.0194

0.6413

1.1734

0.0932

1.4512

0.8868
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Table F.6: Average, Standard Deviation, Maximum, and Minimum HV for the
PMGPSOSTD (continue)

PMGPSOSTD HV

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.7509

0.0272

0.8093

0.7046

0.7744

0.0323

0.8412

0.7017

0.8707

0.0452

0.9773

0.7690

0.9228

0.0569

1.0573

0.8047

1.4395

0.0940

1.6454

1.1628

WFG7

0.7014

0.0327

0.7821

0.6426

0.7403

0.0236

0.8072

0.6925

0.8493

0.0372

0.9330

0.7307

0.8902

0.0554

0.9969

0.7748

1.4708

0.0859

1.6911

1.2506

WFG8

0.8172

0.0217

0.8711

0.7577

0.8189

0.0316

0.8893

0.7303

0.9521

0.0447

1.0841

0.8395

1.0189

0.0710

1.1943

0.8535

1.5799

0.1133

1.8373

1.3341

WFG9

0.8599

0.0263

0.9345

0.8069

0.8883

0.0235

0.9377

0.8430

1.0642

0.0284

1.1409

1.0028

1.1382

0.0591

1.2594

0.9760

1.8140

0.0895

1.9832

1.4814
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F.2 Inverted Generational Distance Values
The average, standard deviation, maximum, and minimum IGD performance
measure values for each algorithm on each problem instance are listed in ta-
bles F.7 to F.12. Note that these performance measure values are associated
with Chapter 6.

Table F.7: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnMGPSOR

KnMGPSOR IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0012

0.0002

0.0017

0.0010

0.0056

0.0003

0.0064

0.0050

0.0098

0.0007

0.0111

0.0082

0.0091

0.0005

0.0100

0.0080

0.0096

0.0006

0.0106

0.0084

DTLZ2

0.0186

0.0003

0.0192

0.0180

0.0148

0.0004

0.0156

0.0139

0.0152

0.0003

0.0158

0.0143

0.0148

0.0003

0.0153

0.0142

0.0198

0.0003

0.0206

0.0192

DTLZ3

0.0114

0.0005

0.0124

0.0104

0.0103

0.0003

0.0110

0.0095

0.0145

0.0004

0.0151

0.0139

0.0153

0.0003

0.0162

0.0147

0.0211

0.0006

0.0224

0.0201

DTLZ4

0.0214

0.0022

0.0238

0.0189

0.0212

0.0018

0.0257

0.0187

0.0288

0.0003

0.0299

0.0285

0.0259

0.0002

0.0262

0.0253

0.0265

0.0002

0.0269

0.0262
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Table F.7: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnMGPSOR (continue)

KnMGPSOR IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ5

0.0210

0.0003

0.0214

0.0203

0.0162

0.0004

0.0169

0.0154

0.0138

0.0005

0.0145

0.0128

0.0136

0.0005

0.0144

0.0126

0.0126

0.0005

0.0137

0.0116

DTLZ6

0.0018

0.0002

0.0023

0.0014

0.0040

0.0006

0.0053

0.0031

0.0053

0.0007

0.0066

0.0040

0.0066

0.0006

0.0081

0.0053

0.0078

0.0010

0.0096

0.0061

DTLZ7

0.1173

0.0011

0.1193

0.1134

0.1373

0.0015

0.1407

0.1330

0.2237

0.0007

0.2253

0.2219

0.0926

0.0003

0.0931

0.0922

0.1380

0.0003

0.1388

0.1373

WFG1

0.0363

0.0010

0.0394

0.0346

0.0474

0.0009

0.0497

0.0461

0.0749

0.0008

0.0767

0.0734

0.0757

0.0010

0.0785

0.0742

0.1316

0.0006

0.1337

0.1312

WFG2

0.0479

0.0012

0.0517

0.0454

0.0594

0.0005

0.0609

0.0589

0.0885

0.0003

0.0891

0.0880

0.0844

0.0003

0.0850

0.0836

0.1344

0.0004

0.1350

0.1336

WFG3

0.0756

0.0001

0.0759

0.0754

0.1412

0.0001

0.1413

0.1410

0.2432

0.0001

0.2433

0.2430

0.3117

0.0001

0.3119

0.3115

0.4838

0.0001

0.4840

0.4836
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Table F.7: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnMGPSOR (continue)

KnMGPSOR IGD

Benchmark

Function

nm

3 5 8 10 15

WFG4

0.0882

0.0001

0.0883

0.0881

0.1532

0.0002

0.1536

0.1529

0.2711

0.0007

0.2727

0.2697

0.3012

0.0011

0.3033

0.2975

0.4678

0.0014

0.4701

0.4652

WFG5

0.0885

0.0004

0.0893

0.0876

0.1542

0.0001

0.1545

0.1539

0.2730

0.0001

0.2734

0.2728

0.3029

0.0002

0.3033

0.3026

0.4669

0.0003

0.4679

0.4664

WFG6

0.0915

0.0002

0.0918

0.0911

0.1556

0.0002

0.1560

0.1553

0.2726

0.0002

0.2729

0.2720

0.3012

0.0003

0.3020

0.3007

0.4650

0.0006

0.4661

0.4635

WFG7

0.0902

0.0002

0.0905

0.0898

0.1551

0.0002

0.1554

0.1547

0.2734

0.0003

0.2738

0.2724

0.3019

0.0003

0.3024

0.3012

0.4654

0.0006

0.4669

0.4644

WFG8

0.0922

0.0001

0.0925

0.0919

0.1564

0.0002

0.1568

0.1560

0.2729

0.0003

0.2735

0.2725

0.3016

0.0003

0.3024

0.3008

0.4650

0.0006

0.4661

0.4637

WFG9

0.0910

0.0002

0.0912

0.0904

0.1548

0.0002

0.1554

0.1544

0.2730

0.0001

0.2733

0.2727

0.3024

0.0002

0.3028

0.3020

0.4661

0.0003

0.4669

0.4653
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Table F.8: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnMGPSORI

KnMGPSORI IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0012

0.0002

0.0018

0.0010

0.0055

0.0003

0.0064

0.0050

0.0098

0.0006

0.0111

0.0082

0.0090

0.0006

0.0100

0.0069

0.0096

0.0006

0.0106

0.0084

DTLZ2

0.0188

0.0004

0.0194

0.0180

0.0149

0.0004

0.0156

0.0139

0.0152

0.0003

0.0159

0.0143

0.0148

0.0002

0.0153

0.0142

0.0198

0.0003

0.0206

0.0192

DTLZ3

0.0114

0.0005

0.0127

0.0102

0.0102

0.0003

0.0110

0.0095

0.0145

0.0004

0.0153

0.0137

0.0154

0.0004

0.0165

0.0147

0.0211

0.0006

0.0224

0.0197

DTLZ4

0.0215

0.0022

0.0238

0.0184

0.0210

0.0018

0.0257

0.0182

0.0288

0.0002

0.0299

0.0285

0.0258

0.0002

0.0262

0.0252

0.0265

0.0001

0.0269

0.0262

DTLZ5

0.0210

0.0003

0.0214

0.0203

0.0162

0.0005

0.0172

0.0148

0.0139

0.0005

0.0148

0.0128

0.0136

0.0004

0.0144

0.0126

0.0127

0.0005

0.0137

0.0116

DTLZ6

0.0018

0.0002

0.0023

0.0014

0.0039

0.0005

0.0053

0.0031

0.0053

0.0006

0.0066

0.0040

0.0066

0.0007

0.0082

0.0051

0.0076

0.0009

0.0096

0.0058
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Table F.8: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnMGPSORI (continue)

KnMGPSORI IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.1170

0.0015

0.1197

0.1121

0.1374

0.0017

0.1420

0.1330

0.2236

0.0007

0.2253

0.2219

0.0926

0.0003

0.0934

0.0921

0.1380

0.0003

0.1388

0.1373

WFG1

0.0364

0.0011

0.0394

0.0343

0.0475

0.0008

0.0498

0.0461

0.0750

0.0008

0.0773

0.0734

0.0755

0.0009

0.0785

0.0739

0.1315

0.0007

0.1343

0.1285

WFG2

0.0478

0.0009

0.0517

0.0454

0.0594

0.0005

0.0609

0.0588

0.0884

0.0004

0.0891

0.0874

0.0844

0.0004

0.0862

0.0834

0.1344

0.0004

0.1350

0.1335

WFG3

0.0756

0.0001

0.0759

0.0753

0.1411

0.0001

0.1413

0.1410

0.2431

0.0001

0.2433

0.2430

0.3117

0.0001

0.3119

0.3114

0.4838

0.0001

0.4841

0.4836

WFG4

0.0882

0.0001

0.0883

0.0880

0.1533

0.0002

0.1538

0.1529

0.2711

0.0007

0.2727

0.2697

0.3013

0.0009

0.3033

0.2975

0.4678

0.0014

0.4707

0.4646

WFG5

0.0885

0.0004

0.0893

0.0876

0.1542

0.0002

0.1547

0.1537

0.2730

0.0002

0.2734

0.2728

0.3029

0.0002

0.3033

0.3025

0.4669

0.0003

0.4679

0.4663
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Table F.8: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnMGPSORI (continue)

KnMGPSORI IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0915

0.0002

0.0918

0.0911

0.1556

0.0002

0.1562

0.1548

0.2725

0.0002

0.2729

0.2720

0.3012

0.0003

0.3020

0.3006

0.4650

0.0005

0.4661

0.4635

WFG7

0.0902

0.0002

0.0905

0.0898

0.1551

0.0002

0.1554

0.1547

0.2733

0.0003

0.2738

0.2724

0.3018

0.0003

0.3024

0.3009

0.4654

0.0006

0.4669

0.4643

WFG8

0.0921

0.0002

0.0925

0.0918

0.1564

0.0002

0.1569

0.1559

0.2729

0.0003

0.2735

0.2723

0.3016

0.0003

0.3025

0.3008

0.4650

0.0006

0.4665

0.4637

WFG9

0.0910

0.0002

0.0912

0.0904

0.1549

0.0002

0.1555

0.1544

0.2730

0.0001

0.2733

0.2727

0.3024

0.0002

0.3028

0.3020

0.4661

0.0003

0.4669

0.4653
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Table F.9: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnMGPSOSTD

KnMGPSOSTD IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0020

0.0017

0.0087

0.0010

0.0055

0.0003

0.0064

0.0048

0.0097

0.0007

0.0111

0.0067

0.0090

0.0007

0.0106

0.0062

0.0096

0.0007

0.0107

0.0068

DTLZ2

0.0188

0.0004

0.0194

0.0179

0.0148

0.0004

0.0156

0.0139

0.0151

0.0003

0.0159

0.0143

0.0148

0.0002

0.0154

0.0142

0.0198

0.0003

0.0206

0.0192

DTLZ3

0.0125

0.0024

0.0230

0.0101

0.0103

0.0004

0.0114

0.0095

0.0146

0.0004

0.0158

0.0137

0.0154

0.0004

0.0166

0.0147

0.0211

0.0006

0.0224

0.0197

DTLZ4

0.0215

0.0022

0.0238

0.0184

0.0212

0.0017

0.0257

0.0182

0.0287

0.0004

0.0299

0.0267

0.0258

0.0002

0.0262

0.0252

0.0265

0.0002

0.0269

0.0261

DTLZ5

0.0209

0.0003

0.0214

0.0199

0.0162

0.0005

0.0172

0.0148

0.0139

0.0005

0.0152

0.0128

0.0136

0.0004

0.0144

0.0126

0.0126

0.0006

0.0140

0.0111

DTLZ6

0.0018

0.0002

0.0023

0.0013

0.0039

0.0005

0.0053

0.0031

0.0053

0.0006

0.0066

0.0040

0.0066

0.0008

0.0082

0.0051

0.0076

0.0010

0.0096

0.0057
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Table F.9: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnMGPSOSTD (continue)

KnMGPSOSTD IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.1165

0.0016

0.1197

0.1120

0.1385

0.0025

0.1467

0.1330

0.2240

0.0011

0.2267

0.2219

0.0928

0.0004

0.0941

0.0921

0.1382

0.0005

0.1403

0.1373

WFG1

0.0355

0.0015

0.0394

0.0329

0.0473

0.0008

0.0498

0.0457

0.0752

0.0011

0.0792

0.0731

0.0760

0.0012

0.0789

0.0739

0.1316

0.0008

0.1343

0.1285

WFG2

0.0477

0.0009

0.0517

0.0454

0.0593

0.0005

0.0609

0.0580

0.0883

0.0004

0.0891

0.0872

0.0843

0.0005

0.0862

0.0834

0.1344

0.0004

0.1352

0.1331

WFG3

0.0756

0.0001

0.0759

0.0753

0.1411

0.0001

0.1413

0.1409

0.2432

0.0001

0.2433

0.2430

0.3117

0.0001

0.3119

0.3114

0.4838

0.0001

0.4841

0.4835

WFG4

0.0882

0.0001

0.0883

0.0880

0.1533

0.0002

0.1539

0.1528

0.2711

0.0007

0.2727

0.2693

0.3012

0.0009

0.3033

0.2975

0.4676

0.0014

0.4707

0.4636

WFG5

0.0884

0.0005

0.0899

0.0873

0.1541

0.0002

0.1547

0.1537

0.2730

0.0001

0.2734

0.2727

0.3029

0.0002

0.3033

0.3025

0.4669

0.0003

0.4679

0.4663
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Table F.9: Average, Standard Deviation, Maximum, and Minimum IGD for
the KnMGPSOSTD (continue)

KnMGPSOSTD IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0914

0.0003

0.0918

0.0907

0.1555

0.0002

0.1562

0.1548

0.2725

0.0002

0.2729

0.2720

0.3012

0.0003

0.3020

0.3006

0.4650

0.0005

0.4661

0.4635

WFG7

0.0902

0.0002

0.0905

0.0897

0.1551

0.0002

0.1554

0.1546

0.2733

0.0003

0.2738

0.2724

0.3018

0.0004

0.3024

0.3007

0.4654

0.0006

0.4676

0.4643

WFG8

0.0921

0.0002

0.0925

0.0918

0.1564

0.0002

0.1569

0.1559

0.2729

0.0003

0.2739

0.2723

0.3016

0.0003

0.3026

0.3008

0.4650

0.0006

0.4665

0.4637

WFG9

0.0910

0.0002

0.0912

0.0904

0.1549

0.0002

0.1555

0.1544

0.2729

0.0001

0.2733

0.2725

0.3024

0.0002

0.3028

0.3020

0.4661

0.0003

0.4669

0.4653
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Table F.10: Average, Standard Deviation, Maximum, and Minimum IGD for
the PMGPSOR

PMGPSOR IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0033

0.0002

0.0039

0.0030

0.0079

0.0004

0.0087

0.0070

0.0125

0.0011

0.0140

0.0101

0.0115

0.0009

0.0128

0.0099

0.0122

0.0014

0.0150

0.0094

DTLZ2

0.0047

0.0002

0.0051

0.0045

0.0081

0.0002

0.0084

0.0077

0.0135

0.0003

0.0141

0.0129

0.0145

0.0003

0.0150

0.0141

0.0209

0.0003

0.0215

0.0201

DTLZ3

0.0043

0.0002

0.0048

0.0038

0.0077

0.0002

0.0080

0.0073

0.0136

0.0003

0.0142

0.0130

0.0151

0.0003

0.0158

0.0145

0.0212

0.0003

0.0217

0.0207

DTLZ4

0.0102

0.0006

0.0116

0.0092

0.0216

0.0013

0.0240

0.0195

0.0287

0.0002

0.0290

0.0277

0.0254

0.0002

0.0258

0.0246

0.0263

0.0002

0.0265

0.0258

DTLZ5

0.0048

0.0005

0.0064

0.0040

0.0059

0.0006

0.0070

0.0044

0.0065

0.0005

0.0073

0.0053

0.0074

0.0006

0.0088

0.0063

0.0075

0.0007

0.0098

0.0065

DTLZ6

0.0015

0.0001

0.0019

0.0013

0.0039

0.0005

0.0048

0.0030

0.0053

0.0006

0.0066

0.0043

0.0065

0.0006

0.0081

0.0051

0.0070

0.0006

0.0080

0.0057
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Table F.10: Average, Standard Deviation, Maximum, and Minimum IGD for
the PMGPSOR (continue)

PMGPSOR IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.0968

0.0003

0.0978

0.0962

0.1305

0.0003

0.1309

0.1300

0.2210

0.0003

0.2215

0.2203

0.0921

0.0001

0.0924

0.0919

0.1375

0.0001

0.1378

0.1372

WFG1

0.0331

0.0004

0.0344

0.0326

0.0472

0.0003

0.0479

0.0466

0.0767

0.0003

0.0773

0.0760

0.0785

0.0004

0.0792

0.0776

0.1348

0.0003

0.1354

0.1343

WFG2

0.0392

0.0004

0.0401

0.0381

0.0531

0.0003

0.0543

0.0526

0.0825

0.0003

0.0832

0.0817

0.0802

0.0004

0.0810

0.0793

0.1300

0.0003

0.1306

0.1293

WFG3

0.0721

0.0003

0.0729

0.0716

0.1394

0.0001

0.1397

0.1391

0.2425

0.0001

0.2427

0.2423

0.3114

0.0001

0.3117

0.3112

0.4836

0.0001

0.4837

0.4834

WFG4

0.0874

0.0002

0.0877

0.0871

0.1532

0.0003

0.1537

0.1526

0.2714

0.0005

0.2731

0.2706

0.3010

0.0009

0.3027

0.2995

0.4642

0.0010

0.4659

0.4622

WFG5

0.0872

0.0002

0.0876

0.0869

0.1540

0.0001

0.1543

0.1537

0.2730

0.0002

0.2734

0.2727

0.3026

0.0002

0.3032

0.3022

0.4664

0.0003

0.4670

0.4659
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Table F.10: Average, Standard Deviation, Maximum, and Minimum IGD for
the PMGPSOR (continue)

PMGPSOR IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0873

0.0002

0.0878

0.0869

0.1538

0.0002

0.1542

0.1535

0.2721

0.0002

0.2725

0.2718

0.3010

0.0002

0.3014

0.3006

0.4649

0.0005

0.4658

0.4636

WFG7

0.0877

0.0002

0.0881

0.0873

0.1541

0.0002

0.1544

0.1536

0.2728

0.0002

0.2734

0.2725

0.3016

0.0003

0.3021

0.3008

0.4652

0.0005

0.4663

0.4640

WFG8

0.0877

0.0004

0.0888

0.0870

0.1539

0.0004

0.1548

0.1533

0.2720

0.0003

0.2725

0.2714

0.3011

0.0003

0.3016

0.3006

0.4647

0.0004

0.4655

0.4636

WFG9

0.0868

0.0002

0.0871

0.0864

0.1532

0.0001

0.1535

0.1530

0.2724

0.0001

0.2726

0.2722

0.3020

0.0001

0.3023

0.3017

0.4657

0.0002

0.4661

0.4653
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Table F.11: Average, Standard Deviation, Maximum, and Minimum IGD for
the PMGPSORI

PMGPSORI IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0033

0.0002

0.0039

0.0029

0.0078

0.0004

0.0087

0.0070

0.0127

0.0009

0.0143

0.0101

0.0115

0.0008

0.0131

0.0093

0.0122

0.0012

0.0150

0.0094

DTLZ2

0.0047

0.0002

0.0051

0.0044

0.0081

0.0002

0.0087

0.0077

0.0135

0.0003

0.0145

0.0127

0.0146

0.0003

0.0151

0.0141

0.0208

0.0004

0.0217

0.0198

DTLZ3

0.0043

0.0002

0.0048

0.0038

0.0077

0.0002

0.0081

0.0073

0.0136

0.0003

0.0145

0.0130

0.0150

0.0003

0.0158

0.0144

0.0212

0.0003

0.0220

0.0203

DTLZ4

0.0103

0.0006

0.0117

0.0092

0.0215

0.0013

0.0244

0.0188

0.0287

0.0003

0.0292

0.0276

0.0254

0.0003

0.0259

0.0244

0.0263

0.0002

0.0266

0.0258

DTLZ5

0.0048

0.0005

0.0064

0.0039

0.0060

0.0006

0.0071

0.0044

0.0064

0.0005

0.0073

0.0050

0.0074

0.0005

0.0088

0.0063

0.0075

0.0007

0.0098

0.0061

DTLZ6

0.0015

0.0001

0.0019

0.0012

0.0038

0.0004

0.0048

0.0030

0.0052

0.0006

0.0066

0.0042

0.0065

0.0006

0.0081

0.0049

0.0070

0.0007

0.0082

0.0052
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Table F.11: Average, Standard Deviation, Maximum, and Minimum IGD for
the PMGPSORI (continue)

PMGPSORI IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.0968

0.0004

0.0985

0.0959

0.1304

0.0003

0.1311

0.1296

0.2209

0.0003

0.2215

0.2200

0.0921

0.0001

0.0924

0.0918

0.1374

0.0002

0.1378

0.1370

WFG1

0.0331

0.0003

0.0344

0.0326

0.0473

0.0004

0.0482

0.0466

0.0767

0.0004

0.0775

0.0760

0.0785

0.0004

0.0792

0.0776

0.1347

0.0003

0.1354

0.1341

WFG2

0.0392

0.0004

0.0403

0.0381

0.0531

0.0004

0.0543

0.0522

0.0825

0.0003

0.0832

0.0817

0.0802

0.0004

0.0810

0.0793

0.1300

0.0003

0.1309

0.1293

WFG3

0.0720

0.0003

0.0729

0.0716

0.1394

0.0001

0.1397

0.1391

0.2425

0.0001

0.2427

0.2423

0.3114

0.0001

0.3117

0.3112

0.4836

0.0001

0.4839

0.4834

WFG4

0.0873

0.0001

0.0877

0.0870

0.1532

0.0003

0.1537

0.1526

0.2715

0.0005

0.2731

0.2705

0.3011

0.0007

0.3027

0.2995

0.4641

0.0010

0.4659

0.4620

WFG5

0.0872

0.0002

0.0876

0.0868

0.1540

0.0001

0.1544

0.1537

0.2730

0.0002

0.2734

0.2727

0.3027

0.0002

0.3032

0.3022

0.4664

0.0003

0.4670

0.4659
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Table F.11: Average, Standard Deviation, Maximum, and Minimum IGD for
the PMGPSORI (continue)

PMGPSORI IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0873

0.0003

0.0878

0.0868

0.1538

0.0002

0.1542

0.1535

0.2721

0.0002

0.2725

0.2718

0.3010

0.0002

0.3015

0.3004

0.4649

0.0004

0.4658

0.4636

WFG7

0.0877

0.0002

0.0883

0.0873

0.1541

0.0002

0.1544

0.1536

0.2728

0.0002

0.2734

0.2723

0.3016

0.0003

0.3021

0.3008

0.4652

0.0005

0.4663

0.4640

WFG8

0.0877

0.0004

0.0888

0.0869

0.1538

0.0004

0.1548

0.1532

0.2720

0.0003

0.2726

0.2714

0.3011

0.0002

0.3016

0.3006

0.4647

0.0004

0.4655

0.4636

WFG9

0.0867

0.0002

0.0871

0.0863

0.1532

0.0001

0.1535

0.1528

0.2724

0.0001

0.2726

0.2721

0.3020

0.0001

0.3023

0.3017

0.4657

0.0002

0.4663

0.4650
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Table F.12: Average, Standard Deviation, Maximum, and Minimum IGD for
the PMGPSOSTD

PMGPSOSTD IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ1

0.0033

0.0002

0.0039

0.0028

0.0078

0.0004

0.0087

0.0070

0.0126

0.0012

0.0143

0.0076

0.0113

0.0011

0.0131

0.0062

0.0120

0.0013

0.0150

0.0090

DTLZ2

0.0047

0.0002

0.0052

0.0044

0.0081

0.0002

0.0087

0.0077

0.0135

0.0003

0.0145

0.0127

0.0146

0.0003

0.0155

0.0141

0.0208

0.0004

0.0217

0.0198

DTLZ3

0.0043

0.0002

0.0048

0.0038

0.0077

0.0002

0.0084

0.0073

0.0136

0.0003

0.0145

0.0130

0.0150

0.0003

0.0158

0.0144

0.0212

0.0003

0.0220

0.0203

DTLZ4

0.0104

0.0006

0.0121

0.0092

0.0215

0.0013

0.0244

0.0183

0.0287

0.0003

0.0292

0.0276

0.0254

0.0003

0.0259

0.0244

0.0263

0.0002

0.0266

0.0258

DTLZ5

0.0047

0.0005

0.0064

0.0039

0.0060

0.0006

0.0074

0.0044

0.0064

0.0005

0.0076

0.0048

0.0073

0.0006

0.0088

0.0060

0.0074

0.0007

0.0098

0.0061

DTLZ6

0.0015

0.0002

0.0019

0.0010

0.0038

0.0004

0.0048

0.0030

0.0052

0.0006

0.0066

0.0040

0.0064

0.0006

0.0081

0.0049

0.0070

0.0008

0.0091

0.0051
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Table F.12: Average, Standard Deviation, Maximum, and Minimum IGD for
the PMGPSOSTD (continue)

PMGPSOSTD IGD

Benchmark

Function

nm

3 5 8 10 15

DTLZ7

0.0968

0.0004

0.0985

0.0959

0.1305

0.0003

0.1316

0.1296

0.2209

0.0004

0.2217

0.2200

0.0921

0.0001

0.0925

0.0918

0.1374

0.0002

0.1378

0.1369

WFG1

0.0331

0.0004

0.0349

0.0324

0.0474

0.0005

0.0491

0.0463

0.0769

0.0006

0.0788

0.0750

0.0787

0.0006

0.0804

0.0771

0.1347

0.0003

0.1354

0.1338

WFG2

0.0392

0.0005

0.0403

0.0381

0.0531

0.0003

0.0543

0.0522

0.0825

0.0003

0.0833

0.0817

0.0802

0.0004

0.0810

0.0793

0.1300

0.0003

0.1309

0.1293

WFG3

0.0720

0.0003

0.0729

0.0716

0.1394

0.0001

0.1398

0.1391

0.2425

0.0001

0.2428

0.2423

0.3114

0.0001

0.3117

0.3112

0.4836

0.0001

0.4839

0.4834

WFG4

0.0874

0.0001

0.0877

0.0870

0.1532

0.0002

0.1537

0.1526

0.2714

0.0006

0.2731

0.2699

0.3010

0.0007

0.3027

0.2995

0.4641

0.0010

0.4664

0.4620

WFG5

0.0871

0.0002

0.0876

0.0866

0.1540

0.0001

0.1544

0.1537

0.2730

0.0002

0.2734

0.2725

0.3027

0.0002

0.3032

0.3022

0.4663

0.0003

0.4670

0.4657
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Table F.12: Average, Standard Deviation, Maximum, and Minimum IGD for
the PMGPSOSTD (continue)

PMGPSOSTD IGD

Benchmark

Function

nm

3 5 8 10 15

WFG6

0.0873

0.0003

0.0878

0.0868

0.1538

0.0002

0.1542

0.1534

0.2721

0.0002

0.2725

0.2717

0.3010

0.0002

0.3016

0.3004

0.4649

0.0004

0.4658

0.4636

WFG7

0.0878

0.0003

0.0885

0.0873

0.1541

0.0002

0.1545

0.1536

0.2728

0.0002

0.2734

0.2723

0.3016

0.0003

0.3021

0.3008

0.4652

0.0005

0.4663

0.4640

WFG8

0.0878

0.0005

0.0893

0.0869

0.1538

0.0004

0.1548

0.1529

0.2720

0.0003

0.2726

0.2714

0.3012

0.0003

0.3018

0.3005

0.4647

0.0004

0.4655

0.4636

WFG9

0.0867

0.0002

0.0871

0.0863

0.1532

0.0001

0.1535

0.1528

0.2724

0.0001

0.2726

0.2721

0.3020

0.0001

0.3023

0.3017

0.4657

0.0002

0.4663

0.4650



Appendix G

Derived Publications

The following publication was derived from this dissertation.

Cian Steenkamp, Andries P. Engelbrecht, A Scalability Study of the Multi-
guide Particle Swarm Optimization Algorithm. Submitted to the Swarm and
Evolutionary Computation Journal, 2021.
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