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Abstract

Dynamic, constrained optimisation problems (DCOPs) are a class of optimisa-
tion problem where the problem landscape changes and problem constraints
optionally change over time. Although DCOPs represent the super-set of op-
timisation problems, relatively little is understood about these problems due
to the complexity added to the optimisation process. However, unlike the
available optimisation algorithms developed for changing problem landscapes,
few algorithm variants exist for DCOPs. Optimisation algorithms for DCOPs
are expected to not only adapt to the changing problem landscape but need
to also consider the feasibility of solutions whilst adapting to any changes to
the problem constraints over time.

This thesis examines the constituent parts of the optimisation process by
providing an in-depth review of the optimisation process. A substantial chal-
lenge is created by DCOPs for optimisation algorithms and this thesis examines
these problems in detail with a fitness landscape analysis (FLA), before propos-
ing a DCOP benchmark generator capable of producing a truly comprehensive
set of possible problem landscape and constraint combinations. Quantification
of the performance of optimisation algorithms on these comprehensive DCOP
instances is identified as being problematic. The behaviour of the algorithm
during the entire optimisation process should provide a better indication of
algorithm performance and this thesis proposes a new measurement capable of
quantifying algorithm performance from the very beginning of the optimisation
process.

Generally, a constraint handling method is used to manage the optimisation
problem constraints for the optimisation algorithm. The constraint handling
method should also adapt to the changing optimisation problem. As a result,
adaptive constraint handling methods are thought to be best. However, many
of these methods introduce additional control parameters that require tuning
which is not useful within DCOPs. This thesis provides evidence that a dy-
namic co-evolutionary approach using the Lagrangian transformation of the
optimisation problem can produce solutions to DCOPs. The co-evolutionary
approach uses dynamic optimisation algorithms in order to adapt to both the
changing problem landscape and changing problem constraints. This thesis
also proposes a novel self-adaptive quantum particle swarm optimisation as
one of these dynamic optimisation algorithms.
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ABSTRACT iii

Lastly, this thesis proposes a reproducible framework for computational
intelligence allowing for the perfect replication of the experimental work of the
aforementioned dynamic co-evolutionary algorithms.



Opsomming

Dinamiese, beperkte optimeringsprobleme (DCOPs) is ’n klas optimeringsprob-
leem waar die probleemlandskap verander en probleembeperkings opsioneel ve-
rander met die verloop van tyd. As gevolg van die addisionele kompleksiteit wat
hierdie klas van optimeringsprobleem by die optimeringsproses byvoeg, word
daar huidiglik relatief min verstaan omtrent dié superstel van optimeringsprob-
leme. Daar is ’n klein aantal optimeringsalgoritmes wat tans beskikbaar is
vir veranderende probleemlandskappe soos DCOPs. Dit word van optimer-
ingsalgoritmes vir DCOPs verwag om nie net by die veranderende probleem-
landskap aan te pas nie, maar ook om die haalbaarheid van oplossings te
oorweeg. Terselfdertyd moet optimeringsalgoritmes ook by enige verandering
in die probleembeperkings aanpas met tyd.

Hierdie proefskrif ondersoek die dele van die optimeringsproses deur ’n
diepgaande oorsig van die optimeringsproses te gee. Die uitdagings wat deur
DCOPs aan optimeringsalgoritmes gestel word is groot, en hierdie proefskrif
ondersoek hierdie probleme deur “fiksheidlandskapanalise” (FLA). Nadat die
eienskappe van die probleme ondersoek is, word ’n funksie voorgestel wat
DCOP probleme kan genereer. Hierdie funksie kan ’n reeks van moontlike
probleemlandskap en beperkingskombinasies lewer. Die kwantifisering van
optimeringsalgoritme oplossings wat vir die reeks probleme gevind word, kan
as problematies geïdentifiseer word. Die versameling van resultate na elke
iterasie van ’n algoritme gee ’n beter aanduiding van die kwalitiet van oplossings
wat deur ’n algoritme gevind kan word. In hierdie proefskrif word ’n nuwe
metingsproses voorgestel wat die kwalitiet van algoritme oplossings kan bepaal,
vanaf die begin van die optimeringsproses tot en met die einde daarvan.

Oor die algemeen word ’n beperkingshanteringmetode gebruik om die prob-
leem beperkings vir die optimeringsalgoritme te bestuur. Die beperkinghanter-
ingsmetode moet ook aanpas by enige verandering van die optimeringsprobleem.
As gevolg hiervan word aanpasbare metodes vir die hantering van probleem-
beperkings as die beste beskou. Ongelukkig benodig baie van die probleem-
beperking metodes addisionele beheerparameters wat ingestel moet word, maar
die instel van beheerparameters maak geen sin binne DCOPs nie.

Hierdie proefskrif lewer bewys dat ’n dinamiese ko-evolusionêre benader-
ing wat die Lagrangiaanse transformasie van die optimeringsprobleem gebruik,
oplossings vir DCOPs kan lewer. Die ko-evolusionêre benadering gebruik di-
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namiese optimeringsalgoritmes om aan te pas by die veranderende probleem-
landskap en veranderende probleembeperkings. Hierdie proefskrif stel ook ’n
nuwe selfaanpassende “kwantum deeltjieswerm optimeringsalgoritme” voor as
een van hierdie dinamiese optimeringsalgoritmes.

Laastens stel hierdie proefskrif ’n raamwerk voor vir rekenaarintelligensie
paradigmas wat die perfekte replikasie van die eksperimentele werk van die
bogenoemde dinamiese ko-evolusionêre algoritmes moontlik maak.
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Chapter 1

Introduction

The field of computational intelligence (CI) focuses on the study of methods
to facilitate intelligent behaviour within optimisation problem search spaces.
Within the field of CI, a multitude of methods exist which borrow inspiration
from nature. Using such nature-inspired metaphors, search processes based on
natural selection, the foraging behaviour of animals and the collective move-
ment of collective groups of animals, amongst others, have been proposed.
Although certain metaphors may be more popular and effective than others,
attempts to create new metaphor based search processes continues apace. Al-
though success has been achieved using these nature-inspired algorithms, no
single algorithm is able to achieve success for all optimisation problem search
spaces [304]. Optimisation problem complexity is determined by the problem
landscape itself, the frequency of landscape change over time and by the re-
striction of feasible solutions by problem constraints that render portions of
the search space infeasible. With the increasing complexity of optimisation
problems the ability of an optimisation algorithm to find, maintain and ensure
the feasibility of solutions becomes more challenging.

The remainder of this chapter is organised as follows. Section 1.1 provides
further motivation for the investigation into the effect and influence of opti-
misation problem complexity on optimisation algorithm performance. The
primary objectives of this thesis are listed in section 1.2, followed by the main
contributions of the thesis in section 1.3. Finally, section 1.4 presents the
detailed outline of this thesis.

1.1 Motivation
Real world problems introduce complexities that are often unique unto them-
selves. Complexities may include the size of the problem itself but are also
often expressed as a set of constraints which limit the valid solutions that are
possible for a particular problem search space. Problem constraints need not
remain static and unchanging but can change over time. The changes may also

1



include the increase or decrease in the total number of problem constraints.
The trading of shares on a stock market is probably the best example of a
fluid system of constraints, where the availability, price and fees associated
with stock market trading continuously change and adapt to the market itself.
Furthermore, the trading process itself is variable with different strategies be-
ing more viable than others, albeit for a limited period of time. An increased
understanding of the complex interactions between algorithm and problem
search space is especially desirable, particularly when the problem search space
is able to change whilst simultaneously being constrained. It is not known
how the change in problem search space ultimately affects the optimisation
algorithm, nor how the complexities of changing constraints possibly impede
or encourage the search process of an optimisation algorithm.

In order to consider the complications presented by a dynamic optimisation
problem with changing problem constraints, the research community attempts
to model the problem characteristics using smaller, more understandable bench-
mark problems. Such benchmark problems are gradually extended to present
more challenging scenarios for optimisation algorithms to provide solutions to.
The extreme case for complexity is a totally dynamic optimisation problem
that changes in multiple ways, possibly simultaneously. Such optimisation
problems combine changing problem landscapes with changing problem con-
straints to produce the complex problem search spaces and are referred to as
dynamic constrained optimisation problems (DCOPs). Moreover, optimisa-
tion algorithms may provide multiple possible solutions that differ in quality
resulting in multi-modal problem search spaces [29, 84, 85, 101].

Optimisation algorithms have been successful in providing solutions to
dynamic optimisation problems (DOPs) by adapting several optimisation algo-
rithms originally designed to primarily consider static optimisation problems
(SOPs), including genetic algorithms (GAs), differential evolution (DE) and
particle swarm optimisation (PSO). Extensions to the canonical algorithm
definitions have been proposed to allow the algorithms to operate within differ-
ent problem domains, produce multiple solutions concurrently and to operate
within changing problem landscapes. Although the success of the modified
algorithms has been mixed, these algorithm variants are nonetheless viable for
changing problem landscapes. DCOP landscapes provide an increase in opti-
misation problem complexity that is highly challenging for existing dynamic
algorithm variants. Furthermore, due to the existence of infeasible problem
search space regions, a constraint handling approach is required to allow for the
effective search of an optimisation algorithm. The final result is an interaction
between three different parts of the optimisation process and the influence of
each of these aspects is not yet understood. Moreover, the existing benchmark
problems are not of a sufficient complexity to allow for the study, development
and improvement of optimisation algorithms for this classification of problem.

When considering the optimisation process as a whole, interactions between
different parts of the process should remain fixed whilst allowing another to

2



be variable in order to attempt to discern possible patterns. The empirical
results should therefore present only the effects of the optimisation algorithm
on the optimisation process. By limiting the variability within the empirical
work, the study how the algorithms are influenced may be conducted without
allowing other unwanted side-effects. The algorithmic interaction will include
the effects of constraint handling approaches to determine the challenge of the
DCOP benchmark problem.

1.2 Objectives
The primary objectives of this thesis are summarised as follows:

• Provide a thorough overview of complexity within the optimisation pro-
cess by considering the optimisation problem, optimisation algorithm
and constraint handling approach for problem landscapes from simple to
the most complex.

• Investigate the currently available benchmark problems for changing
problem landscapes, together with the inclusion of problem constraints,
proposing improvements where required.

• Provide fitness landscape analysis results for benchmark DCOP instances.

• Determine the effectiveness of performance measures for dynamically
changing problem search spaces, considering the impact of problem level
constraints in order to evaluate algorithm performance in complex land-
scapes.

• Examine the effectiveness of optimisation algorithms together with con-
straint handling approaches in order to provide solutions to a compre-
hensive set of dynamic and constrained benchmark problems.

• To develop a system that allows for the correct and reproducible investiga-
tion of the optimisation complexity present within dynamic, constrained
optimisation problems.

1.3 Contributions
The main contributions of this research are as follows:

1. A benchmark problem generator function, known as the constrained mov-
ing peaks benchmark (CMPB) generator, which is capable of generating
784 unique DCOP instances.
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2. A new performance measure, 𝑃RED, which provides a holistic way of com-
paring algorithm performance for DOPs and for DCOPs. The measure
produces a vector, referred to as the performance profile, allowing for the
comparison of optimisation algorithms in changing problem landscapes.

3. A variant of PSO for DOP, known as self-adaptive quantum particle
swarm optimisation (SaQPSO) which self-adapts the size of the quantum
cloud based on the current algorithm performance.

4. A dynamic co-evolutionary framework from which optimisation algo-
rithms for DCOPs can be derived. From this dynamic co-evolutionary
framework a total of six new algorithms are proposed to provide solution
to DCOP.

5. A software library, known as CIlib, which allows for the exact replication
of experimental results. Through CIlib the complexities of DCOPs, as
well as the interactions of optimisation algorithms on the optimisation
problems are controlled in a rigorous manner, preventing possible errors
in the experimental work.

1.4 Thesis Outline
The thesis is split into separate parts that address different concerns for the
thesis as a whole and is organised as follows:

• Part I: Background

– Chapter 2 provides background information about the optimisa-
tion process and highlights the inter-dependence of the problem,
constraints and algorithm.

– Chapter 3 provides a review of optimisation algorithms, highlight-
ing the progression of algorithms to cater for changing problem
search spaces and the handling of constraints.

• Part II: Complexity of Dynamic, Constrained Optimisation Problems

– Chapter 4 provides background information about currently avail-
able benchmark problems and generators for dynamic, constrained
optimisation problems together with their shortcomings.

– Chapter 5 proposes a new DCOP benchmark problem generator
which provides a comprehensive representation of both the chang-
ing optimisation problem landscape and the changing optimisation
problem constraints.
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– Chapter 6 presents an approach to allow for a vector-based com-
parisons between algorithms. This vector-based comparison method
allows for a more holistic representation of the actual performance
of an optimisation algorithm for a changing optimisation problem
with optional changing problem constraints.

• Part III: Algorithm Performance on Dynamic, Constrainted Optimisa-
tion Problems

– Chapter 7 proposes a variant of the quantum particle swarm op-
timisation (QPSO) for dynamic optimisation problems which self-
adapts an algorithm control parameter based on information ob-
tained from the candidate solutions about the optimisation problem
landscape.

– Chapter 8 discusses the use of co-evolution to solve static, con-
strained optimisation problems. This chapter continues by propos-
ing an adjustment to the co-evolutionary algorithm formulation to
provide solutions to dynamic, constrained optimisation algorithms.

– Chapter 9 discusses the evaluation and statistical procedure for
the empirical work within this thesis. The chapter discusses the
comparison process of optimisation algorithms on a comprehensive
set of DCOPs, use of vector-based performance measures as well as
the statistical comparison procedure that was followed.

– Chapter 10 presents an empirical investigation into the perfor-
mance characteristics of optimisation algorithms attempting to solve
changing problems spaces that are also constrained. This chapter
builds upon previous chapters.

• Part IV: Reproducible Computational Intelligence

– Chapter 11 presents the rationale for a research methodology
which places emphasis on reproducible results and compares the
current state-of-the-art software for CI and machine learning. The
work presented in this chapter defines the foundation from which
the empirical work, presented in chapter 10, is based.

– Chapter 12 presents a new approach to CI software that is designed
with reproduction and repeatability in mind, resulting in a monadic
software library with a focus on composition. This chapter discusses
how the goals and principles from chapter 11 have materialised by
presenting the logical structure of, and examples for, the CIlib
software library.

• Chapter 13 provides concluding remarks and presents avenues for future
work.

5



The following appendices are also provided:

• Appendix A lists the algorithm ranking results from the empirical
analysis of algorithm performance on dynamic, constrained optimisation
problems.

• Appendix B provides the listing of all acronyms.

• Appendix C lists the derived publications from this thesis.
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Background
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Chapter 2

Optimisation

One of the most important characteristics of complex
adaptive systems is that they cannot, in general, be
successfully analysed by determining in advance a set
of properties or aspects that are studied separately and
then combining those partial approaches in an attempt
to form a picture of the whole. Instead, it is necessary
to look at the whole system, even if that means taking
a crude look, and then allowing possible simplifications
to emerge from the work.

Murray Gell-Mann, Santa Fé Institute

Optimisation defines an action which makes the most effective use of a situation
or resource. Although this definition is vague, it is the general description of
optimisation without any context. Computational optimisation techniques
refine the optimisation definition to selecting the best element (based on some
criterion) from a set of available alternatives. Within the context of stochastic
optimisation, the three participants in the optimisation process include the
optimisation problem itself, potential constraints applied to the optimisation
problem, and the optimisation algorithm. An inter-dependence exists between
the main parts of the optimisation process as illustrated in figure 2.1. Due
to this inter-dependence no single part of the optimisation process can be
considered in complete isolation, but in the sections that follow each main
aspect of the optimisation process will be discussed.

Section 2.1 discusses optimisation problem definitions that range from static
optimisation problems without constraints to dynamic optimisation problems
with changing problem constraints. The categorisation of dynamic optimisation
problems is discussed in section 2.2, with constrained optimisation problems
discussed in section 2.3. Section 2.4 concludes the chapter.
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Figure 2.1: Interdependence of the components of the optimisation process

2.1 Optimisation Problems
The purpose of the process of optimisation is to locate a solution to the specific
problem that is as optimal as possible. An optimisation problem consists of
an objective function which is used to determine the quality of a solution
and a set of problem constraints which determine if the solution may be
considered. Optimisation algorithms attempt to locate and maintain solutions
to the optimisation problem.

Assuming minimisation, a SOP is formally defined as:

Definition 2.1 Boundary-constrained Static Optimisation Problem.

minimize 𝑓(𝐱)

subject to 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛),
𝑥𝑖 ∈ [𝑥𝑖,𝑚𝑖𝑛, 𝑥𝑖,𝑚𝑎𝑥], 𝑖 = 1, 2, … , 𝑛

(2.1)

where the objective function is

𝑓 ∶ 𝒮 → ℝ𝑛 (2.2)

The vector 𝐱 specifies the problem decision variables, 𝑥𝑖, for problem di-
mensions 𝑖 = 1, 2, … , 𝑛. The objective function, 𝑓, quantifies the quality of the
decision variables within the search space 𝒮. Each vector of decision variables
represents a candidate solution to the static optimisation problem. The pur-
pose of the optimisation process is to find a global minimum solution, 𝐱∗ ∈ 𝒮,
such that for all 𝐲 ∈ 𝒮:

𝑓(𝐱∗) ≤ 𝑓(𝐲) (2.3)
Minimisation and maximisation optimisation problems may be interchanged
provided the following relationship is enforced:

maximise 𝑓(𝐱) ≡ minimise (−𝑓(𝐱)) (2.4)
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Constraints define which values within the domain of decision variables will
result in a feasible solution. The constraints effectively divide the search space,
𝒮, into feasible and infeasible regions, respectively denoted as ℱ and ℐ, such
that 𝒮 = ℱ ∪ ℐ. Such problems are referred to as constrained optimisation
problems (COPs) and are defined as:

Definition 2.2. Constrained Optimisation Problem

minimize 𝑓(𝐱)

subject to 𝑔𝑚(𝐱) ≤ 0, 𝑚 = 1, 2, … , 𝑛𝑔,
ℎ𝑚(𝐱) = 0, 𝑚 = 𝑛𝑔 + 1, 𝑛𝑔 + 2, … , 𝑛𝑔 + 𝑛ℎ,

𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛),
𝑥𝑖 ∈ [𝑥𝑖,𝑚𝑖𝑛, 𝑥𝑖,𝑚𝑎𝑥], 𝑖 = 1, 2, … , 𝑛

(2.5)
where 𝑛𝑔 and 𝑛ℎ are the number of inequality and equality constraints.

Candidate solutions within the search space that are located within infea-
sible regions of the problem search space are referred to as infeasible solutions.
Infeasible solutions violate at least one of the defined inequality or equality con-
straints of the COP, irrespective of objective function value. When searching
for solutions to a COP, the goal of the optimisation process is to find solutions
that achieve the best trade-off between solution quality (determined by 𝑓(𝐱))
and constraint violation.

Application of constraints to an optimisation problem produces a dual
perspective of the problem search space. Evaluation of the objective function
of a COP results in the objective landscape of the problem space. However, by
evaluating a function that quantifies the degree of constraint violation allows for
the observation of the optimisation problem’s constraint landscape [180]. Each
perspective of the problem landscape can therefore be considered in isolation.
Figure 2.2 illustrates a COP from the perspective of both the objective and
constraint landscapes, where 𝑓(𝑥) = 𝑥2 and 𝑔(𝑥) = 𝑥 + 4 ≤ 0.

Static optimisation problems maintain a constant, unchanging objective
function. In contrast, a DOP represents an objective function which changes
over time. The problem is formally defined (assuming minimisation) as:

Definition 2.3. Boundary-constrained Dynamic Optimisation Problem

minimize 𝑓(𝐱, 𝜛(𝑡))

subject to 𝜛(𝑡) = (𝜛1, 𝜛2, … , 𝜛𝑛),
𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛),

𝑥𝑖 ∈ [𝑥𝑖,𝑚𝑖𝑛, 𝑥𝑖,𝑚𝑎𝑥], 𝑖 = 1, 2, … , 𝑛

(2.6)
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Figure 2.2: Search space perspectives of a constrained optimisation problem

where 𝜛(𝑡) is a vector of time-dependent objective function parameters. The
goal is to find

𝐱∗(𝑡) = min 𝑓(𝐱, 𝜛(𝑡)) (2.7)

where 𝐱∗(𝑡) is the optimum found at time-step 𝑡, whilst continuing to track the
optimum’s trajectory.

Static optimisation problem search spaces are a special case of dynamic
optimisation problem search spaces, where 𝑡 remains constant and does not
change. The period between dynamic optimisation problem search space
changes (known as the change period) may be treated as an instance of a
static optimisation problem search space. As the problem search space changes
over time, the manner in which the DOP changes increases the difficulty in
tracking how optima change within the problem search space. The following
characteristics all increase the complexity of maintaining a solution within a
DOP:

• Optima change direction: After the optimisation problem experiences
a change, optima within the problem search space may be different from
those before the change. Optima may have moved to different locations,
the value of optima could change, or a combination of these effects have
occurred. Such changes to optima increase the complexity of the problem.
When optima change, the current best solution may no longer be relevant,
whereas if optima relocate, the current solution is potentially not near
optima.
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• Change pattern: A pattern may exist within a sequence of problem
search space changes. Repeating patterns allow for the calculation of a
cycle length [23] between pattern repetitions within the problem search
space. Observed patterns provide additional information to the optimi-
sation process which may be exploited to aid in finding solutions. If a
pattern is known in advance, the optimisation process is able to exploit
that knowledge to find solutions, predicting the changes the repeating
pattern introduces. Upfront knowledge of change patterns within the
problem search space is, however, not guaranteed and these unknown
patterns instead increase the complexity of the optimisation problem.
When the optimisation algorithm is able to track the pattern of chang-
ing optima within the search space, the impact of this problem space
complication is minimised.

• Change coherence: Optimisation problem changes may adjust the op-
tima of the problem in the same or in different ways. In a homogeneous
problem search space all optima have the same change transformation ap-
plied. If the optimisation process can identify that optima have changed
in the same way it may be beneficial to process, but the same change
experienced may be applied differently to different optima. A hetero-
geneous problem search space allows optima to have different change
transformations. Again, such changes increase the problem complexity
by making solutions more difficult to find.

• Temporal severity: Changes to the optimisation problem search space
occur at a specific frequency. Optimisation problem changes having
a high temporal severity indicate frequent search space changes and
shorter change periods. Low temporal severity describes search spaces
that have larger change periods and remain static for longer periods
of time. Shorter change periods prevent the optimisation process from
locating better solutions before the next change, whereas longer change
periods allow more time for the optimisation process to locate solutions.
As a result, the complexity of the optimisation problem is increased by
varying the frequency of changes.

• Spatial severity: The magnitude of optima change within a dynamic
optimisation problem can vary from subtle to extreme. Extreme changes
within the optimisation problem alter the problem search space in a
severe manner whereby the search spaces before and after a change may
be unrecognisable to the optimisation process. Subtle changes produce
less severe alterations to the problem search space which make it simpler
for the optimisation process to adjust to. The severity of spatial changes
also increases the complexity of the optimisation problem.
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The change permutations that a dynamic optimisation problem could ex-
perience due the an environment change can be considered limitless. Although
DOPs change over time, the optimisation problems may still have constraints
that divide the problem search space into feasible and infeasible regions. Com-
bining optimisation problem constraints with DOPs results in DCOPs:

Definition 2.4. Dynamic Constrained Optimisation Problem

minimize 𝑓(𝐱, 𝜛(𝑡))

subject to 𝜛(𝑡) = (𝜛1, 𝜛2, … , 𝜛𝑛),
𝑔𝑚(𝐱, 𝜛(𝑡)) ≤ 0, 𝑚 = 1, 2, … , 𝑛𝑔,
ℎ𝑚(𝐱, 𝜛(𝑡)) = 0, 𝑚 = 𝑛𝑔 + 1, 𝑛𝑔 + 2, … , 𝑛𝑔 + 𝑛ℎ,

𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛),
𝑥𝑖 ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥], 𝑖 = 1, 2, … , 𝑛

(2.8)
where 𝜛(𝑡) is a vector of time-dependent objective function parameters. The
goal is to find

𝐱∗(𝑡) = min 𝑓(𝐱, 𝜛(𝑡)) (2.9)
where 𝐱∗(𝑡) is the optimum found at time-step 𝑡, whilst continuing to track the
optimum’s trajectory.

Because both the optimisation problem and constraints may independently
change over time, the feasible and infeasible regions of the search also change.
These “pockets” of feasible and infeasible space, respectively denoted as ℱ𝑟
and ℐ𝑟, may change from feasible to infeasible, or vice versa. Moreover, search
space locations that are currently infeasible may become feasible, potentially
revealing the new global optimum solution when the search space experiences a
change. The number of feasible and infeasible pockets, 𝑛ℱ = |ℱ| and 𝑛ℐ = |ℐ|,
differ over time whilst maintaining the following search space invariants:

ℱ =
𝑛ℱ

⋃
𝑟=1

ℱ𝑟 ℐ =
𝑛ℐ

⋃
𝑟=1

ℐ𝑟

such that 𝒮 = ℱ ∪ ℐ.
The definition of DCOPs allows for the optimisation problem constraints

to optionally change over time in addition to the optimisation problem search
space. If the constraints within a DCOP also change over time, the complexity
of the optimisation problem increases beyond the complexity introduced by
changing the problem search space over time. DCOPs allow for four different
optimisation problem combinations from the least amount of complexity to
the most complexity:

• Static objective function with static constraints (SOSC)
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• Static objective function with dynamic constraints (SODC)

• Dynamic objective function with static constraints (DOSC)

• Dynamic objective function with dynamic constraints (DODC)

The objective function and constraint combinations for DCOPs are illustrated
in figure 2.3.

Static objective
functions

Dynamic objective
functions

Static
constraints

Dynamic
constraints

DOSCSOSC

SODC DODC

Figure 2.3: Classes of constrained optimisation problems

2.2 Dynamic Optimisation Problem
Classifications

To understand the characteristics of DOPs, different categorisation schemes
have been proposed [3, 77, 81, 123]. Sections 2.2.1 to 2.2.5 discuss these
classification schemes.
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2.2.1 Angeline’s Classification
Angeline [3] classified DOPs based on the observed patterns of problem search
space change. The classification categorises the trajectory of optima as they
move through the problem search space. The following optima trajectory types
are considered:

• Linear trajectories describe optima that move in a straight line from an
initial location within the search space. Movement step sizes are calcu-
lated relative to the initial optima location, with the step size increasing
for each change experienced by the optimisation problem.

• Circular trajectories move optima in a circular, orbit-like shape. The
movement of the optima defines a periodic shift in the optima location
that returns to the initial starting point. A repeating sequence of random
movements that terminate at the same starting location is also defined
as circular [297].

• Random optima trajectories display no discernible pattern. The op-
tima move freely throughout the problem search space and display no
movement pattern.

The classification scheme by Angeline [3] focuses on optima location and
optima movement across search space change periods. Although the classifi-
cation does describe how optima move over time within the search space, it
neglects the possibility of value changes in optima.

2.2.2 Classification of Hu & Eberhart and Shi &
Eberhart

Eberhart and Shi [81] and Hu and Eberhart [123] derived a classification scheme
based on how optima are modified when the search space experiences change.
The following modifications were identified:

• Type I search spaces have optima which change their location within the
search space. Movement of optima maintains the current optima value,
whilst relocating the optima to a different position within the problem
search space. The number of optima within the problem search space
remains the same.

• Type II search spaces maintain the location of optima but allow for the
value of optima to change. The global optimum is the optimum with
the best objective function value, and therefore may switch to a different
optimum location as a result to the search space change. As with type I
search spaces the number of optima within the problem search space
does not change with this change in the environment. It is, however,
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possible that the change in optima values simulate the disappearance of
an optimum. For example, within a search space of multiple peaks, a
search space change may flatten a peak completely thereby simulating
the disappearance of an optimum.

• Type III search spaces combine the optima movements of both type I
and type II search spaces. Both optima locations and values may be
modified as the search space experiences change.

This classification scheme is able to classify optima movement and value
change within a DOP. Heterogeneous optima are also possible using this clas-
sification, without considering the severity of spatial changes.

2.2.3 Weicker’s Classification
Weicker [297, 298] proposed a classification framework for DOPs which identifies
the following features:

• The nature of the optimisation problem as being either static or dynamic.

• Spatial severity of the optimisation problem is either constant or variable.

• The periodic nature of the optimisation problem; whether a search space
returns to a common set of previous states.

• Whether the global optimum of the optimisation problem alternates
between different optima as the search space changes.

• Whether optima modifications are homogeneous or heterogeneous upon
search space change.

Weicker’s classification framework provides more general information about
the dynamic optimisation problem search space than either classification of
Angeline or Eberhart et al. The classification framework does not, however, sub-
sume all criteria defined by Angeline and Eberhart et al., thereby necessitating
the continued use of the previous classification schemes.

2.2.4 De Jong’s Classification
De Jong [62] defined a nature inspired metaphor to describe the changes within
dynamic optimisation problem search spaces. These search space descriptions
include:

• Drifting landscapes which change gradually over time. Changes are small
and highly frequent, allowing for simple tracking by an optimisation
algorithm.
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• Drastic morphological changes describe optimisation problem search
spaces which experience significant change. Problem search space ar-
eas previously deemed uninteresting may contain new optima after a
change. Such problem search spaces present a high severity of change.

• Landscapes which present cyclical patterns, repeating previously ob-
served problem search spaces.

• Fundamental landscape change which is abrupt and potentially discontin-
uous. Change severity is larger than that of landscapes with significant
morphological change.

De Jong’s classification provides opaque descriptions for problem search
spaces. The discernible difference between the mentioned spatial severities of
the classification is small and requires further disambiguation. The classifica-
tion focuses on the severity of landscape change stating that the changes are
significant or fundamental landscape changes; without specifying if changes are
cumulative or immediate. Although De Jong’s classification could be used to
describe the search space changes, it is not granular enough. Problem search
space changes that conform to multiple categories outlined by De Jong may
have very different environment changes.

2.2.5 Classification of Duhain and Engelbrecht
Duhain and Engelbrecht [77] proposed a more comprehensive classification
scheme. The classification scheme combines the classifications of Angeline
[3], Eberhart and Shi [81], and Hu and Eberhart [123], but also includes the
severity of both temporal and spatial changes. The resulting classification
broadly divides problem search spaces into four base environment types based
on spatial and temporal changes (illustrated in figure 2.4):

• Quasi-static problem search spaces change with low spatial and low
temporal severities. A problem search space is static if either spatial
or temporal severity has a value of zero. When one severity is zero it
effectively disables the effect of the other severity in applying a change
to the problem search space. For example, problem search spaces with
a non-zero temporal severity and zeroed spatial severity continue to
experience temporal changes but produce the same problem search space
after applying an environment change.

• Progressive problem search spaces frequently change and have a high
temporal severity. The spatial changes are small producing optima within
the problem search space that gradually move over time within the
problem search space bounds.
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Figure 2.4: Severity classification types

• Abrupt changes to a problem search space create infrequent but large
changes. In other words, the problem search space remains static for a
period of time before drastically changing.

• Chaotic problem search spaces observe large changes to the problem
search space frequently.

The combination of classification schemes together with the spatial and
temporal severity classification produces 27 unique problem environment in-
stances. These problem search space instances describe the movement of op-
tima, patterns in subsequent problem search spaces and the change severities
of a problem search space. Duhain and Engelbrecht [77] generated the unique
problem instances using a base landscape function defined by the moving peaks
benchmark (MPB) function generator [18]. A succinct problem search space
description is also possible as a by-product of the classification scheme. De-
scribing a problem search space as “chaotic, type I, circular” specifies that the
problem search space contains a circular trajectory pattern for optima, with
unchanging optima values, within a problem search space that changes with
a chaotic frequency. The description may become more succinct through the
use of a three letter acronym. The acronym for the “Chaotic, type I, Circular”
problem search space previously mentioned is simply C1C.

2.3 Constrained Optimisation
The management of constraints within the optimisation problem depends on
the type of problem constraint, the approach used to handle the problem
constraints and how constraints impact the computational effort of the optimi-
sation algorithm. The sections that follow discuss each of these considerations.
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2.3.1 Types of Constraints
Different types of constraints can be applied to optimisation problems:

• Boundary constraints define the upper and lower bound values for
each decision variable of the optimisation problem. The boundaries
for each dimension enforce a hyper-cube within which possible problem
solutions must be contained.

• Inequality constraints specify relations that determine the feasibility
of optimisation problem decision variables.

• Equality constraints specify relations for which the problem decision
variables must be equal to. An equality constraint can be transformed
into an inequality constraint through the transformation

|ℎ𝑚(𝐱)| − 𝜖 ≤ 0 (2.10)

where 𝜖 > 0 is a small tolerance value.

Although definition 2.4 indicates that equality and inequality constraints
are functions that accept the complete solution vector, the entire input vector
need not be used within the constraint function. For example, a large portion
of the decision variables could be ignored to explicitly state a dependency
between just two decision variables.

2.3.2 Constraint Handling Approaches
As previously mentioned, constraints restrict the possible set of feasible solu-
tions within a problem search space. Any optimisation algorithm should guide
the search to parts of the problem search space that balance the trade-off be-
tween solution quality and constraint violation. Ideally, no problem constraints
should be violated within a solution but in situations where only infeasible
solutions are possible, solutions that least violate the problem constraints are
preferred. A board categorisation of constraint handling approaches is given
in table 2.1.
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Table 2.1: Constraint Handling Approaches

Classifica-
tion

Discussion & Critique

Penalty based
regularisation
approaches

Regularisation approaches change the constrained optimisation problem into a boundary
constrained optimisation problem by adding a penalty function to the objective function.
Multiple different approaches to penalty functions exist which include static [7, 119, 122,
152, 219, 243] and dynamic [33, 100, 131, 142, 192, 257] penalty functions to adaptive [48,
107, 262] and self-adaptive [45, 88, 90, 227, 287] penalty functions. Penalty values should
always maintain the minimum penalty rule [61, 260] where the penalty is kept as low as
possible, just above the limit below which solutions are infeasible. Alternative penalty
strategies also exist whereby the penalty and objective functions are balanced [66, 249] or
where infeasible solutions are simply replaced [48, 66, 191].
Penalty based approaches have the distinct advantage of being simple to implement, as well
as to apply to optimisation problems [46]. Unfortunately, most approaches are problem
dependent, making the design of good penalty functions challenging [257].

Algorithmic
regularisation
approaches

Regularisation approaches that convert the constrained optimisation problem into a
boundary-constrained optimisation problem by reformulating the problem into a different
class of problem. In such scenarios, the optimisation algorithm is directly responsible for
the management of problem level constraints instead of merely satisfying them.
It is commonplace that the constraints become objective functions for the optimisation
algorithm to consider in addition to the original objective function. Multi-objective
optimisation (MOO) [71, 84, 89] and co-evolutionary approaches [125, 227] are examples
where the optimisation problem has been reformed to suit the optimisation algorithm.
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Table 2.1: (continued)

Classification Discussion & Critique
Reformulating the optimisation problem as multiple different objective functions, consid-
ered cooperatively or competitively, is a more complex approach to obtaining a solution
to the problem. With the increased algorithm complexity, in addition to the complexity
introduced by the COP, such reformulation approaches are not always appropriate. An
advantage to such a formulation is that multiple solutions may be found, presenting a
Pareto-front which represents the trade-offs between the objective and constraint functions.

Domain specific
representations

It may be preferable to represent a solution to an optimisation problem using a repre-
sentation that more accurately describes the domain. Changing representation may also
allow for the constraints to be directly catered for by algorithm operators that are also
aware of the domain [100, 145, 204]. Examples include problem-specific operators such as
those used in the constraint consistency approach [151], decoders [60] and homomorphous
mappings [146, 198].
Representational changes have the benefit of more accurately describing the domain of the
problem, whilst at the same time potentially preventing the creation of infeasible solutions.
The disadvantages of the approach actually include the domain specific representation,
because it necessitates representation specific algorithm operators. Furthermore, these
new operators may alter the behaviour of the optimisation algorithm itself, because the
assumptions for the algorithm may no longer hold.

Feasibility-based
approaches

Approaches focused on solution feasibility consider not only the feasibility of a solution, but
also the degree of infeasibility. Optimisation problems are generally unchanged with this
approach. However, the solution comparison process is designed to favour feasible solutions
first, followed by infeasible solutions ordered by the degree of constraint violation [66].
The feasibility rules of Deb [66] have also been refined [47, 272].
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Table 2.1: (continued)

Classification Discussion & Critique
The benefit of feasibility-based approaches are the simplicity of implementation and good
performance [47, 66]. It has been shown that the feasibility rules do suffer from problems
with candidate solution diversity [67], necessitating the use of diversity introduction
approaches.

Repair-based ap-
proaches

Solution repairing approaches ensure that solutions remain feasible by adjusting the
solution representations based on predefined, problem specific rules. When it is possible
to use repair approaches to correct invalid solutions, an improved optimisation algorithm
performance is possible [209, 211].
A concern of repair approaches is that they may introduce bias when repairing solu-
tions. Furthermore, the repair process itself may undesirably affect the optimisation
algorithm [261, 302].

Appropriated
techniques

Other fields which consider constraint optimisation have developed techniques which may
be incorporated into an optimisation algorithm. Within the optimisation algorithm, such
techniques are either partially simulated or fully replicated. The considered constraint
optimisation techniques from other fields may vary from simplistic mathematical pro-
cesses [13, 176], fuzzy logic [170, 250, 286, 305] and other population-based optimisation
algorithms [16, 36, 59, 72, 84, 108, 109, 239, 242].
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Table 2.1: (continued)

Classification Discussion & Critique
An advantage provided from techniques originating within other fields is that the tech-
niques have already been shown to be effective and can be incorporated into optimisation
algorithms as constraint handling approaches. The main disadvantage, however, is that
these techniques are potentially difficult to implement. Furthermore, the operation of
these techniques might not be suitable for an iterative optimisation algorithm. The con-
straint handling techniques from other fields may also interfere with the optimisation
algorithm, thereby hindering the ability of the optimisation algorithm to find solutions.
More importantly, the additional computational cost associated with such approaches
may be too expensive to be considered as a viable technique to incorporate within an
optimisation algorithm.23



Research [47, 58, 103, 124, 133, 147, 251] proposes different strategies to aid
the optimisation algorithm in finding feasible solutions. These strategies are
collectively known as constraint handling approaches and are focused on SOSC
optimisation problems. Although a broad categorisation of constraint handling
is given in table 2.1, it is imporatant to note that the listed approaches are
not mutually exclusive. As an example, consider the case where a constraint
handling approach restructures the optimisation process into a co-evolutionary
one. The co-evolutionary process simultaneously evolves not only better so-
lutions to the optimisation problem, but also the parameters for a penalty
function. In this situation both the co-evolutionary approach and the problem
reformulation (via the adapting penalty function) are the employed constraint
handling approaches.

The following constraint handling approaches are relevant for this thesis:

• 𝛼-constraint: The constraint handling approach transforms a con-
strained optimisation problem into a boundary-constrained optimisation
problem through two separate steps [271, 273]. Firstly, the satisfaction
level of optimisation problem constraints, 𝜇(𝐱), is calculated for a given
solution. The satisfaction level is calculated as:

𝜇(𝐱) = min
𝑖,𝑗

(𝜇𝑔𝑖
(𝐱), 𝜇ℎ𝑗

(𝐱)) (2.11)

∀𝑖 = 1, 2, … , 𝑛𝑔

∀𝑗 = 1, 2, … , 𝑛ℎ

𝜇ℎ𝑖
(𝐱) = {

1 − |ℎ𝑖(𝐱)|
𝑏𝑖

if |ℎ𝑖(𝐱)| ≤ 𝑏𝑖

0 otherwise
(2.12)

𝜇𝑔𝑗
(𝐱) =

⎧{
⎨{⎩

1 if 𝑔𝑗(𝐱) ≤ 0
1 − 𝑔𝑗(𝐱)

𝑏𝑗
if 0 ≤ 𝑔𝑗(𝐱) ≤ 𝑏𝑗

0 otherwise
(2.13)

where 𝑏𝑖 and 𝑏𝑗 are proper positive fixed numbers.
After determining the satisfaction level for each candidate solution, all
the candidate solutions are compared using:

(𝑓1, 𝜇1) <𝛼 (𝑓2, 𝜇2) ⟺
⎧{
⎨{⎩

𝑓1 < 𝑓2 if 𝜇1, 𝜇2 ≥ 𝛼
𝑓1 < 𝑓2 if 𝜇1 = 𝜇2

𝜇1 > 𝜇2 otherwise
(2.14)

(𝑓1, 𝜇1) ≤𝛼 (𝑓2, 𝜇2) ⟺
⎧{
⎨{⎩

𝑓1 ≤ 𝑓2 if 𝜇1, 𝜇2 ≥ 𝛼
𝑓1 ≤ 𝑓2 if 𝜇1 = 𝜇2

𝜇1 > 𝜇2 otherwise
(2.15)

where the 𝛼 comparison is defined as an order relation on the set of
(𝑓(𝐱), 𝜇(𝐱)). The comparison considers a lexicographic order in which
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𝜇(𝐱) precedes 𝑓(𝐱). It should be noted that ensuring the candidate
solution 𝐱 is a feasible solution is more important than optimising the
objective function value, 𝑓(𝐱).
The 𝛼-constraint may also be used as a penalty method with the following
formulation to determine the satisfaction level:

𝜑(𝐱) = ∑
𝑖

‖ max{0, 𝑔𝑖(𝐱)}‖𝑝 + ∑
𝑗

‖ℎ𝑗(𝐱)‖𝑝 (2.16)

𝜇(𝐱) = max {0, 1 − 𝜑(𝐱)
𝐵

} (2.17)

where 𝑝 and 𝐵 are positive fixed numbers and 𝜇(𝐱) is the penalty term
that is added to the objective function.
A similar approach is known as the 𝜖-constraint [272] which introduces a
relaxation to the feasibility rule criterion outlined by Deb [66]. Selecting
the best candidate solution based on the set of objective function values
and constraint violations is then performed similarly to the 𝛼-constraint,
where 𝜖 replaces 𝛼 within equations (2.14) and (2.15). When 𝜖 = 0, the 𝜖-
constraint approach reduces to the original set of feasibility rules defined
by Deb [66]. The 𝜖-constraint is not considered due to the additional
parameter 𝜖 which requires a user defined value. The value of 𝜖 is problem
dependent, which would require tuning in order to define an optimised
value. As a result, the additional 𝜖 parameter increases the overall
complexity of the approach used to solve an optimisation problem.

• Lagrangian reformulation: The Lagrangian formulation, similar to
the 𝛼-constraint, translates a COP into a boundary-constrained optimi-
sation problem. Application of the Lagrangian [256, 270] reformulation
produces a dual problem which is associated with the primal problem, as
given in definition 2.2. The dual problem is defined as:

Definition 2.5. Lagrangian transformation (dual problem)

maximize
𝝀, 𝝈

𝐿(𝐱, 𝝀, 𝝈) = 𝑓(𝐱) + 𝝈𝑇𝑔(𝐱) + 𝝀𝑇ℎ(𝐱)

subject to 𝜎𝑚 ≥ 0, 𝑚 = 1, … , 𝑛𝑔,
𝑔𝑚(𝐱) ≤ 0, 𝑚 = 1, 2, … , 𝑛𝑔,
ℎ𝑚(𝐱) = 0, 𝑚 = 𝑛𝑔 + 1, 𝑛𝑔 + 2, … , 𝑛𝑔 + 𝑛ℎ

(2.18)

where 𝝈𝑇 and 𝝀𝑇 are transposed multiplier vectors for the inequality and
equality constraints.
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The aim of the Lagrangian transformation is to find the saddle-point
{𝐱∗, 𝝈∗, 𝝀∗}, such that

𝐿(𝐱∗, 𝝈, 𝝀) ≤ 𝐿(𝐱∗, 𝝈∗, 𝝀∗) ≤ 𝐿(𝐱, 𝝈∗, 𝝀∗) (2.19)

Solving the min-max problem

min
𝐱

max
𝜎,𝜆

𝐿(𝐱, 𝝈, 𝝀) (2.20)

provides the minimiser for 𝐱∗ as well as the multipliers 𝝈∗ and 𝝀∗.
For non-convex optimisation problems, the solution of the dual problem
does not match the solution of the primal problem. In such scenarios, a
penalty function is added to the Lagrangian problem reformulation:

𝑃(𝐱) = 𝑃
2

(
𝑛𝑔

∑
𝑖=1

(𝑔+2
𝑖 (𝐱) +

𝑛𝑔+𝑛ℎ

∑
𝑗=𝑛𝑔+1

ℎ2
𝑗 (𝐱))) (2.21)

where 𝑃 > 0 is a positive penalty parameter, and

𝑔+
𝑖 (𝐱) = max(0, 𝑔𝑖(𝐱)), 𝑖 = 1, … , 𝑛𝑔 (2.22)

The addition of the penalty term into the formulation of the Lagrangian,
produces the augmented Lagrangian [98, 270] which is usually written as

𝐿𝑎(𝐱, 𝝈, 𝝀, 𝝆) = 𝑓(𝐱)+
𝑛𝑔

∑
𝑖=1

𝑝𝑖(𝐱, 𝝈, 𝝆)+𝝀𝑇ℎ(𝐱)+𝝆
𝑛𝑔+𝑛ℎ

∑
𝑖=𝑛𝑔+1

ℎ2
𝑖 (𝐱) (2.23)

where

𝑝𝑖(𝐱, 𝜎𝑖, 𝜌) = {
𝜎𝑔𝑖(𝐱) + 𝜌𝑔2

𝑖 (𝐱) if 𝑔𝑖(𝐱) ≥ −𝜎𝑖
2𝜌

−𝜎2
𝑖

4𝜌 if 𝑔𝑖(𝐱) < −𝜎𝑖
2𝜌

(2.24)

It can be demonstrated that the saddle-point solution, {𝐱∗, 𝝈∗, 𝝀∗}, of
the augmented Lagrangian is identical [10] to the solution of the pri-
mal problem (in definition 2.2). The method of Lagrange multipliers,
from which the Lagrangian approach to constraint handling developed,
originates within the field of mathematical optimisation [10].
Based on the work by Barbosa [9], Tahk and Sun [270] applied the
augmented Lagrangian approach to solve SOSC problems. The min-
max problems were solved using a co-evolutionary evolutionary strategy
(ES) approach, which also included an annealing scheme. PSO was
later used as the population-based optimisation algorithm within the
co-evolutionary formulation by Shi and Krohling [256].
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2.3.3 Costs of Constraint Handling
Constraint handling approaches increase the computational cost of the optimi-
sation algorithm. The additional cost should be considered when defining the
computational budget. In certain cases, the additional computational expense
for a constraint handling approach may be too much for the current budget.
This consideration is especially relevant when the underlying optimisation
problem changes over time. When including problem level constraints that
also change over time, the efficiency of the constraint handling approach may
actually hinder the optimisation problem. The degree to which the constraint
handling approach possibly interferes with the dynamic optimisation algorithm
is not known. However, it is a certainty that the overall complexity of the
optimisation process does increase.

For the SOSC scenario, the additional complexity within the optimisation
process is limited to the management of the problem constraints. Similarly,
SODC and DOSC problems have increased complexity, whilst accounting for
the dynamically changing constraints or problem landscape. The increase in
complexity is larger for SODC and DOSC when compared to SOSC problems.
Lastly, the complexity of DODC problems is the largest, where changes to the
problem landscape and the problem constraints may occur independently.

2.4 Conclusion
This chapter introduced the optimisation process and discussed how the process
consists of three separate, yet inter-connected parts. Each of the parts of the
optimisation process is required to work together in attempts to locate viable
solutions to the optimisation problem.

The complexity of the overall optimisation process increases as the definition
of the optimisation problem changes. When considering boundary-constrained
static optimisation problems, the complexity of the optimisation problem is
determined by the evaluation of the objective function and the chosen opti-
misation algorithm. The addition of problem constraints limits the problem
search space within which the optimisation algorithm can find feasible solutions.
The search process is guided to more desirable solutions through the use of
constraint handling approaches, which increases problem complexity.

Optimisation problems that change over time provide a larger problem
complexity, requiring that the optimisation algorithm adapt to the problem as
the changes occur. When constraints are included within DOPs, the problem
complexity increases even more. The resulting complexity increase becomes
an unmeasured maximum when both the problem search page and constraints
change over time. DCOPs are complex optimisation problems which may
provide a challenge which is more difficult to solve than the challenge to solve
dynamic optimisation problems. Although DOPs are not yet fully understood,
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DCOPs provide the next challenge from which more capable optimisation
algorithms can be produced.
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Chapter 3

Population-based Optimisation
Algorithms

We cannot solve our problems with the same thinking
we used when we created them.

Albert Einstein

Optimisation algorithms are search processes that aim to locate the best pos-
sible solution to a given problem as quickly as possible. The search for the
optimum solution is an iterative process whereby a candidate solution is mod-
ified with the intention of obtaining an even better solution for the given
optimisation problem. Deterministic optimisation algorithms are a class of
algorithm which always produce the same result for a given set of inputs,
just like a pure mathematical function. In contrast, non-deterministic optimi-
sation algorithms may produce different solutions to the given optimisation
problem. The varying solutions from these non-deterministic algorithms are a
consequence of random variables within non-deterministic algorithms. Further-
more, random variables prevent the predictability of these non-deterministic
optimisation algorithms.

Non-deterministic, or stochastic, optimisation algorithms rely on the use
of random variables and the feedback obtained from the observed candidate
solutions to guide and direct the search process through the optimisation prob-
lem. Unlike deterministic methods which are often direct methods resulting
in a single solution, stochastic algorithms may use multiple candidate solu-
tions at once in order to locate the best possible solution. The focus of this
chapter is on a class of non-deterministic optimisation algorithms that use a
collection of candidate solutions, modelled after metaphors in biology. By emu-
lating the biological processes, these algorithms display an emergent behaviour
which ultimately aids the optimisation algorithm in obtaining a solution to an
optimisation problem.
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The sections that follow discuss the GA, DE and PSO static optimisation
algorithms in section 3.1. Section 3.2 elaborates on the algorithmic considera-
tions for dynamic environments and how static optimisation algorithms may
be adapted to cope with changing problem landscapes. The impact of con-
straint handling methods on a dynamic optimisation algorithm are highlighted
in section 3.4 before providing a summary of the chapter in section 3.5.

3.1 Static Optimisation Algorithms
Static optimisation algorithms are a category of optimisation algorithm which
focus on provising solutions to static optimisation problems. This section dis-
cusses three static optimisation algorithms, modelled after different biological
metaphors. Sections 3.1.1 to 3.1.3 respectively briefly discuss the GA, DE and
PSO algorithms. These algorithms form the base algorithms that are built
upon later within this thesis and are the only considered population-based
evolutionary and swarm intelligence algorithms.

3.1.1 Genetic Algorithm
The GA models the process of natural selection [57] with the surviving indi-
viduals of a species winning the right to propagate their genetic material to
subsequent generations.

The sections that follow discuss each of the modelled natural selection
processes in more detail. The canonical generational (or iteration based) GA
algorithm is given in section 3.1.1.1, and the different behaviours within the
algorithm are highlighted. Section 3.1.1.2 discusses different selection schemes
for the GA, with section 3.1.1.3 discussing reproduction operators and sec-
tion 3.1.1.4 discussing different mutation strategies for offspring candidate
solutions.

3.1.1.1 Canonical Algorithm

The collection of genes, or genotype, determines the final composition of the
candidate solution (or individual). Through the combination of genes, an off-
spring individual may override traits that are present in parent individuals.
An example of genes in offspring overriding the traits present in parents is the
“brown-eye trait” in humans [268], where offspring may develop an iris pigmen-
tation that differs from the iris pigmentation of parents. Darwin also proposed
that offspring may acquire additional minor differences when compared to the
parents. These differences are called mutations and may or may not be benefi-
cial to the offspring, thereby increasing or decreasing the offspring’s chances
for survival. The theories of Darwin were later substantiated by Fr. Gregor
Mendel (1822–1884), who is regarded as the father of the field of genetics.
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Algorithm 3.1 Genetic Algorithm
𝑛𝑠 ←Randomly initialise 𝑛𝑥-dimensional candidate solutions
𝑛𝑠 ← Evaluate(𝑛𝑠)
repeat

parents ←Selection(𝑛𝑠) ▷ select parents
offspring ←Reproduction(parents) ▷ create offspring
offspring ←Mutate(offspring) ▷ mutate offspring
offspring ←Evaluate(offspring) ▷ evaluate offspring
𝑛𝑠 ← Combine(𝑛𝑠, offspring) ▷ next population

until stopping condition(s) satisfied

The GA was popularised through the work of Holland [120], even though
the previous work of Bremermann [28] and Fraser and Burnell [95] introduced
the initial optimisation algorithm formulation. New candidate solutions are
generated from the current set of candidate solutions, referred to as the current
generation, through:

1. Selection determines which candidate solutions in the current collection
of candidate solutions are allowed to take part in the reproduction process
to produce offspring.

2. Reproduction describes the process where the genetic material from a
collection of parent candidate solutions is recombined to produce offspring
candidate solutions.

3. Mutation describes an adaptation procedure where new genetic material
is introduced to the offspring candidate solutions to increase the genetic
diversity of the collection of candidate solutions.

Algorithm 3.1 presents the pseudo-code for the GA. The pseudo-code defines
the structure of the algorithm without detailing the specifics for the operators
within the GA.

3.1.1.2 Selection

The selection process determines which of the current generation candidate
solutions will participate to produce offspring. Repeated selection of the same
parent candidate solutions will, over time, cause subsequent generations to
become homogeneous (i.e., candidate solutions become more and more sim-
ilar). The similarity over time is due to the selective pressure [8, 102, 155]
within selection operators. Larger selective pressure favours the more desirable,
or more fit candidate solutions of the current generation. The large selective
pressure results in less of the optimisation problem search space being explored
as the fitter candidate solutions bias the focus to a specific area of the optimi-
sation problem search space. The selective pressure present in the optimisation
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algorithm should be a consideration during algorithm design. If the problem
allows for such exploitation, higher selective pressures may aid in producing
better solutions more quickly. Characteristics of the problem search space are
not always available and selection operators that have lower selective pressure
should be considered instead.

3.1.1.3 Reproduction

New candidate solutions are the result of the reproduction process and occurs
after selecting parent candidate solutions. The reproduction process defines
the required number of parents in order to execute and requires at least one
parent candidate solution [280]. A crossover operator recombines the genetic
material of the parent candidate solutions to produce zero or more offspring
candidate solutions. The probability of crossover, 𝑝𝑐 ∈ [0, 1], determines if
the crossover operator should occur for a sample of parent candidate solutions.
The crossover probability is also known as the crossover rate. Two main
categories of crossover operators exist which categorise the reproduction as
either intermediate recombination (for continuous representation) or discrete
recombination [202, 280]. Recombination may be as simplistic as exchanging
the genetic material of parent candidate solutions between selected pivot points
(as in k-point and uniform crossovers), to more sophisticated approaches like
parent centric crossover (PCX) [64, 65] and fuzzy recombination [292].

3.1.1.4 Mutation

Offspring candidate solutions can include new genetic material though muta-
tion. When the new genetic material is inserted into the offspring, the genetic
diversity within the current generation increases. Each gene within the off-
spring is mutated at a given probability, 𝑝𝑚 ∈ [0, 1]. The probability threshold,
𝑝𝑚, allows for a non-zero probability to not apply any mutation to the current
gene. Gene data representations determine the effect of mutation. Continuous-
valued representations are mutated by adding a mutational step size to selected
gene values. Mutational step sizes are sampled from a probability distribution
to add an amount of noise to the genes. The probability distribution from
which the noise value is sampled should have a mean value of zero. If the
probability distribution does not have a zero mean, repeated sampling of a
mutational step size will introduce genetic drift, where the sampled mutational
step sizes increase over time.

Application of mutation to an offspring does not prevent the resulting
candidate solution from becoming less desirable:

• Larger values of 𝑝𝑚 encourage exploration of the optimisation problem
search space, because more mutations will occur on offspring solutions.
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• Smaller values of 𝑝𝑚 restrict the search space exploration to the immedi-
ate area around the original offspring candidate solution location within
the problem search space.

When the focus of the mutation operator is exploration, larger step sizes will
facilitate larger jumps throughout the problem search space. On the other hand,
larger mutational step sizes may prevent stepping into areas of the problem
search space that contain better solutions, by stepping over these areas. It may
be beneficial to start the optimisation algorithm search process with larger
initial 𝑝𝑚 values to allow for more initial exploration of the problem search
space, reducing 𝑝𝑚 over time to encourage exploitation and the refinement of
solutions.

3.1.2 Differential Evolution
Storn [266] and Storn and Price [267] proposed the DE as a stochastic opti-
misation algorithm for static optimisation problems. The general formulation
of the DE algorithm is similar to that of the GA, reusing the 𝑝𝑚 and 𝑝𝑐 con-
trol parameters. The critical difference between the algorithms is the manner
in which the DE determines the mutational step sizes which are applied to
offspring candidate solutions.

The sections that follow discuss the DE algorithm by defining the structure
of the canonical algorithm in section 3.1.2.1. Trial vector creation and repro-
duction is discussed in section 3.1.2.2, which replaces the mutation operators
within the GA and other similar evolutionary algorithms (EAs). The popu-
lar DE naming shorthand is described in section 3.1.2.3. Lastly, an effective
self-adaptive DE algorithm is discussed in section 3.1.2.4.

3.1.2.1 Canonical Algorithm

Mutational step sizes within the DE are calculated using multiple stochastic,
weighted difference vectors that are calculated from randomly selected parent
candidate solutions. The resulting weighted vector is known as a trial vector.
The trial vector then takes part in the offspring creation process in order to
produce a single offspring candidate solution. Another notable difference with
the GA is that the mutation operator is executed before the reproduction or
recombination operator. Once the offspring candidate solution is produced,
the candidate solution with the more desirable fitness value survives to be a
member of the next generation. Algorithm 3.2 provides pseudo-code for the
general structure of the DE.

3.1.2.2 Trial Vector Creation and Recombination

From the current generation distinct candidate solutions are sampled at random
and optionally based on specific criteria, such as being the best candidate
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Algorithm 3.2 General Differential Evolution Structure
Randomly initialise a 𝑛𝑥-dimensional set of 𝑛𝑠 candidate solutions
Evaluate the fitness for all candidate solutions
repeat

for each 𝐱𝑖(𝑡) ∈ candidate solutions do
𝐮𝑖(𝑡) ← CreateTrialVector( )
𝐱′

𝑖(𝑡) ← Crossover(𝐮𝑖(𝑡), 𝐱𝑖(𝑡))
𝐱𝑖(𝑡 + 1) ← ReplaceFittest(𝐱′

𝑖(𝑡), 𝐱𝑖(𝑡))
end for

until stopping condition(s) satisfied

solution of the current generation. The random selection of parent candidate
solutions lessens the influence of selective pressure by considering all unique
candidate solutions. Information about the optimisation problem is derived
directly from the sampled candidate solutions. From these parent candidate
solutions a trial vector, 𝐮𝑖(𝑡), is produced [58, 237, 266, 267] which represents
the mutational step size vector, for each individual. The mutational step
size approaches a Gaussian (or Normal) probability distribution, based on
the central limit theorem [263] provided that sufficient trial vectors [266] are
created.

The offspring candidate solution, 𝐱′
𝑖(𝑡), is produced by exchanging dimen-

sions between the trial vector and target candidate solution. Crossover takes
place at pre-selected dimensions for the 𝑛𝑥-dimensional candidate solution [266,
267]. The generated offspring individual is then evaluated using the problem
objective function to determine its fitness. If the offspring is more fit than the
parent, it replaces the parent in the next generation of the algorithm, otherwise
it is discarded.

3.1.2.3 Algorithm Naming Schemes

Numerous different strategies for the DE have been developed with these
strategies adapting a specific aspect of the DE algorithm. The manner in
which the trial vector is created and the reproduction procedure are the most
common strategies to vary, resulting in the definition of a naming shorthand for
the DE [266, 267]. It is common to refer to the DE using a naming scheme in
the form DE/𝑥/𝑦/𝑧. Within this notation, 𝑥 refers to the trial vector selection
strategy, 𝑦 defines the number of difference vectors used and 𝑧 determines the
crossover operator. Notation examples include:

• DE/rand/1/bin: A DE where the trial vector selection is performed
randomly with a single difference vector and offspring are created using
binomial crossover.
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• DE/best/2/exp: Trial vector creation is based on the candidate solu-
tion with the best objective function value and requires two difference
vectors. The offspring candidate solution is determined through the use
of the exponential crossover between the trial vector and the parent
candidate solution.

3.1.2.4 Self-Adaptive Differential Evolution

Self-adaptive differential evolution (SaDE) [238] was proposed as an extension
to the canonical DE algorithm, whereby the control parameters of the algo-
rithm adjust during algorithm execution. The control parameters include the
weights for the difference vectors, together with the parameters defining the
rates for mutation and crossover. The algorithm maintains different memo-
ries to control the amount of previous experience from which the algorithm
can estimate new algorithm control parameters. Counting success and failure
rates of solution improvement determines the algorithm control parameter up-
date criteria. The only algorithm control parameter which requires the user
is the number of algorithm individuals, 𝑛𝑠. SaDE has shown to successfully
solve SOPs prepared for the “CEC2005 Special Session on Real-Parameter
Optimisation” optimisation algorithm competition [269].

3.1.3 Particle Swarm Optimisation
Kennedy and Eberhart [140] introduced the PSO in 1995. The PSO is a stochas-
tic, population-based search algorithm founded on the metaphor of flocking
birds by simulating complex flight patterns. The PSO maintains a swarm
of homogeneous candidate solutions which fly through a hyper-dimensional
problem search space. Within the swarm, candidate solutions are referred to
as particles.

The sections that follow provide an overview of the PSO in section 3.1.3.1.
A PSO variant which self-adapts algorithm control parameters and has shown
good performance within static optimisation problems is discussed in sec-
tion 3.1.3.2.

3.1.3.1 Canonical Particle Swarm Optimisation

PSO describes the movement of the swarm through the search space, by defining
the movement characteristics of the individual particles themselves. Although
the behaviour of individual particles is simple, the resulting collective behaviour
is complex. Eberhart and Shi [81] extended PSO, introducing an inertia coef-
ficient to either reinforce or diminish the contribution of a particle’s current
trajectory. PSO with the inertia coefficient is the algorithm variant considered
as the basic canonical PSO formulation.

Individual particles maintain three pieces of information:
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• The current position within the multi-dimensional problem search space.

• The best, previously observed, position since the start of the algorithm.

• A velocity vector determining the direction and magnitude of movements
within the problem search space.

Using this information, each particle adheres to the following set of behaviour
rules:

1. Move towards the best, previously observed position.

2. Move towards the closest and best neighbouring particle.

3. Continue on the current movement trajectory (inertia).

PSO uses an iterative process to move particles through the problem search
space. Particle movement requires the calculation of a velocity vector, 𝐯𝑖(𝑡+1),
at each iteration and is remembered by the particle. The velocity update
consists of three terms of influence or particle attractors and is defined as:

𝐯𝑖(𝑡 + 1) = 𝜔 ⋅ 𝐯𝑖(𝑡)
+ 𝑐1 ⋅ 𝐫1𝑖(𝑡) ⋅ [𝐲𝑖(𝑡) − 𝐱𝑖(𝑡)] (3.1)
+ 𝑐2 ⋅ 𝐫2𝑖(𝑡) ⋅ [�̂�𝑖(𝑡) − 𝐱𝑖(𝑡)]

where each of the terms within equation (3.1) serves to fulfil the behaviour rules
of the particle. Each particle attractor describes a specific particle movement
characteristic:

• The inertia component (𝜔 ⋅ 𝐯𝑖(𝑡)) determines the tendency of the
particle to remain on its current movement trajectory. Values of 𝜔 ∈
[0, 1) reduce the weighting of the previous velocity within equation (3.1),
whereas 𝜔 ≥ 1 reinforces the weight of the previous velocity vector.

• Each particle tries to move towards their best, previously observed posi-
tion through the use of the cognitive component (𝑐1 ⋅ 𝐫1𝑖(𝑡) ⋅ [𝐲𝑖(𝑡) −
𝐱𝑖(𝑡)]). A constant value, 𝑐1, is a scaling factor which is multiplied with a
stochastic vector of values that are sampled from a uniform distribution,
𝐫1𝑖(𝑡) ∼ 𝑈𝑛𝑥

(0, 1) to perturb the cognitive component.

• The influence of the closest, neighbourhood best position, �̂�𝑖(𝑡), is given
by the social component (𝑐2 ⋅ 𝐫2𝑖 ⋅ [�̂�𝑖(𝑡) − 𝐱𝑖(𝑡)]). Similar to the
cognitive component, 𝑐2 is a constant scaling factor that is multiplied
with a distinct stochastic component 𝐫2𝑖(𝑡) ∼ 𝑈𝑛𝑥

(0, 1) to scale and
perturb the social component.
Social connections between particles are determined by social structures
or topologies. The more interconnections between particles, the more
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particles are attracted to the current “best” particle within the local neigh-
bourhood. Different topology structures exist [134, 162], with the most
frequently used topologies being the star, ring and Von Neumann struc-
tures. Alternative names for the star and ring neighbourhood topologies
respectively are the global best (or gbest) and local best (or lbest) neigh-
bourhood topologies. The Von Neumann topology has been empirically
shown to perform well on a large collection of problems [84, 106, 139]. No
one topology is definitively “better” than another, with topology choice
being problem dependent [162] and an influence on the computational
budget [84, 141].

The acceleration coefficients, 𝑐1 and 𝑐2, control the balance of the particle
movement. When 𝑐1 > 𝑐2, the particle will favour its own personal best position
instead of the best position close to the current particle position. Conversely,
when 𝑐1 < 𝑐2 the social information provided to the particle will dominate the
particle velocity calculation. The extreme case is when 𝑐1 = 0 or 𝑐2 = 0, where
the particle will respectively either only consider its own personal experience
or the social experience, foregoing the other. Generally, the coefficients should
be 𝑐1 ≈ 𝑐2 so that the social and personal experience provide a decent amount
of both exploitation and exploration, controlled respectively by 𝑐1 and 𝑐2.
Additionally, larger values for the acceleration coefficients will create larger
step sizes within the problem search space. When the step sizes are larger, the
chances of “jumping over” an optimum increase, and reduce when the step sizes
are lower. The best values of the acceleration coefficients are, unfortunately,
problem dependent. To prevent overly large step sizes for particles, the resulting
velocity vector may be “clamped”. By clamping velocity vector dimensions,
a limit is enforced on the resulting step size for each dimension by defining
limits. Furthermore, it has been shown that particles have a roaming like
behaviour [86], where particles move away before returning to the swarm. As a
result, clamping particle velocities may impede the roaming particle behaviour
and can be regarded as a repair strategy (see table 2.1).

Given the newly calculated velocity vector, 𝐯𝑖(𝑡 + 1) for particle 𝑖, the
movement of the particle at time-step 𝑡 to the next position within the problem
search space is calculated as:

𝐱𝑖(𝑡 + 1) = 𝐱𝑖(𝑡) + 𝐯𝑖(𝑡 + 1) (3.2)
As a final step in the update process of a particle, the memory of the

particle is updated to record the best observed candidate solution thus far. If
the new candidate solution is more desirable than the currently remembered,
best candidate solution, the memory of the best candidate solution is updated
as follows (assuming minimisation):

𝐲𝑖(𝑡 + 1) = {
𝐱𝑖(𝑡 + 1) if 𝑓(𝐱𝑖(𝑡 + 1)) < 𝑓(𝐲𝑖(𝑡))
𝐲𝑖(𝑡) otherwise

(3.3)
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Algorithm 3.3 Basic Synchronous PSO
Create and initialise an 𝑥𝑛-dimensional swarm
repeat

for each particle 𝑖 = 1, 2, … , 𝑛𝑠 do
if 𝑓(𝐱𝑖) is better than 𝑓(𝐲𝑖) then

Assign 𝐲𝑖 = 𝐱𝑖
end if
if 𝑓(𝐲𝑖) is better than 𝑓(�̂�) then

Assign �̂� = 𝐲𝑖
end if

end for
for each particle 𝑖 = 1, 2, … , 𝑛𝑠 do

update velocity using equation (3.1)
end for
for each particle 𝑖 = 1, 2, … , 𝑛𝑠 do

update position using equation (3.2)
end for

until stopping condition is true

The PSO pseudo-code is provided in algorithm 3.3.

3.1.3.2 Gaussian-Valued Particle Swarm Optimisation

Harrison [115] proposed an alternative PSO algorithm based on an investi-
gation of PSO control parameter stability. Within the study, multiple PSOs
were compared and considered, based on the manner in which the algorithms
managed, controlled and adapted PSO control parameters. The investigation
considered the bare-bones particle swarm optimisation (BBPSO) [138] algo-
rithm as an almost parameter-less PSO. BBPSO moves particles through the
problem search space by assigning new positions based on a bell-curve which
is centred around the midpoint between the global and particle best positions.
The result is that equations (3.1) and (3.2) are not used within the BBPSO
definition, rendering the algorithm as “something else” when compared to PSO
variants. From this conclusion, BBPSO was not considered within the PSO
parameter study of [115].

The Gaussian-valued particle swarm optimisation (GVPSO) [115] was pro-
posed as new PSO variant that maintained the favourable parameter-less nature
of the BBPSO without losing the PSO identity. GVPSO updates the position
of a particle by sampling a Gaussian distribution in order to control the step
size of the particle as it moves through the problem search space. The distances
between the current particle position and the personal best and neighbourhood
best positions are used within the calculation of the step size vector, referred
to as the ancillary position, Δ𝑖𝑗(𝑡). The new position of the particle is then
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determined using a Gaussian distribution that is centred between the current
and ancillary particle positions. The standard deviation of the distribution
is based on the magnitude of the distance between the current position and
Δ𝑖𝑗(𝑡) according to:

𝑥𝑖𝑗(𝑡 + 1) = {
𝑦𝑖𝑗(𝑡) if 𝑈(0, 1) < 𝑒
𝒩 (𝑥𝑖𝑗(𝑡)+Δ𝑖𝑗(𝑡)

2 , |Δ𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)|) otherwise
(3.4)

such that

Δ𝑖𝑗(𝑡) = 𝑥𝑖𝑗(𝑡) + 𝑟1𝑖𝑗(𝑡)(𝑦𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) + 𝑟2𝑖𝑗( ̂𝑦𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) (3.5)

where 𝑒 is a user-defined parameter controlling the degree to which the personal
best position is exploited. It was shown that the GVPSO produced favourable
results within SOPs and outperformed a variety of other PSO algorithm vari-
ants, including self-adaptive PSO variants.

3.2 Dynamic Optimisation Algorithms
When a static optimisation algorithm is applied to a dynamically changing
optimisation problem, the inefficiencies of the optimisation algorithm become
evident. The inefficiencies include the loss of candidate solution diversity,
outdated memory values due to the changing optimisation problem and the
algorithm’s inability to determine that the optimisation problem search space
has changed [265]. As a result, a different class of optimisation algorithm
developed in order to cope with the changing problem landscape.

Section 3.2.1 introduces different approaches that optimisation algorithms
have used to cope with the changing problem landscape. The remainder
of this section discusses algorithms that have been effective within dynamic
environments. These algorithms include modifications to the GA, DE and
PSO.

3.2.1 Dynamic Optimisation Approaches
Dynamic optimisation algorithms aim to not only obtain the best possible
solution, but to also track and to maintain solutions present within the dy-
namically changing problem search space. This class of optimisation algorithm
also needs to learn as much as possible from previous search experiences to
hopefully aid in the search process.

The sub-sections that follow discuss the broad classification of approaches
used by optimisation algorithms within dynamically changing search spaces.
The classifications are not mutually exclusive and a dynamic optimisation
approach may exist within multiple categories. Section 3.2.1.1 discusses how
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optimisation algorithms may determine that a search space change has occurred,
whereas sections 3.2.1.2 and 3.2.1.3 discuss diversity management within the
dynamic optimisation algorithm. Memory, prediction and adaption approaches
are discussed in sections 3.2.1.4 to 3.2.1.6, with the use of multiple candidate
solution populations discussed in section 3.2.1.7.

3.2.1.1 Change Detection

Optimisation algorithms are usually not aware of changes to the problem
landscape. Algorithms should either detect the presence of a change themselves
during execution or require that external information be given stating that a
change has occurred. Change detection occurs in one of two ways:

1. Assign specific candidate solutions to be change detectors. An optimi-
sation algorithm may then use the change detectors to determine if the
underlying optimisation problem search space has changed. The change
detectors are either specific candidate solutions, predefined fixed-points
in the problem search space, or possibly a set of random candidate solu-
tions [32, 244].
Importantly, the change detectors (also known as sentries) are usually not
part of the candidate solution set, requiring that the algorithm maintain
the detectors separately. This does not, however, preclude the candidate
solutions from participating in the optimisation process. Any difference in
objective function value in subsequent optimisation algorithm iterations is
indicative of a change in the problem landscape. Based on the detected
change, an optimisation algorithm may respond with an appropriate
mechanism. A drawback to using change detectors is the additional
objective function evaluations incurred by the algorithm to determine if
an optimisation problem search space did change. Conversely, the use
of sentries creates a robust, dynamic algorithmic behaviour which can
react to optimisation problem search space changes.

2. Algorithms may also examine the candidate solutions to determine if
the problem search space has changed. If the average objective function
value for a number of candidate solutions drops over a period of time
(usually algorithm iterations), a change in the problem landscape might
have occurred. Interrogating the candidate solutions in every iteration
does not necessarily indicate that an optimisation problem search space
change has occurred, nor that the interrogation process is itself foolproof.
Additionally, the response of the optimisation algorithm may be delayed.
An optimisation algorithm needs to observe enough evidence of a change
before reacting. For example, a statistical hypothesis test may be used
as the measure to determine if a reaction should execute [244]. Fur-
thermore, the reaction of an optimisation algorithm to a change may
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be unnecessary [208, 244]; the landscape could change once more whilst
the optimisation algorithm is responding to the previous problem search
space change.

3.2.1.2 Diversity Introduction

Over multiple iterations of an optimisation algorithm, candidate solutions
become more similar as they convergence to a point in the problem search
space. Increased similarity of solutions reduces the dispersion of solutions
across the problem search space. With lower dispersion, the exploration of
other regions within the optimisation problem search space is not possible.
Therefore, a reduced exploration lowers the likelihood of detecting new optima
in those areas after a problem landscape change.

One approach to increase (or introduce) diversity is to modify candidate
solutions upon detecting a change in the problem search space. Within opti-
misation algorithms that use a mutation operator, the mutation probability
can be increased temporarily to introduce more diversity. Cobb [43] suggested
that the rate of mutation within the evolutionary algorithm be increased by a
predefined “hyper-mutation” factor. The state of hyper-mutation would con-
tinue until a threshold is reached. The simplest strategy would be to allow
the hyper-mutation to continue for the following 𝑛 iterations of the algorithm
before reducing the mutation rate to the original level. More complex strate-
gies are also available, such as defining sentry positions within the problem
search space that are near feasible region boundaries [206]. Upon a landscape
change, if the sentry had transitioned from feasible to infeasible space, the
hyper-mutation would start and continue until successfully locating a feasible
region. After locating a feasible region of the problem search space once again,
the mutation rate would return to the “normal” value.

Riekert et al. [246] re-introduced diversity in genetic programming (GP)
by not only increasing the mutation rate within the algorithm, but by also
reducing the percentage of elite individuals that would survive into the next
generation. This continued until a satisfactory amount of diversity was once
again present between all candidate solutions.

In [189], diversity is introduced by assigning different strategies to candidate
solution sub-populations. The strategies include the re-initialisation of an
entire sub-population, relocating a candidate solution around a best candidate
solution through a quantum process [17] by using Brownian initialisation or
through the addition of noise sampled from a Gaussian distribution.

In the context of PSO, Eberhart and Shi [81] suggested that the entire
swarm should be re-initialised, or at least a percentage of the swarm should re-
initialise. Ignoring immediate re-initialisation and allowing the search process
to continue is also valid, provided that the search space changes are small and
that enough diversity is still present within the swarm. The best candidate
solution should remain unchanged, allowing the continued tracking of the best
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solution found so far. Janson and Middendorf [127] subdivided the particle
swarm into multiple sub-swarms which reduced the rate at which convergence
to old optimum values would occur after a problem landscape change. The
sub-swarms would then once again merge into a single swarm after updating
older particle positions to recent values within the changed problem search
space.

Even though such strategies allow for the reintroduction of diversity into
the candidate solutions, the trigger to perform the diversity introduction is
not obvious. The optimisation algorithm still requires the means to observe
a search space change and to then start the diversity introduction. Further-
more, when additional control parameters are introduced into the algorithm
(such as the hyper-mutation factor) it is unclear as to what value such control
parameters should take (problem dependence). Lastly, even though the diver-
sity introduction does increase the diversity of the candidate solutions, the
process does not necessarily maintain any previous experience into subsequent
algorithm iterations.

3.2.1.3 Diversity Maintenance

An alternative strategy to introducing more diversity into candidate solutions
is to rather prevent the loss of diversity. As a result, the diversity of the candi-
date solutions within an algorithm should be maintained over iterations instead
of reducing. Furthermore, by constantly ensuring that the diversity level of the
candidate solutions does not reduce, the algorithm need not attempt to deter-
mine when a change in the search space has occurred. Due to the maintained
diversity the algorithm will naturally adapt to changing problem landscapes.
Typically, methods such as random immigrants [104], population-based incre-
mental learning [310], variations on PSO and multi-objective optimisation for
dynamic problem landscapes have been used to maintain diversity.

The random immigrants approach employs a simple strategy to maintain
diversity. At the end of the algorithm iteration, a number of randomly gen-
erated candidate solutions are included into to the current generation. The
immigrant solutions are evaluated by the objective function, with the more
desirable candidate solutions surviving into the next algorithm iteration.

Candidate solutions may also be rewarded for being genetically different
from parent candidate solutions [296]. Within this approach three populations
of candidate solutions are maintained. Within the one population, parents are
selected based on a distance metric which determines the genetic difference
between candidate solutions. Maximising the distance from parent candidate
solutions promotes diversity, where the distance metric may be as simple
as the Hamming distance between candidate solutions. Within the second
population, candidate solutions compete based on the improvement of the
objective function value, promoting exploitation of the problem search space.
The final population, which is the “normal” population within a GA, represents
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the actual solutions to the problem search space. All three populations are
considered by the algorithm with the sizes of the additional populations being
adjusted in order to react to changes in the underlying problem search space.
A disadvantage of this approach is the additional memory required to represent
three different candidate solution populations. Moreover, there is an additional
computational cost to evaluate the objective function and distance metric.

Blackwell and Branke [17, 18] and Blackwell and Bentley [19] suggested a
variation of PSO where particles maintain a repulsive force within the charged
particle swarm optimisation (CPSO) algorithm. The idea for the strategy
modelled the repulsion forces that are present within the atom which prevents
particles from being too close to each other, maintaining diversity within the
swarm of particles.

Diversity may also be maintained through the use of multiple objectives.
For example, with the algorithm formulation of Bui et al. [29], two objectives
are used to represent the problem objective function and the candidate solution
diversity. The algorithm may also be stated as a multi-objective algorithm of
more than two objectives [277], where the additional objectives aim to address
other requirements of the optimisation problem.

By ensuring that the diversity between candidate solutions remains high,
the optimisation process is slowed down [130], requiring more iterations to
settle onto a solution. It has also been noted that even with a greater diversity
throughout the optimisation process, optimisation algorithms may struggle to
maintain solutions when there are small landscape changes. The stochastic
elements that maintain the diversity of candidate solutions tend to shadow the
effects [44] of the small landscape changes and require larger changes in the
problem landscape to observe the change.

3.2.1.4 Memory

Regardless of optimisation algorithm, each candidate solution maintains at least
one piece of memory. At minimum, the current search space location for the
candidate solution and the associated objective function value are remembered.
Particles within the PSO maintain additional memory items which include
the previous best search space location and a velocity vector to determine the
movement trajectory. When the problem search space changes, the memory
information of a candidate solution no longer necessarily reflects the changed
problem search space:

1. A previous problem search space determined the objective function value
for a candidate solution.

2. Any additional memory items, including information derived based on
memory elements, also reflect the previous problem search space.
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Due to the possibility of additional memory items within a candidate so-
lution (as required by the optimisation algorithm), there is no single memory
update strategy for all algorithm configurations. Each algorithm requires a
customised procedure to correctly manage the memory update process for
the candidate solutions after the problem search space changes. For example,
particles within the PSO reference the best previously observed search space
position. Although the position is still within the problem search space, the ob-
jective function value for the position may have changed with the search space.
Furthermore, the current trajectory of the particle derives from the particle’s
previous experience within the previous problem landscape. A combination of
these memory values should be adjusted when the search space changes, but
not all adjustments may be necessary for the current optimisation problem.
The most severe memory update would be a complete re-initialisation of all
candidate solutions, effectively restarting the optimisation process from zero
knowledge.

The memory management of the optimisation algorithm is either implicit
or explicit:

• Implicit memory within an algorithm is encoded directly into the
candidate solution. When a candidate solution uses this encoding scheme,
the redundant memory values seem to blend together with the search
space position from the perspective of the algorithm. More than a single
copy of redundant memory may be maintained by the candidate solution.
Usually, a dominance relation [158] is enforced within the individual
dimensions of the candidate solution. The dominance relation selects the
most appropriate memory value for a dimension and is then presented
to the algorithm, based on the underlying problem search space and
landscape changes. Lewis et al. [158] suggested that multiple copies of
redundant memory provide better algorithm performance within dynamic
environments.

• Explicit memory is managed by the algorithm as a separate operation.
The algorithm should define the management and expectation of memory
based on the following three conditions:

1. Content of the memory: The memory of the algorithm may either
be treated as a direct memory or as an associative memory store.
Direct memory maintains a list or archive of previous desirable
candidate solutions [24, 56, 310]. On the other hand, associative
memory is used to associate specifics with the algorithm based on
a common association reference [82]. There is no restriction on
the type of information that may be remembered with associative
memory. Within dynamic environments, the current time interval
may be used to index the associative memory and may include
specific characteristics of the problem search space. Examples of
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search space details could include different environmental states,
observed patterns and possible state transitions for the problem
landscape. Within the PSO, the previous best and velocity vectors
for each particle are associated memory values.

2. How memory updates: The decision to replace memory is dependent
on the optimisation algorithm. The decision of how the memory
updates depends on the type of the memory used within the opti-
misation algorithm. The update may be based on the age of the
memory where older memory values are replaced after a certain
time period in order to remain relevant [82, 279]. Alternative op-
tions include replacing memory in order to maintain the required
amount of diversity or when the objective function value is no longer
desirable [24, 82].

3. When memory updates: The updates should occur either when the
search space changes, or at a regular interval. When it is not possible
to know with certainty that the problem landscape has changed,
the memory may update after a certain number of iterations.

The primary purpose of memory within a dynamic optimisation algorithm
is to bias the search process. Memory will ideally take advantage of certain
characteristics within the optimisation problem to improve the search for op-
tima. Branke [23] highlighted that the use of memories provides little value to
the dynamic optimisation algorithm when the optimisation problem presents
no recurrence characteristics.

3.2.1.5 Prediction

Prediction approaches aim to use problem characteristics in order to build a
forecasting model. The forecasting model can determine when certain patterns
will be present within the search space. Although memory based approaches
can achieve a similar result, prediction based approaches attempt to cater for
more repetition types than what a memory based approach generally could.
The major disadvantage of the prediction approach is that the approach is
only viable when it is known that the problem landscape will present patterns.
In the event that the search space does not have this kind of behaviour, the
approach may become a hindrance to the optimisation process by erroneously
suggesting locations where optima will be.

In order to build the prediction model, the correct quantity of problem
search space data is needed. If this data is available, different machine learning
models can process the data and then provide information to the optimisation
algorithm, supporting the search process. Regression [259] models, Kalman
filters [248] and Markov chains [258] are some of the possible models that
may inform the optimisation algorithm. This further highlights the difficulty
of prediction based approaches where the models may be inferior when the
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available data is sparse, does not match the problem, or when the problem is
too stochastic.

3.2.1.6 Self-Adaption

As the optimisation problem changes the algorithm may adapt some of its
control parameters (and therefore algorithmic behaviour) to cope with the
changing problem search space. Ursem [283] extended the candidate solution
to include the algorithm control parameters. Although this technique allows for
the control parameters to evolve along with the candidate solution, the results
are not always better. For example, Cobb [43] reports that such strategies are
still no better than using hyper-mutation, which triggers after the problem
landscape changes. The poorer algorithm performance may be attributed to
the “curse of dimensionality” [144] where the additional control parameter
dimensions become less important, or even “lost”, as the dimensionality of the
problem increases.

Evolutionary programming (EP) and ES have been of interest to researchers
due to the algorithms being able to adapt their own mutational step sizes [6].
Angeline [3] examined self-adaptive EP and identified that the algorithm is
not effective for the tested benchmark problems. Weicker [298] questioned the
Gaussian mutation in the standard ES self-adaption process, stating that it
may not be appropriate for dynamic optimisation.

Self-adaption of step sizes has also been demonstrated for cultural evolutions
(CEs) in the work of Saleem and Reynolds [252]. As the belief space of the CE
changes over time, the problem search space changes are also recorded within
the belief space (amongst other beneficial information). Using the belief space
knowledge, the step sizes for CE can adjust dynamically throughout the entire
algorithm execution.

Mendes and Mohais [189] developed the dynamic differential evolution
(DynDE) algorithm, allowing the DE to operate within dynamic environments.
Within the DynDE the control parameters of DE are adjusted during algorithm
execution and do not require an optimal initial value.

With the number of possible changes within a dynamic optimisation prob-
lem, self-adaption of an optimisation algorithm is the only feasible strategy for
algorithm control parameter selection [6, 22, 114, 136, 212]. Obtaining the best
performing parameters for a dynamic optimisation algorithm is therefore not
beneficial to the optimisation process beyond the initial problem landscape [112,
156].

3.2.1.7 Multiple Populations

An optimisation algorithm may subdivide the current population of candidate
solutions into smaller populations. The optimisation algorithm can then focus
on different aspects of the optimisation problem within each sub-population.
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As a consequence of multiple populations, the total diversity of the candidate
solutions can generally be maintained or increased by limiting the exposure to
which candidate solutions are within the sub-populations.

Island GAs [105, 154, 303] consist of multiple populations which are si-
multaneously evolved. Each of the populations are considered to reside on
a separate island that is disconnected and independent. Within the islands
themselves, the canonical GA processes (i.e., selection, crossover and mutation)
continue but only consider candidate solutions of the local island population.
Diversity of the islands increases by allowing candidate solutions from other
islands to migrate based on a “migration policy” [31, 154]. Migration poli-
cies may refuse migrations, allow all migrations or permit some other suitable
policy combination. Within dynamic environments the selection of candidate
solutions to migrate and where the solutions should migrate to are determined
in a probabilistic manner and constrained by the migration policy.

The DynDE, as described in [74], uses a number of different sub-populations
where each of the sub-populations maintain and track a single optimum. At the
end of an algorithm iteration, the sub-populations within DynDE are compared
against each other in a pairwise manner. If the best candidate solutions
from each sub-population are considered to be “too close”, the best candidate
solution of the sub-population with the less desirable objective function value
is re-initialised. The proximity of candidate solutions is determined using a
distance metric, such as the Euclidean distance measure. A drawback of the
DynDE is that the number of optima present within the optimisation problem
should be known in advance to determine the number of sub-populations. The
number of optima is not always known, especially when problem landscape
changes could change the number of search space optima.

Multi-swarm PSOs [17] have also been proposed which maintain and track
the optima of an optimisation problem within each sub-swarm. When using
the CPSO within the multi-swarm approach the repulsion of particles occurs
in a manner such that particles will repel each other, even when in different
sub-swarms. Similarly, the quantum hybrid model mentioned in [17] for the
multi-swarm approach allows each sub-swarm to individually to track optima.
The multi-swarm approach has been applied to artificial bee colony (ABC) in
[128].

Niching algorithms [164] sub-divide the population of candidate solutions
into multiple sub-populations. Each sub-population maintains a singular prob-
lem optima within a multi-modal optimisation problem. The process of creat-
ing and maintaining niches allows for candidate solution populations to split
into smaller sub-populations when locating new optima that satisfy the algo-
rithm split criteria. Overlapping sub-populations may also merge based on the
distance between the sub-populations. Merging sub-populations maintains a
single niche optimum more effectively.

Co-evolutionary algorithms (CoEAs) use multiple populations which com-
pete against or cooperate with each other in order to “improve”. Competitive
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CoEAs [194, 207] focus on evolving populations that challenge one another in
order to produce the best possible solution. The competition is usually initi-
ated without any previous knowledge about the problem or any information
about the problem. When cooperation is used for the co-evolutionary process,
the sub-populations collectively attempt to solve the problem, with the result
of cooperation being beneficial, harmful or benign to the sub-populations. In
[163, 235, 284], the optimisation problem is divided into smaller parts which
are then later combined in order to cooperatively produce a final candidate
solution. Hybridised models may also be considered where both cooperation
and competition are used within the resulting algorithm [101].

The use of multiple populations is an attractive option. By using multiple
populations, more than a single optimum within the problem search space can
be located and tracked separately. This effectively creates a parallel search of
the problem search space by multiple DE algorithms. An important considera-
tion with such an approach is the effect on the available computational budget.
If each sub-population has only a handful of candidate solutions, the search
may not be effective enough, diluting the search capability of the algorithm.
On the other hand, with an increased number of candidate solutions in each
population the computation budget may quickly become exhausted.

3.2.2 Hyper-mutation Genetic Algorithm
Cobb [43] proposed hyper-mutation to allow the GA to introduce diversity
within a dynamically changing problem landscape. The canonical GA is known
to suffer diversity loss due to the selective pressure present within the algorithm
operators. Hyper-mutation is a strategy that allows the GA to switch from
the standard mutation rate, 𝑝𝑚 to a hyper mutation rate, 𝑝ℎ𝑦𝑝𝑒𝑟, which is a
much higher rate value.

The hyper-mutation genetic algorithm (HyperM) uses a simple change
detection strategy whereby any degradation in the objective function value
enables hyper-mutation. The change detection within HyperM is focused on
tracking the objective value of the last known optimum. The hyper-mutation
continues for a defined period, which is usually a number of algorithm iterations,
before switching back to the standard mutation rate.

Although the HyperM uses a simple method to introduce diversity into
the population, it has been shown to be effective. The pseudo-code for the
HyperM algorithm is given in algorithm 3.4.

3.2.3 Random Immigrants Genetic Algorithm
Instead of introducing diversity into the current candidate solution population,
Grefenstette [104] proposed a method to ensure that the diversity between
candidate solutions is always maintained. The random immigrants genetic
algorithm (RIGA) is merely an extension of the canonical GA which includes

48



Algorithm 3.4 Hyper-mutation Genetic Algorithm
Pre: 𝑝ℎ𝑦𝑝𝑒𝑟 ∈ (𝑝𝑚, 1.0)

𝑛𝑠 ←Randomly initialise 𝑛𝑥-dimensional candidate solutions
𝑀𝑛𝑜𝑟𝑚 ← CreateMutateFunction(𝑝𝑚)
𝑀ℎ𝑦𝑝𝑒𝑟 ← CreateMutateFunction(𝑝ℎ𝑦𝑝𝑒𝑟)
𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑀𝑛𝑜𝑟𝑚
ℎ𝑦𝑝𝑒𝑟𝑐𝑜𝑢𝑛𝑡 ← 0
ℎ𝑦𝑝𝑒𝑟𝑡𝑜𝑡𝑎𝑙 ← 5
𝑓𝑏𝑒𝑠𝑡 = undefined
repeat

𝑛𝑠 ← Evaluate(𝑛𝑠)
𝑓𝑡𝑒𝑠𝑡 ← MostFit(𝑛𝑠) ▷ most fit candidate

solution
if 𝑓𝑏𝑒𝑠𝑡 = undefined then

𝑓𝑏𝑒𝑠𝑡 = 𝑓𝑡𝑒𝑠𝑡
end if
if 𝑓𝑡𝑒𝑠𝑡 is less fit than 𝑓𝑏𝑒𝑠𝑡 then ▷ environment changed

𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑀ℎ𝑦𝑝𝑒𝑟
end if
if ℎ𝑦𝑝𝑒𝑟𝑐𝑜𝑢𝑛𝑡 > ℎ𝑦𝑝𝑒𝑟𝑡𝑜𝑡𝑎𝑙 then ▷ stop hyper-mutation

𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑀𝑛𝑜𝑟𝑚
ℎ𝑦𝑝𝑒𝑟𝑐𝑜𝑢𝑛𝑡 ← 0

end if
offspring ←Crossover(𝑛𝑠) ▷ create offspring
offspring ←𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡(offspring) ▷ mutate offspring
offspring ←Evaluate(offspring) ▷ evaluate offspring
𝑛𝑠 ← Combine(𝑛𝑠, offspring) ▷ next population
𝑓𝑏𝑒𝑠𝑡 ← MostFit(𝑛𝑠) ▷ most fit candidate

solution
if ℎ𝑦𝑝𝑒𝑟𝑐𝑜𝑢𝑛𝑡 < ℎ𝑦𝑝𝑒𝑟𝑡𝑜𝑡𝑎𝑙 & 𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑀ℎ𝑦𝑝𝑒𝑟 then

ℎ𝑦𝑝𝑒𝑟𝑐𝑜𝑢𝑛𝑡 ← ℎ𝑦𝑝𝑒𝑟𝑐𝑜𝑢𝑛𝑡 + 1
end if

until stopping condition(s) satisfied

49



Algorithm 3.5 Random Immigrants Genetic Algorithm
𝑛𝑠 ←Randomly initialise 𝑛𝑥-dimensional candidate solutions
repeat

𝑛𝑠 ← Evaluate(𝑛𝑠)
offspring ←Crossover(𝑛𝑠) ▷ create offspring
offspring ←Mutate(offspring) ▷ mutate offspring
offspring ←Evaluate(offspring) ▷ evaluate offspring
𝑛𝑠 ← Combine(𝑛𝑠, offspring) ▷ next population
immigrants ← Generate(𝑝𝑖𝑚 ∗ |𝑛𝑠|) ▷ generate immigrants
immigrants ←Evaluate(immigrants) ▷ evaluate immigrants
𝑛𝑠 ← Combine(𝑛𝑠, immigrants) ▷ diversify next popula-

tion
until stopping condition(s) satisfied

an additional algorithm operator as the final step of the algorithm before deter-
mining the next population. The final operation introduces immigrants which
represent a portion of the current population. These immigrants are randomly
generated solutions that add to the current generation. Through the continual
introduction of immigrant solutions, the algorithm is able to maintain diver-
sity. As a consequence of the diversity within the population, the algorithm
is able to cope with the changing problem landscape. The replacement rate,
𝑝𝑖𝑚 ∈ [0, 1), defines the proportion of the population for which immigrants
should be generated. The pseudo-code describing the behaviour of the RIGA
algorithm is provided in algorithm 3.5.

3.2.4 Dynamic Differential Evolution with Combined
Variants

Ameca-Alducin et al. [2] proposed a variant of the DE for DOPs called dynamic
differential evolution with combined variants (DDECV). The algorithm can
alternate between two different execution strategies based on changes to the
problem search space. The first strategy is designed to ensure that the algo-
rithm performs exploration within the problem search space, whilst the other
attempts to focus the algorithm on exploiting and refining current solutions.
The exploration strategy is defined as DE/best/1/bin, whilst the exploitation
strategy is DE/rand/1/bin. In a manner much like that of the HyperM algo-
rithm, as soon as a change with the problem search space has been detected,
the algorithm strategy is altered. Exploration is promoted for a predefined
number of algorithm iterations before switching the algorithm strategy back
to the exploitation strategy.

In order to aid in the maintenance of diversity within the algorithm, a
portion of the population is replaced with randomly generated immigrant
candidate solutions, at the end of each algorithm iteration. The introduction

50



of random immigrants also operates at two different levels, determined by the
current algorithm strategy. After a problem landscape change, an increased
number of random immigrants are added to the population. A normal level of
immigrant introduction resumes when the exploitation strategy replaces the
exploration strategy.

Lastly, a local hill-climber is applied to a randomly selected candidate so-
lution, 𝐱𝑟𝑎𝑛𝑑(𝑡), within the population. A small amount of noise, 𝛿 ∈ 𝑈(0, 1),
is both added and subtracted from a randomly selected dimension within
𝑥𝑟𝑎𝑛𝑑,𝑖(𝑡). The addition and subtraction of 𝛿 produces two neighbouring candi-
date solutions. After evaluating the objective function for the two neighbouring
candidate solutions, the solution with the best objective function value is re-
membered. This hill-climbing process repeats for a predefined number of times,
where the remembered candidate solution is the most fit candidate solution
produced by the hill-climbing process. The final result of the hill-climbing
process replaces the least fit candidate solution within the population.

The DDECV is therefore a sequence of different mechanisms to cope with
problem landscape changes. The performance of the algorithm is favourable
but the authors have not determined if all of the problem search space change
mechanics are necessary, nor if these methods negatively interfere with the
behaviour of the DE. The pseudo-code for the DDECV is provided in algo-
rithm 3.6.

3.2.5 Quantum Particle Swarm Optimisation
Blackwell and Branke [17, 18] defined a variant of PSO for changing problem
landscapes with the QPSO. QPSO is a simpler and computationally less ex-
pensive version of CPSO. The algorithm takes inspiration from the quantum
model of the atom where a central nucleus is surrounded by orbiting electrons.
The quantum atomic model used within the QPSO replaces electrons orbiting
a nucleus with a probability distribution centred at the nucleus, referred to as
the “quantum cloud”.

The quantum model splits the swarm of particles into two distinct sub-
groups. The first group consists of neutral particles, while the second subgroup
contains quantum particles. Quantum particles do not repel each other and
move randomly within the quantum cloud which is situated around the current
global best particle. The movement of the quantum particles is determined
by sampling the probability distribution which represents the quantum cloud.
The quantum cloud is a multi-dimensional hyper-sphere with radius 𝑟𝑐𝑙𝑜𝑢𝑑.
QPSO maintains diversity within the swarm through the random movement
of the quantum particles. The particle movement for quantum particle 𝑖, in
dimension 𝑗 is

𝑥𝑖𝑗(𝑡 + 1) ∼ 𝑃( ̂𝑦𝑖𝑗(𝑡), 𝑟𝑐𝑙𝑜𝑢𝑑) (3.6)

where 𝑃 is any chosen probability distribution with mean of 𝑦𝑖𝑗(𝑡) and devi-
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Algorithm 3.6 Dynamic Differential Evolution with Combined Variants
Pre: immigrants𝑛𝑜𝑟𝑚𝑎𝑙: number of immigrants before the search space change
Pre: immigrants𝑒𝑥𝑝𝑙𝑜𝑟𝑒: number of immigrants after the search space change
Pre: ILS: number of iterations for local search

𝑛𝑠 ←Randomly initialise 𝑛𝑥-dimensional candidate solutions
DE𝑛𝑜𝑟𝑚𝑎𝑙 ← DERand1Bin(𝑝𝑐 = 0.8399, 𝛽 = 0.9644)
DE𝑒𝑥𝑝𝑙𝑜𝑟𝑒 ← DEBest1Bin(𝑝𝑐 = 0.8399, 𝛽 = 1.0820)
DE𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← DE𝑛𝑜𝑟𝑚𝑎𝑙
immigrants𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← immigrants𝑛𝑜𝑟𝑚𝑎𝑙
threashold𝑒𝑥𝑝𝑙𝑜𝑟𝑒 ← 16
threshold𝑐𝑜𝑢𝑛𝑡 ← 0
𝑡 ← 0
𝑛𝑠 ← Evaluate(𝑛𝑠)
repeat

𝑓𝑏𝑒𝑠𝑡,1 = MostFit(𝑛𝑠)
𝑛𝑠 ← Evaluate(𝑛𝑠)
𝑓𝑏𝑒𝑠𝑡,2 = MostFit(𝑛𝑠)
if 𝑓𝑏𝑒𝑠𝑡,2 is less fit than 𝑓𝑏𝑒𝑠𝑡,1 then ▷ search space changed

DE𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← DE𝑒𝑥𝑝𝑙𝑜𝑟𝑒
threshold𝑐𝑜𝑢𝑛𝑡 ← 0
immigrants𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← immigrants𝑒𝑥𝑝𝑙𝑜𝑟𝑒

end if
if threshold𝑐𝑜𝑢𝑛𝑡 ≥ threshold𝑒𝑥𝑝𝑙𝑜𝑟𝑒 then ▷ stop exploration

DE𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← DE𝑛𝑜𝑟𝑚𝑎𝑙
threashold𝑐𝑜𝑢𝑛𝑡 ← 0
immigrants𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← immigrants𝑛𝑜𝑟𝑚𝑎𝑙

end if
for each 𝐱𝑖(𝑡) ∈ 𝑛𝑠 do

𝐱′
𝑖(𝑡) ← DE𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝐱𝑖(𝑡), 𝑛𝑠)

end for
immigrants ←

Generate(immigrants𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
▷ generate immigrants

immigrants ←Evaluate(immigrants) ▷ evaluate immigrants
𝑛𝑠 ← Combine(𝑛𝑠, immigrants) ▷ diversify population
𝑛𝑠 ←IteratedLocalSeach(𝑛𝑠, ILS) ▷ local hill-climber
if threshold𝑐𝑜𝑢𝑛𝑡 < threshold𝑒𝑥𝑝𝑙𝑜𝑟𝑒 & DE𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = DE𝑒𝑥𝑝𝑙𝑜𝑟𝑒 then

threshold𝑐𝑜𝑢𝑛𝑡 ← threshold𝑐𝑜𝑢𝑛𝑡 + 1
end if
𝑡 ← 𝑡 + 1

until stopping condition(s) satisfied
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ation of 𝑟𝑐𝑙𝑜𝑢𝑑. Neutral particles move though the search space using PSO
equations (3.1) and (3.2) and also consider the quantum particles when calcu-
lating their updated velocity vectors. Algorithm 3.7 provides the pseudo-code
for the QPSO algorithm.

The size of 𝑟𝑐𝑙𝑜𝑢𝑑 restricts the area within which quantum particles may
move around the current global best particle. Figure 3.1 illustrates a two-
dimensional problem search space and highlights the search space regions that
quantum particles will not explore, even if the diameter of the quantum cloud
extends to the full extent of the problem domain. The shaded areas in figure 3.1
are never explored by the quantum particles, preventing the discovery of new
solutions in these regions. When 𝑟𝑐𝑙𝑜𝑢𝑑 is small, the area around the global
best particle may not allow detection of new, better optima. On the other
hand, when 𝑟𝑐𝑙𝑜𝑢𝑑 is large, the area around the global best may be large enough
to hide new optima. The value of the 𝑟𝑐𝑙𝑜𝑢𝑑 parameter is therefore problem
dependent and requires tuning to best optimise the area within which the
quantum particles can explore the problem landscape to locate new optima.

𝑟𝑐𝑙𝑜𝑢𝑑

̂𝑦

𝑥𝑚𝑖𝑛 𝑥𝑚𝑎𝑥

Figure 3.1: 𝑟𝑐𝑙𝑜𝑢𝑑 as the extent of the domain

In addition to the 𝑟𝑐𝑙𝑜𝑢𝑑 parameter and the control parameters required
for the velocity update (defined in equation (3.1)) of the neutral particles, the
QPSO also specifies a split ratio to subdivide particles into either quantum or
neutral particle subgroups. The particle split process occurs at the start of the
optimisation process (i.e., at initialisation) only.

3.3 Co-Evolutionary Algorithms
This class of algorithm presents an execution framework approach instead of
a single algorithm [175]. Co-evolution implies that multiple candidate solu-
tion populations evolve simultaneously, where the co-evolution is driven by
either competition [101, 227] or cooperation [88, 98, 149, 163, 175, 235, 256,
284]. Regardless of strategy followed, populations share information with each
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Algorithm 3.7 Quantum Particle Swarm Optimisation
(𝑆𝑛, 𝑆𝑞) ← Initialise swarm with subgroups for neutral and quantum parti-

cles
𝑟𝑐𝑙𝑜𝑢𝑑 ← Set to user defined value
repeat

for each neutral particle, 𝑝 ∈ 𝑆𝑛 do
update velocity with equation (3.1)
update particle position with equation (3.2)
calculate and assign objective function value
update personal best position iff position within problem domain

end for
for each quantum particle, 𝑝 ∈ 𝑆𝑞 do

update position with equation (3.6)
calculate and assign objective function value

end for
until stopping condition(s) satisfied

other. The shared information is used to determine how the individual pop-
ulations will then react to other populations. Generally, the framework does
not prescribe how the populations interact and learn from each other and only
makes provision for the sharing of information between the populations. For
example, within the competitive strategy, the best performing candidate solu-
tions from each population compete to determine the best performing solution.
The populations of the “losing” candidate solutions can then use the result
of the competition to better compete with the winning population in subse-
quent iterations. Within cooperative strategies, the best population solutions
may determine how much they individually contribute to the global problem
solution and adjust accordingly. Figure 3.2 provides a simplified illustration
of the co-evolutionary process. Within the co-evolutionary framework, any
population based algorithm control and manage a population. Thus, the co-
evolutionary approach is valid for DOPs by allowing each population to adjust
to the changing problem search space.

Based on the general framework above, together with the evolution strategy,
different algorithms have been proposed to solve both SOPs and DOPs. Ex-
amples of co-evolutionary algorithms for the respective problem types include
Cooperative Particle Swarm Optimisation [284] and Cooperative Coevolution-
ary Differential Evolution with Improved Augmented Lagrangian [98].

54



iterate
algorithms

iterate
algorithms

transfer

transfer

General Co-evolutionary Framework

Final Solution

Figure 3.2: General Co-evolutionary Framework

3.4 Constraint Handling and Dynamic
Optimisation Algorithms

Chapter 2 introduced the inter-dependency of optimisation algorithm, optimi-
sation problem and problem constraints. The inter-dependency is illustrated
in figure 2.1. When constraints are applied to the optimisation problem space,
the optimisation problem is divided into feasible and infeasible search space re-
gions. Because infeasible regions contain solutions that may not be considered,
the optimisation algorithm should avoid these regions and focus on feasible re-
gions instead. Constraint handling approaches allow for the transformation of
constrained optimisation search spaces into unconstrained optimisation search
spaces. The transformation represents a new problem landscape where the
constrained regions of the problem search space are no longer present. An
alternative approach to problem search space transformation places the respon-
sibility of the constraint handling with the optimisation algorithm, leaving the
constrained optimisation problem unchanged.

Within dynamic optimisation, the focus of the optimisation algorithm is
to track and maintain solutions within the changing search space. The change
period (see section 2.1) of the DOP exposes an instance of a static optimisation
problem upon which the dynamic optimisation algorithm executes before the
next problem landscape change. Consider a dynamic variant of PSO executing
on a dynamic search space and how the memory of the particles update after
the problem landscape undergoes change. The particle’s current and previous
best candidate solutions could be in either feasible or infeasible search space
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regions within the updated problem landscape. The following scenarios may
occur with respect to the current and previous best particle positions after
being re-evaluated by the updated objective function:

1. Feasible current position, feasible best position: With feasible
candidate solutions, no other consideration is needed and the PSO can
proceed as if no search space change had occurred.

2. Feasible current position, infeasible best position: The particle
will update its best position to the next feasible position found after
moving through the problem search space in the next iteration of the
algorithm.

3. Infeasible current position, feasible best position: The movement
of the particle using equations (3.1) and (3.2) will hopefully attract the
particle towards feasible problem space in subsequent algorithm itera-
tions.

4. Infeasible current position, infeasible best position: Both particle
candidate solutions are infeasible. The particle itself will remain within
infeasible problem space until the social attractor can encourage the
particle to move towards other feasible particles.

Importantly, the dynamism of the problem landscape and the subsequent
change response from the optimisation algorithm is limited to how the op-
timisation algorithm adapts to cope with the changing search space. The
optimisation problem constraints will determine the feasibility of the candidate
solutions within the optimisation algorithm. The feasibility of the candidate
solution and memory items will impact the decisions taken by the optimisation
algorithm, based on candidate solution feasibility.

Table 2.1 lists constraint handling methods that are predominately related
to the optimisation problem, but are managed by the optimisation algorithm.
Additionally, these constraint handling strategies do not consider any distinc-
tion between static and dynamic optimisation algorithms. Consider the use of
the belief space within CE in order to handle problem constraints. By updat-
ing the belief space, the optimisation algorithm will continue to propagate any
discovered experience of infeasible regions within the optimisation problem in
subsequent iterations. At the same time, search space changes may result in
outdated belief space knowledge, which is one of the main problems associ-
ated with dynamic optimisation algorithms. As a result, reacting to problem
search space changes requires belief space knowledge to update any problem-
atic information stored within the belief space. Possible update mechanisms
might include the purging of any belief space information that can not be
updated satisfactorily. A similar scenario is present within algorithms that
manage multiple populations. When the landscape change occurs, all of the
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sub-populations should adapt to the change. Ensuring that sub-populations
remain consistent with the changed optimisation problem is important not only
for algorithm correctness, but also to allow the constraint handling method to
behave correctly. Due to the inherent complexity introduced by certain con-
straint handling approaches, it may be preferable to consider simpler constraint
handling approaches [46, 47, 287].

Simpler constraint handling methods are particularly favourable when little
information is known about the underlying optimisation problem. Repair strate-
gies, special operators and problem reformulations all benefit from problem
landscape information which may not be available. When problem constraints
are also dynamically changing, the resulting problem search space becomes
more mysterious. The interaction between the constraint and objective spaces
may produce feasible and infeasible search space regions that are irregular in
shape. Problem landscape effects, such as max-blending, may become more
pronounced once the constraint landscape is also considered. It is unknown if
sophisticated constraint handling techniques are able to cope with the resulting
problem search spaces, nor if any information may be derived from the search
space to aid the optimisation algorithm.

3.5 Conclusion
Population-based optimisation algorithms have been discussed in this chapter.
Static optimisation algorithms were first introduced to provide an understand-
ing of how population-based optimisation algorithms operate in order to provide
solutions to static optimisation problems. When considering the application
of population-based optimisation algorithms on dynamically changing prob-
lem search spaces, the deficiencies of population-based optimisation algorithms
were highlighted.

Dynamic optimisation algorithms are modifications of static optimisation
algorithms that allow the same static optimisation to operate within and cope
with the changes to dynamic optimisation problems. The strategies to allow for
an optimisation algorithm to successfully locate and track changing optima were
discussed, together with the intertwined relationship with constraint handling
approaches.

Optimisation problem constraints restrict the regions within the optimisa-
tion problem where valid solutions may be found. The constraint handling
approaches that exist (mentioned in section 2.3.2) are not always solely applied
to the optimisation problem and require that the optimisation algorithm also
be compliant with the constraint handling method. The addition of algorithm
modifications in addition to the dynamism within the optimisation problem
increase the overall optimisation complexity, with constraint handling further
adding to the complexity of the optimisation process.

57



Part II

Complexity of Dynamic,
Constrained Optimisation

Problems
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Chapter 4

Dynamic, Constrained
Optimisation Problems

It is change, continuing change, inevitable change,
that is the dominant factor in society today. No
sensible decision can be made any longer without
taking into account not only the world as it is, but the
world as it will be.

Isaac Asimov

Optimisation problem constraints render parts of the problem search space
infeasible. Such infeasible regions describe parts of the search space that an
optimisation algorithm should not consider to contain valid solutions to the
optimisation problem. Optimisation problem constraints may also change
over time and may change independently from the optimisation problem. A
static optimisation problem may also be transformed into a dynamic optimisa-
tion problem simply by allowing the problem constraints to change over time,
changing the feasibility of candidate solutions. As a result, the problem search
space for a constrained optimisation problem is determined by considering
the combination, or composition, of both the objective function and constraint
functions.

Nguyen and Yao [207, 208] described a collection of environments which
contain such constraints, collectively referring to these environments as DCOPs.
DCOP environments may present the following behaviour:

• Both the problem search space and the constraints within the environ-
ment are dynamic and change over time.

• The constraints remain static, allowing the problem search space to
change over time.

• The problem search space remains unchanging, but the constraints change
over time.
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Due to the interaction of constraints on the search space over time, feasible
regions of the problem search space may become infeasible and vice versa.
Nguyen and Yao [207, 208] also discussed the characteristics which are impor-
tant in order to characterise DCOP problems:

1. constraints may result in changes to the shape, percentage, or structure
of feasible and infeasible regions;

2. the global optima may switch from a disconnected feasible region to
another in problems with disconnected feasible regions; and

3. environments with a static objective function and changing constraints
may expose new, better optima without changing existing optima.

At the time of publication, Nguyen and Yao [208] stated that no benchmark
functions existed which fulfil the defined criteria, even though Liu [171] and
Richter [245] both provided proposals for benchmark functions that did satisfy
the criteria.

This chapter discusses DOP benchmark problems in section 4.1, which is
expanded on with the inclusion of problem constraints in section 4.2. Due to
the inherent complexity of dynamic, constrained optimisation problems, the
resulting landscapes should be examined by sampling different metrics which
are discussed in section 4.3. Section 4.4 concludes this chapter.

4.1 Dynamic Optimisation Benchmarks
In order to evaluate the effectiveness of an algorithm on a dynamic environ-
ment, an algorithm is first evaluated against an accepted set of benchmark
problems. These benchmark problems are generally accepted by the research
community as representative of conditions which will test the robustness of
an optimisation problem. The evaluation criteria for dynamic optimisation
benchmark problems is discussed in section 4.1.1, with the rest of this section
discussing the different proposed DOP benchmark problems that are available
within literature.

4.1.1 Evaluation Criteria for Dynamic Benchmark
Problems

Ursem et al. [282] have questioned if benchmark problems for dynamic environ-
ments are even appropriate, given that the proposed academic problems are
far simpler than the complexity found in real-world dynamic problems. On the
other hand, little has been done to classify and understand real-world dynamic
problems [26]. However, the purpose of academic benchmarks is not to repli-
cate the complexity of real-world problems. Instead, benchmarks allow for a
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simplified recreation of a problem environment (which may be impossible with
a real-world problem) and focus on individual aspects that an algorithm should
be able to cater for. Building up from a set of simple problems to more complex
problems provides a progression for algorithm development. Furthermore, aca-
demic benchmarks are important because researchers still do not understand
all the complexities of dynamically changing environments. Nguyen et al. [209]
identified the following criteria with which a benchmark may be classified:

• Time-linkage: Whether future optimisation problem environments de-
pend on current and/or previous solutions found by an optimisation
algorithm.

• Predictability: Whether subsequent environment changes follow a pat-
tern, then the observed patterns may present as fixed-step sizes, repeated
periodic changes or as predictable change intervals.

• Visibility: Whether an optimisation algorithm know when environmen-
tal changes occur, and if not, can a minimal number of detectors be used
to detect the changes.

• Constraints: Whether the optimisation problem space contain con-
straints and do these constraints change over time.

• Number of objectives: Whether more than one objective function is
present.

• Factors that change: Aspects of the problem environment that change,
including the problem domain, objective functions, or other parameters.

4.1.2 DF1 Problem Generator
Morrison and De Jong [199] defined a process whereby a DOP may be generated
based on a set of parameters and a static basis function:

𝑓(𝐱) = max
𝑖=1,…,𝑁

[𝐻𝑖 − 𝑅𝑖 ∗ √Σ𝑛
𝑖=0(𝑥𝑖 − 𝑋𝑖)2] (4.1)

𝐻𝑖 ∈ [𝐻base, 𝐻base + 𝐻range]
𝑅𝑖 ∈ [𝑅base, 𝑅base + 𝑅range]

𝑋𝑖 ∈ [−1, 1]

where 𝐻𝑖 is the height range for peak 𝑖, 𝑅𝑖 is the slope coefficient and 𝑛 is the
problem dimension. The subscripts base and range respectively refer to the
absolute minimum and variable ranges for the peak height and slope.

By sampling a Gaussian distribution, variations can be introduced for
each peak within the optimisation problem landscape. The definition from
the literature embeds the sampling process within the value selection for 𝐻𝑖
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and 𝑅𝑖. Although the DF1 generator is able to produce different dynamic
environments through the provided set of generator parameters, the result is a
set of peaks that are all fairly similar.

The landscape generator did, however, demonstrate that a generator for
dynamic environments is a feasible approach to obtain a diverse set of prob-
lem landscapes. Usage of the max function also allowed for the creation of
environments where the number of optima could change based on the effect of
max blending. Max blending describes the process whereby a peak within the
problem environment seems to disappear as it moves underneath a larger peak,
and equation (4.1) only considers the maximum value for a given candidate
solution.

4.1.3 Moving Peaks Benchmark
The MPB [23–25] is a function generator that produces dynamic optimisation
problems based on a set of input parameters. The problem instances pro-
duced by the function generator contain several independent peaks within a
multi-dimensional problem landscape. The MPB could be seen as the natural
evolution of the DF1 generator, but with more precise control over the gener-
ated problem landscapes. Each peak maintains information about the height,
width and position within the optimisation problem search space. The quality
of candidate solutions is quantified by taking the maximum of all evaluated
peaks within the problem instance:

𝐹(𝐱, 𝑡) = max{𝐵, 𝑝0(𝐱, 𝑒𝑜), 𝑝1(𝐱, 𝑒1), … , 𝑝𝑛(𝐱, 𝑒𝑛)} (4.2)

where 𝑝0, 𝑝1, … , 𝑝𝑛 are individual peak functions defined by the set of peak
parameters 𝑒𝑖, which evaluate the candidate solution, 𝐱, for time-step 𝑡. The
value of 𝐵 in equation (4.2) defines the basis function landscape which has a
default value of 0 because the MPB is a maximisation problem.

The initial parameter values for the peak properties are generated by sam-
pling a probability distribution. The peak environment parameters, 𝑒𝑖, define
a record-like structure that maintains the properties for a peak and includes:

• minHeight and maxHeight properties which define the upper and lower
bound values for the height of the peak;

• minWidth and maxWidth provide the upper and lower bound values for
the width of a peak;

• Problem domain which determines the bounds within which a peak may
be located;

• Peak location within the problem search space, 𝐯, together with the
current height, ℎ, and width, 𝑤;
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• shift vector, 𝐬𝑣, with the same dimensionality as the peak position vec-
tor. The shift vector influences the movement of the peak during an
environment change.

Each independent peak within the problem search space is evaluated using
the peak environment parameters as follows:

𝑝𝑖(𝐱, {𝐯, ℎ, 𝑤}) = ℎ − 𝑤√∑(𝐱 ⊙ 𝐯)𝑖 (4.3)

where ⊙ is a binary function which determines the component-wise squared
difference between the problem search space position 𝐱 and the position of the
peak 𝐯 within the problem search space.

The MPB generator defines a recurrence relation whereby updated peak
environment parameters are constructed using the current set of peak envi-
ronment parameters. The updated peak environments describe properties for
a new set of peaks which have moved within the problem bounds and define
the changed optimisation problem search space. The peak environment mod-
ification necessitates that severity thresholds are used to control the amount
of variation applied to the peak parameters in order to construct the changed
problem landscape:

• hSeverity and wSeverity determine the scaling factors for peak height
and width adjustments;

• The change severity, 𝑠, is a constant influencing the amount of peak
change between subsequent landscapes;

• 𝜎(𝑡) ∼ 𝑁(0, 1); and

• A coefficient 𝜆 to scale the amount of random peak movement.

The previously mentioned recurrence relation which updates the peak environ-
ment parameters for the next time step is formally defined as:

𝑒𝑖(𝑡 + 1) = {𝑒𝑖(𝑡) ∣ ℎ = 𝑒𝑖(𝑡){ℎ} + hSeverity × 𝜎(𝑡),
𝑤 = 𝑒𝑖(𝑡){𝑤} + wSeverity × 𝜎(𝑡),

𝐬𝑣 = 𝑠
∥ 𝐩𝑟 + 𝑒𝑖(𝑡){𝐬𝑣} ∥

((1 − 𝜆)𝐩𝑟 + 𝜆𝑒𝑖(𝑡){𝐬𝑣})

} (4.4)

where 𝐩𝑟 is a random vector normalised to length 𝑠 for the current time step 𝑡.
Adjustment of the input parameters provided to the MPB function gener-

ator allows for the representation of all scenarios within the classification of
Duhain and Engelbrecht [77], thereby subsuming the classifications of Angeline
[3], De Jong [62], Eberhart and Shi [81], and Hu and Eberhart [123]. The
subsections that follow discuss the MPB parameter selections used within the
more complete classification of Duhain and Engelbrecht [77].
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4.1.3.1 Peak Movement

The peak movement classification of Angeline [3] is expressed in the MPB input
parameters as:

• Linear peak movement: 𝜆 = 1.0 and 𝑠 ≠ 0

• Circular peak movement: 𝑠 = 0 and a rotation matrix is applied to
equation (4.3)

• Random peak movement: 𝜆 = 0.0 and 𝑠 ≠ 0

4.1.3.2 Optima movement

The problem space classification of Eberhart and Shi [81] and Hu and Eberhart
[123] requires the following MPB input parameters:

• Type I: hSeverity = 0 and 𝑠 ≠ 0

• Type II: hSeverity ≠ 0 and 𝑠 = 0

• Type III: hSeverity ≠ 0 and 𝑠 ≠ 0

4.1.3.3 Spatial and Temporal Environment Changes

Environment categories based on spatial and temporal changes are achieved
with the following parameters:

• Progressive environments: 𝑠, hSeverity and wSeverity are all set to low
values in relation to the size of the problem search space. Environment
changes are applied frequently to generate new problem environments.

• Abrupt environments: at least one of the parameters controlling the
spatial changes (𝑠, hSeverity, wSeverity) are set to a high value based
on the search space. Environment changes are applied with at a low
frequency.

• Chaotic environments: high spatial as well as high temporal change
values are defined to create almost random new problem environments.
Additionally, the frequency of environment change is high.

To differentiate the features of the problem instances in the classification
of Duhain and Engelbrecht [77], the problem instances are named according
to the modification properties present within the dynamic optimisation prob-
lem. Problem instance names are a three-letter acronym as mentioned in
section 2.2.5. Consider the problem instance acronym A2C. This acronym de-
fines the abruptly changing, type II, circular environment. The notion of the
acronym may be expanded in order to refer to the collective behaviour of a
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group of problem instances. An asterisk (*) may be substituted in for one of the
acronym characters thereby creating a category of problem instances that ad-
here to the non-substituted environment properties. For example, the acronym
*2L groups all problem instances that are type II problem environments with
linear peak movement.

4.1.3.4 Peak Movement Characteristics

If temporal changes of the problem instances are temporarily ignored, the
movements of the individual peaks within the MPB may be described:

• Random peak movement: The individual peaks within the problem land-
scape undergo stochastic changes to their height, width and search space
location as shown in equation (4.4). The same process to transform the
peaks is used for the different peak modification types with the envi-
ronment parameters negating certain changes to the peak environment.
For example, the peak environment parameters for type II environments
prevent any changes to the position of a peak within equation (4.4) and
randomly adjust the height and/or width of the peak instead. Type I
environments adjust the position of the peak and type III environments
apply modifications to peak position, height and/or width.

• Linear peak movement: Individual peaks are adjusted from an initial
starting point and are moved through the environment linearly. Type I
environments experience peaks that move from one spectrum of the 𝑛-
dimensional problem space to the other and then back again. Type II
environments linearly adjust the height of the peak based on a random
starting point and direction (up or down) without moving the peak.
Type III environments combine both type I and type II behaviour, as
expected.

• Circular peak movement: Peaks within the problem landscape are
moved in a circular pattern. Type I and type III environments use a
landscape rotation [300] to move peaks in a circular fashion, with the
rotation centred at the central point of the domain in all 𝑛-dimensions
of the problem landscape. The rotation of the peak is along a randomly
selected plane, assigned at problem instance creation, which does not
change. The rotation is along a single hyper-plane to ensure that a
rotation angle of 𝜃 = 2𝜋 will once again result in the original problem
landscape. Rotating more than a single hyper-plane at once will violate
this property and will invalidate the entire rotation process. However, it
is possible to compose different plane rotations into a single rotation by
applying rotations in different hyper-planes sequentially. The composed
rotation is, however, not commutative and the order of rotations from left
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to right is important. If the rotation ordering is changed, the resulting
rotation matrix also changes.
For the rotation on a hyper-plane, the rotation matrix 𝑅𝑥1𝑥2

(𝜃) rotates
the hyper-plane 𝑥1𝑥2 by 𝜃 degrees. A rotation matrix in the plane 𝑥1𝑥2
in 𝑛-dimensions has the form:

⎡
⎢
⎢
⎢
⎢
⎣

𝑥1 𝑥2 𝑥3 𝑥4 … 𝑥𝑛

𝑥1 𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 0 0 … 0
𝑥2 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0 0 … 0
𝑥3 0 0 1 0 … 0
𝑥4 0 0 0 1 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑥𝑛 0 0 0 0 … 1

⎤
⎥
⎥
⎥
⎥
⎦

(4.5)

The rotation of peaks does not use the defined shift vector. A cycle
length 𝐶 defines the degree of peak movement such that the circular
movement mimics the movement that would occur if the shift vector
and severity parameters were used. For example, given a continuous
domain of [0, 100]𝑑, a rotation cycle length of 𝐶 = 314 ensures that
all points with a radius of 𝑟 = 50 from the midpoint of the domain
(50, 50)𝑑 change position by 2𝜋𝑟

314 ≈ 1. A cycle length of 314 is close to
𝑠 = 1 for progressive environments. Similarly, a cycle length 𝐶 = 62
results in 2𝜋𝑟

105 ≈ 3 which is approximately 𝑠 = 3 for abrupt and chaotic
environments. Consequently, using these cycle lengths produces peak
movements in a manner similar to the movements produced when using
the associated 𝑠 values.
Type II environments produce a circular peak movement by allowing the
height of the stationary peeks to oscillate between the peak environment’s
minHeight and maxHeight values. Upon reaching the limit of the defined
range, the direction of the peak height movement changes to allow the
peak height to either grow or shrink to provide the circular movement
pattern.

4.1.4 Generalised Dynamic Benchmark Generator
Li and Yang [160] proposed the generalized dynamic benchmark generator
(GDBG) that allows for the generation of problem landscapes within binary-
valued spaces, combinatorial spaces and real-valued (or continuous) landscapes.
The definition for the generalised generator function is as follows:

𝐹 = 𝑓(𝐱, 𝜙, 𝑡) (4.6)

where 𝐹 is the optimisation problem with the cost function 𝑓, 𝐱 is the candidate
solution for the optimisation problem for the current time interval, 𝑡. The set
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of system control parameters, 𝜙, is updated for the subsequent environment,
using a change strategy procedure referred to as 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐶ℎ𝑎𝑛𝑔𝑒𝑠 and is
symbolically represented as Δ𝜙. The update process on the next time interval
𝑡 + 1 is described as:

𝑓(𝐱, 𝜙, 𝑡 + 1) = 𝑓(𝐱, 𝜙(𝑡) ⊕ Δ𝜙, 𝑡) (4.7)
The framework of Δ𝜙 changes is a system of six possible change types:

1. Small step: Δ𝜙 = 𝛼 ⋅ ‖𝜙‖ ⋅ 𝑟 ⋅ 𝜙severity

2. Large step: Δ𝜙 = ‖𝜙‖ ⋅ (𝛼 ⋅ 𝑠𝑖𝑔𝑛(𝑟) + (𝛼𝑚𝑎𝑥 − 𝛼) ⋅ 𝑟) ⋅ 𝜙severity

3. Random: Δ𝜙 = 𝑁(0, 1) ⋅ 𝜙severity

4. Chaotic: 𝜙(𝑡 + 1) = 𝐴 ⋅ 𝜙(𝑡) ⋅ (1 − 𝜙(𝑡)/‖𝜙‖)

5. Recurrent: 𝜙(𝑡 + 1) = 𝜙𝑚𝑖𝑛 + ‖𝜙‖(sin(2𝜋
𝑃 𝑡 + 𝜑) + 1)/2

6. Recurrent with noisy:
𝜙(𝑡 + 1) = 𝜙𝑚𝑖𝑛 + ‖𝜙‖(sin 2𝜋

𝑃 𝑡 + 1)/2 + 𝑁(0, 1) ⋅ 𝑛𝑜𝑖𝑠𝑦𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦

Within the above framework, ‖𝜙‖ is the change in the range of 𝜙, with
𝜙𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 ∈ (0, 1) and 𝑛𝑜𝑖𝑠𝑦𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 ∈ (0, 1). The values 𝛼 and 𝛼𝑚𝑎𝑥 are
constants in the range (0, 1) and 𝑃 is the period for both recurrent change and
recurrent change with noise. The value 𝜙 defines the initial phase, whilst 𝑟 is a
random number in (−1, 1). 𝑁(0, 1) is a normal distribution with a mean of 0
and standard deviation of 1. The function, 𝑠𝑖𝑔𝑛(𝑥), returns values of 1 when
𝑥 > 0, −1 when 𝑥 < 0 and 0 otherwise.

For the generation of continuous-valued problem landscapes, the GDBG
defines a rotation dynamic benchmark generator (RDBG) which incorporates
a system of control parameters which are updated using the framework of
Δ𝜙. The problem generator is formulated by 𝜙 = (�⃗�, �⃗� , �⃗�) where �⃗�, �⃗�
and �⃗� respectively denote the height, width and position of a peak within the
generated problem landscape. The cost function within RDBG is defined as:

𝑓(𝑥, 𝜙, 𝑡) =
𝑚

min
𝑖=1

(𝐻𝑖(𝑡) + 𝑊𝑖(𝑡) ⋅ (exp (
√√√
⎷

𝑛
∑
𝑗=1

(𝑥𝑗 − 𝑋𝑖
𝑗(𝑡))2

𝑛
) − 1)) (4.8)

where 𝑚 is the number of peaks with a dimension of 𝑛. The peak width and
height are adjusted as follows:

�⃗�(𝑡 + 1) = 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐶ℎ𝑎𝑛𝑔𝑒𝑠(�⃗�(𝑡)) (4.9)
�⃗� (𝑡 + 1) = 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐶ℎ𝑎𝑛𝑔𝑒𝑠(�⃗� (𝑡)) (4.10)

Unlike the peak shifting present within the MPB generator, the RDBG
moves peaks within the problem landscape though the use of a rotation matrix.
The rotation matrix is derived using the procedure outlined by Weicker and
Weicker [300] which was described within the MPB circular peak rotation
procedure within section 4.1.3.4.
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4.1.5 Compositional function generator
Liang et al. [165] proposed an approach to generate dynamic environments
through the composition of static environment basis functions. The static ba-
sis functions are predominately selected from the well-established set of static
environment benchmarks that are commonly used within literature. Such
functions include the Spherical, Rastrigin, Griewank, Ackley and Schwefel
functions, amongst others. The compositional approach for the dynamic com-
position benchmark generator (DCBG) is achieved through the use of the
composition function:

𝐹(𝐱, 𝜙, 𝑡) =
𝑚

∑
𝑖=1

(𝑤𝑖 ⋅ (𝑓 ′
𝑖 ((𝐱 − �⃗�𝑖(𝑡) + 𝑂𝑖𝑜𝑙𝑑) /𝜆𝑖 ⋅ �⃗�𝑖) + �⃗�𝑖(𝑡))) (4.11)

where 𝜙 = (�⃗�𝑖, �⃗�𝑖, �⃗�𝑖) is the system control parameter for the generator,
𝑓𝑖(𝐱) is the 𝑖-th composition function (of 𝑚 functions) used to construct the
composition function 𝐹(𝑥). The function 𝑓 ′

𝑖 (𝐱) = 𝐶 ⋅ 𝑓𝑖(𝐱)/|𝑓 𝑖
𝑚𝑎𝑥| scales the

contribution of each 𝑓𝑖(𝐱) relative to the maximum value, 𝑓 𝑖
𝑚𝑎𝑥 = 𝑓𝑖(𝐱𝑚𝑎𝑥⋅𝑀𝑖).

�⃗�𝑖(𝑡) is the orthogonal rotation matrix for each 𝑓𝑖(𝐱), calculated upfront and
thereafter remains unchanged. �⃗�𝑖(𝑡) defines the optimum of the changed 𝑓𝑖(𝐱)
as a result of the rotation in time-step 𝑡. 𝑂𝑖𝑜𝑙𝑑

is the optimum of the original
𝑓𝑖(𝐱) without any applied changes.

The weight 𝑤𝑖 applied to each of the 𝑓𝑖(𝐱) functions within equation (4.11)
is calculated as:

𝑤𝑖𝑎 = exp ⎛⎜
⎝

− sqrt ⎛⎜
⎝

∑𝑛
𝑘=1 (𝑥𝑘 − 𝑜𝑘

𝑖 + 𝑜𝑘
𝑖𝑜𝑙𝑑

)
2

2𝑛𝜎2
𝑖

⎞⎟
⎠

⎞⎟
⎠

(4.12)

𝑤𝑖𝑏 = {
𝑙𝑤𝑖𝑎 if 𝑤𝑖𝑎 = max(𝑤𝑖𝑎)
𝑤𝑖𝑎 ⋅ (1 − max(𝑤𝑖𝑎)10) if 𝑤𝑖𝑎 ≠ max(𝑤𝑖𝑎)

(4.13)

𝑤𝑖 = 𝑤𝑖𝑏/
𝑚

∑
𝑖=1

𝑤𝑖𝑏 (4.14)

where 𝜎𝑖 is the coverage range factor of 𝑓𝑖(𝐱) with a default value of 1.0; 𝜆𝑖 is
the stretch factor for each 𝑓𝑖(𝐱), defined as

𝜆𝑖 = 𝜎𝑖 ⋅ 𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
𝑥𝑖

𝑚𝑎𝑥 − 𝑥𝑖
𝑚𝑖𝑛

(4.15)

where [𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥]𝑛 is the problem domain for 𝐹(𝐱), whereas [𝑥𝑖
𝑚𝑖𝑛, 𝑥𝑖

𝑚𝑎𝑥]𝑛
is the search domain for 𝑓𝑖(𝐱). The system parameters for �⃗� and �⃗� are
adjusted as follows:

�⃗�(𝑡 + 1) = 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐶ℎ𝑎𝑛𝑔𝑒𝑠(�⃗�(𝑡)) (4.16)
�⃗�(𝑡 + 1) = 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐶ℎ𝑎𝑛𝑔𝑒𝑠(�⃗�(𝑡)) (4.17)
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The values �⃗� and �⃗� are the same as �⃗� and �⃗� within RDBG and are adjusted
in the same way using the change system, Δ𝜙.

The implementation of the DCBG benchmark may prove to be challeng-
ing due to the required variable state management for the additional control
parameters within the generator function. Importantly, the optimum value
for each of the constituent composition functions must be known ahead of
time in order to apply the compositional generator. As a result, the DCBG
may produce an environment which is computationally expensive to construct
and/or evaluate, and to update upon an environment change.

4.1.6 Free Peaks Generator
Li [159] proposed a new landscape generator based on the idea that the max
blending effect within the MPB and DF1 is incorrect. The proposed generator
firstly divides the problem search space bounds up into smaller sub-spaces using
a k-d tree [11]. Following the subdivision of the problem space, a function is
associated with each subspace in order to define the landscape for the subspace
region. The branching nodes of the k-d tree represent the points within the
problem search space where a hyperplane divides the search space into two
sub-spaces. The leaf nodes of the k-d tree represent the final sub-spaces which
will have peak functions assigned to them in order to construct the problem
search space landscape.

Eight individual landscape functions are given in [159], but any number
of landscape functions may be provided based on the landscape requirements.
The generator framework also allows for changes to the landscape to occur over
time which include the peak location, peak height, the peak basin of attraction
(based on the subspace division) and the number of peaks in the environment.

The free peaks approach provides a piece-wise approach to the construction
of the problem landscape, but at the same time the procedure does not define
a clear evolution process for the environment over time. For example, the
number of peaks may change after an environment change, requiring that
the problem space be subdivided once again in order to reduce or increase
the number of available peaks. Such changes can be seen as a drastic, chaotic
change within the problem environment which may not be desired behaviour for
the dynamic environment. It is also unclear how the benefits of the generator
listed within [159] are outright better than the other generator based landscape
generation approaches. The landscapes produced by the generator have not
been categorised in order to define the landscape behaviour characteristics for
the set of generator configuration parameters and environment changes.
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4.2 Constrained Dynamic Optimisation
Benchmark Problems

DODC problems are the most challenging kind of optimisation problem to
obtain solutions for. This is predominately due to the complexity introduced
by the problem definition and that problem changes affect the optimisation
algorithm. The DCOP are a class of problem that is not fully understood, with
a sparse selection of benchmark problems available. In the sub-sections that
follow, the current set of available benchmark problems are discussed together
with the current limitations. Section 4.2.1 discusses the sets of benchmark
problems used in the IEEE Congress on Evolutionary Computation (CEC)
competitions, with section 4.2.2 discussing the G24 benchmark problems.

4.2.1 CEC Competition Benchmarks
The CEC has hosted multiple competitions in order to encourage the develop-
ment of optimisation algorithms for constrained optimisation problems.

The CEC2006 conference competition [167] focused on single objective,
static optimisation problems which contain static problem constraints. The
organisers of the competition also provided the target solution for each of the
problem instances, enabling comparisons between the different participating
algorithms. All defined problem instances were limited to minimisation prob-
lems. The benchmark problems consists of 24 problem instances (g1-g24)
that are either linear, non-linear, quadratic, cubic or polynomial functions in
multiple dimensions. Problem constraints consist of equality and/or inequality
constraint functions which are specified for each problem instance. The bench-
mark problems were prepared exclusively for the competition, but have been
used in studies since the CEC2006 competition, especially when comparing
against an algorithm which took part in the competition.

For the CEC2010 competition on constrained real-parameter optimisa-
tion [182], a total of 18 unique constrained problem instances were described
within the technical report. The focus of the benchmark problems within the
CEC2010 competition was on constrained problems in higher dimensions. This
is in contrast to the 2006 competition where the focus was on static optimisa-
tion problems. The number of constraints for each of the benchmarks varied
from 0 to 3 constraints, where the constraints themselves are either separable
or non-separable functions. As with the CEC2006 competition, the benchmark
problems are specific to the CEC2010 competition.

A new set of benchmark problems was proposed in the technical report for
the CEC2017 competition [306]. The intention of this new set of benchmark
problems was to address the concern that the benchmark problems from the
CEC2006 and CEC2010 technical reports no longer provide a challenge because
they had been solved successfully. The new benchmark problems consisted of
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28 constrained problems with dimensions of 10, 30, 50 and 100. These new
benchmark problems aimed to be scaling functions that would compete with
other problems within the Big Data industry where problems contain hundreds
of decision variables together with a wide variety of problem constraints. As
a result, the new benchmark problems contain a wider range of different con-
straint functions when compared to the benchmark problems from previous
competitions.

4.2.2 G24 Benchmark Functions
Nguyen and Yao [207] proposed a set benchmark problems, referred to as
the G24 benchmark (not to be confused with the function names within the
CEC2006 competition benchmark). A benchmark problem generator was pro-
posed to generate search space landscapes that change over time as well as
static problem landscapes. In addition, the generator allowed for the inclu-
sion of static constraints into the generated landscape, but also allowed the
constraints themselves to change over time. The result is a problem instance
generator for DCOPs which aims to fulfil the requirements of desirable optimi-
sation problems for dynamic environments, discussed in section 4.1.1.

The problem generator is based on a mathematical framework [210], from
which the problem instances are derived. Generalisation of the mathematical
framework into its dynamic version requires that the parameters of the static
framework become time-dependent parameters. In other words, for the set
of problem parameters 𝑃, each parameter 𝑝𝑖 ∈ 𝑃 may be generalised into a
time-dependent parameter version by replacing 𝑝𝑖 with 𝑝𝑖(𝑡). G24 benchmark
problem instances are based on a basis static function [92] defined as:

𝑓(𝐱, 𝑡) = −(𝑋1(𝑥1, 𝑡) + 𝑋2(𝑥2, 𝑡)) (4.18)

subject to:

𝑔1(𝐱, 𝑡) = − 2𝑌1(𝑥1, 𝑡)4 + 8𝑌1(𝑥1, 𝑡)3 − 8𝑌1(𝑥1, 𝑡)2

+ 𝑌2(𝑥2, 𝑡) − 2
𝑔2(𝐱, 𝑡) = − 4𝑌1(𝑥1, 𝑡)4 + 32𝑌1(𝑥1, 𝑡)3 − 88𝑌1(𝑥1, 𝑡)2

+ 96𝑌1(𝑥1, 𝑡) + 𝑌2(𝑥2, 𝑡) − 36

such that

𝑋𝑖(𝑥𝑖, 𝑡) = 𝑝𝑖(𝑡)(𝑥𝑖 + 𝑞𝑖(𝑡))
𝑌𝑖(𝑥𝑖, 𝑡) = 𝑟𝑖(𝑡)(𝑥𝑖 + 𝑠𝑖(𝑡))
0 ≤ 𝑥1 ≤ 3; 0 ≤ 𝑥2 ≤ 4
𝑔1(𝐱, 𝑡) ≤ 0; 𝑔2(𝐱, 𝑡) ≤ 0
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where 𝑝𝑖(𝑡), 𝑞𝑖(𝑡), 𝑟𝑖(𝑡) and 𝑠𝑖(𝑡) (for 𝑖 = 1, 2) are the time-dependent parame-
ters. Values for the time-dependent parameters are provided in table 4.1 for
each of the problem instance variations.

Although the problem instances within the G24 benchmark problems do
address the defined criteria, the benchmark problem instances are limited
to a two-dimensional problem domain which reduces the usefulness of the
generator. The G24 does, however, indicate that the generator-based approach
may be a valid alternative to define different search space environments which
can serve as benchmark problems for DCOP instances. Furthermore, basing a
DCOP generator on an already established and well understood DCOP problem
generator is very advantageous. Allowing such a generator to additionally
define constraints on the produced problem will also allow for a more focused
understanding of algorithm behaviour, when adding constraints to a DOP
instance.

4.3 Landscape Analysis
As the complexity of the problem search space increases, it becomes more
difficult to understand the problem. The interaction between constraints and
the problem search space is already complicated in two dimensions and scaling
to larger dimensions only compounds the complexity further. It is, there-
fore, advantageous to attempt to understand the problem search space using
a set of metrics, based on samples of search space data. From such mea-
surements, details of the problem landscape may be determined before an
optimisation algorithm attempts to find solutions through fitness landscape
analysis (FLA) [233]. Section 4.3.1 discusses the process of obtaining the sam-
ple landscape data, whilst section 4.3.2 describes metrics available to aid in
understanding the problem landscape.

4.3.1 Landscape Walks
Landscape walks [177, 181] through the problem landscape define a process
to collect an ordered set of multi-dimensional candidate solutions from an
optimisation problem. Candidate solutions are sampled at regular intervals
across the entire problem domain in order to create the set of points. The
resulting ordered set of candidate solutions represents a collection of neigh-
bouring solutions that constitute the walk through the problem search space.
Figure 4.1 illustrates neighbouring of candidate solutions within a landscape
walk, where the neighbouring candidate solutions are connected with lines.
The walk creation process should also adhere to the following guidelines [177]:

• Neighbouring solutions define a loose notion of neighbourhoods based on
an arbitrary definition, such as the Euclidean distance between candidate
solutions.
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Table 4.1: Parameter combinations for the G24 benchmark generator

Problem Parameters

G24_0 𝑝1(𝑡) = sin (𝑘𝜋𝑡 + 𝜋
2

) ; 𝑝2(𝑡) = 1

G24_1
𝑝1(𝑡) = sin (𝑘𝜋𝑡 + 𝜋

2
)

𝑝2(𝑡) = 𝑟𝑖(𝑡) = 1; 𝑞𝑖(𝑡) = 𝑠𝑖(𝑡) = 0
𝑖 = 1, 2; 0 < 𝑘 ≤ 2

G24_2

𝑝1(𝑡) = sin ( 𝑘𝜋𝑡
2

+ 𝜋
2

)

𝑝2(𝑡) =
⎧
{
⎨
{
⎩

𝑡 mod 2 ≠ 0 sin ( 𝑘𝜋(𝑡−1)
2 + 𝜋

2 )

𝑡 mod 2 = 0 {𝑝2(𝑡 − 1) if 𝑡 > 0
𝑝2(0) = 0 if 𝑡 = 0

𝑞𝑖(𝑡) = 𝑠𝑖(𝑡) = 0; 𝑟𝑖(𝑡) = 1; 𝑖 = 1, 2

G24_3
𝑝𝑖(𝑡) = 𝑟𝑖(𝑡) = 1; 𝑞𝑖(𝑡) = 𝑠1(𝑡) = 0; 𝑖 = 1, 2

𝑠2(𝑡) = 2 + 𝑡 ⋅ 𝑥2 max − 𝑥2 min
𝑆

G24_4

𝑝1(𝑡) = 𝑟𝑖(𝑡) = 1; 𝑞𝑖(𝑡) = 𝑠1(𝑡) = 0; 𝑖 = 1, 2

𝑝2(𝑡) = sin (𝑘𝜋𝑡 + 𝜋
2

) ; 0 < 𝑘 ≤ 2

𝑠2(𝑡) = 𝑡 ⋅ 𝑥2 max − 𝑥1 min
𝑆

G24_5

𝑝1(𝑡) = sin ( 𝑘𝜋𝑡
2

+ 𝜋
2

)

𝑝2(𝑡) =
⎧
{
⎨
{
⎩

𝑡 mod 2 ≠ 0 sin ( 𝑘𝜋(𝑡−1)
2 + 𝜋

2 )

𝑡 mod 2 = 0 {𝑝2(𝑡 − 1) if 𝑡 > 0
𝑝2(0) = 0 if 𝑡 = 0

𝑞𝑖(𝑡) = 𝑠1(𝑡) = 0; 𝑟𝑖(𝑡) = 1; 𝑖 = 1; 2

𝑠2(𝑡) = 2 + 𝑡 ⋅ 𝑥2 max − 𝑥2 min
𝑆

𝑘 Severity of function change
Small: 𝑘 ∼ 0.25, Medium: 𝑘 ∼ 0.5, Large: 𝑘 ∼ 1

𝑆 Severity of constraint changes
Small: 𝑆 = 50, Medium: 𝑆 = 20, Large: 𝑆 = 10
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• The candidate solution collection process must be unbiased and not
guided in any way; this is unlike the general process within an optimisa-
tion algorithm.

• The length of a walk should also be guided by the computational con-
straints, which includes the cost of the computation and the total budget
available to explore the landscape. If a study aims to explore the be-
haviour of an optimisation algorithm, a larger computational budget
should be allocated to the optimisation algorithm instead of to the walk
creation process. If the generated walks through the landscape perform
the majority of the candidate solution evaluations, the walk itself is act-
ing as a search for an optimal solution instead of probing the landscape
to understand the present characteristics.

Walks may be generated with random sampling or by directing the sampling
process across the landscape.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

Figure 4.1: Simplified view of neighbouring candidate solutions within a walk.
Neighbouring candidate solutions are connected by lines.

4.3.1.1 Simple Random Walk

A simple random walk [290] of the environment landscape can be defined as
the process of collecting search space candidate solutions that total the user
defined quantity numSteps. The initial point for the collection procedure is
randomly generated for each dimension within the range [𝑥min, 𝑥𝑚𝑎𝑥], where
𝑥min and 𝑥max respectively define the lower and upper bounds of the landscape
domain.
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Each subsequent candidate solution within the walk is based on the most
recently collected candidate solution. Given a user-defined step size, 𝑠, a
“step size vector” is created by sampling a random value between [−𝑠, 𝑠) for
each dimension within the candidate solution. The step size vector and the
most recent current candidate solution within the walk are then combined
through a component-wise addition of dimension values in order to produce
the next candidate solution of the walk. This process is iterated until numSteps
candidate solutions are collected, producing the completed walk.

Although the above simple sampling procedure is simple to execute, the
results from the walk creation are not desirable. Malan [177] highlighted
that the walk creation procedure produces walks that have a tendency to be
clustered around limited areas within the search space. It was also observed
that the localisation of sampled candidate solutions became more pronounced
as the size of 𝑠 decreased. Furthermore, as numSteps reduces, so too does the
probability of producing a candidate solution within a different part of the
landscape search space.

4.3.1.2 Progressive Random Walk

In order to address the limitations of the simple random walk, Malan [177]
proposed an alternative walk generation procedure. The proposed walk gener-
ation process would always begin at an edge of the landscape search space, but
included a bias to move towards the other end of the landscape search space.
The candidate solution selection process remains the same as in the simple
random walk above, whereby each dimension within the step vector is sampled
randomly within the range [−𝑠, 𝑠).

Upon reaching or passing over the opposite landscape boundary, the bias
would swap to direct the walk sampling to the starting landscape boundary.
The repeating back and forth sampling across the search landscape would
continue until numSteps candidate solutions have been collected. As a result of
the improved spread of candidate solutions across the landscape search space
when sampling with the progressive random walk procedure, the procedure is
preferred to the simple random walk.

4.3.1.3 Manhattan Progressive Random Walk

An alternative walk generation procedure may be considered when the metric
computation process becomes too computationally expensive [148, 177]. For
example, metrics that use the Euclidean distance between candidate solutions
may require the majority of a computational budget. The Manhattan progres-
sive random walk allows for a simplified walk generation procedure in which a
single dimension of a candidate solution is modified in order to produce a new
candidate solution. The dimension selected for modification is selected at ran-
dom and the bias of the progressive random walk to drive the walk across the
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problem landscape is still present within the walk creation procedure. Impor-
tantly, the size of the modification applied to the randomly selected dimension
is a constant size instead of being randomly sampled from the range [−𝑠, 𝑠).

4.3.2 Landscape Metrics
Fitness landscape metrics use the resulting walk information in order to quan-
tify the characteristics of a given optimisation problem search space. Assuming
that the walk information provides a sufficient number of sampled candidate
solutions, as well as the phenotypic information for each point, the fitness
landscape metrics may provide insight to the characteristics of the problem
search space. The sampled candidate solutions contained within the walk
should ideally be from across the entire problem domain, whilst the number of
candidate solutions should be as large as possible.

It is recommended to perform a number of independent walks throughout
the problem search space in order to determine statistical relevance for the
fitness landscape metrics. A number of different fitness landscape metrics are
available with a sample of the available metrics discussed in the subsections
that follow.

4.3.2.1 Feasibility Ratio

The feasibility ratio (FSR) [179] is an approximation of the feasible portion
of the problem search space when compared against the total available search
space. The metric is simply

FSR =
𝑛𝑓

𝑛
(4.19)

where 𝑛𝑓 is the number of feasible solutions contained within a random walk
of the search space.

4.3.2.2 Ratio Feasibility Boundary Crossings

The ratio feasibility boundary crossings (RFBx) [179] determines how
disjoint the feasible regions of the problem space are. The metric traverses
the candidate solutions within a random walk and counts the proportion of
neighbouring solutions that cross between feasible and infeasible spaces within
the problem search space. If the random walk were to be transformed into a
binary string 𝑏, the bit value 0 indicates that the solution is within feasible
space. Conversely, a bit value of 1 represents a candidate solution within
infeasible space.
The RFBx metric is calculated as:

RFBx = Σ𝑛−1
𝑖=1 cross(𝑖)

𝑛 − 1
(4.20)
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where

cross(𝑖) = {
0 if 𝑏𝑖 = 𝑏𝑖−1

1 otherwise
(4.21)

4.3.2.3 Dispersion

The dispersion [174] metric estimates the global topology of a problem search
space from the provided solution information within the random walk. The
dispersion for a random walk sample determines how spread out the points are
in relation to each other, based on the average pair-wise distance between the
points. The function of dispersion is based on how the dispersion of a sample
of points differs from a subset of better points [174]. The function may either
be regarded as high or low, where the dispersion of the sample of points is
respectively higher or lower than the dispersion of the subset of better points.
The metric was improved upon in [177] where the candidate solutions were
normalised in order to allow for the comparison of dispersion metric values
where problems have different domains.

4.3.2.4 First Entropic Measure

The first entropic measure (FEM) [177, 288–290] determines the classifica-
tion of the problem search space as either rugged, smooth or neutral, using the
search space information between neighbouring solutions. The result of the
measure is a value within the range [0.0, 1.0], which indicates a search space
from smooth to total ruggedness.

Although the result of the measure is a single scalar value, the calculation
itself is a complex sequence of steps where the change in objective function
value between landscape walk points are considered. The value comparison
forms a cycle with the last point in the sample being compared against the
first sample point within discrete problem spaces. Continuous problem spaces
do not close the cycle by comparing the first and last samples. The metric is
defined as:

FEM = max
∀𝜖∈[0,𝜀∗]

{𝐻(𝜀)} (4.22)

where 𝐻(𝜀) is an instance of b-ary entropy [247] which determines the entropy
between two unique sample points.

4.3.2.5 Fitness Cloud Index

The fitness cloud index (FCI) [178] indicates the evolvability of an evolu-
tionary search. The metric makes use of a PSO algorithm to determine the
neighbourhoods of a sample of solutions, and normalises all fitness values of the
sample considering only solutions that are within the bounds of the problem
search space. The resulting value is within the range [0, 1], where 0 indicates
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the worst searchability and 1 the best searchability. The measure is defined as:

FCI =
∑𝑛𝑣

𝑖=1 𝑔(𝐱𝑖)
𝑛𝑣

(4.23)

where 𝐱𝑖 is a sampled point from the optimisation problem search space (i.e.,
𝐱𝑖 ∈ 𝒮) and 𝑛𝑣 is the number of valid points within the subset 𝒮𝑣 such that
𝒮𝑣 ⊆ 𝒮, and

𝑔(𝐱𝑖) = {
1 if 𝑓(𝐱′

𝑖) < 𝑓(𝐱𝑖)
0 otherwise

(4.24)

with 𝐱′
𝑖 being the associated neighbouring points for the point 𝐱𝑖.

4.3.2.6 Fitness Distance Correlation

The fitness distance correlation (FDC) [178] metric informs whether the
information presented by a problem space could guide an optimisation algo-
rithm to an optimum. The premise is that a problem is simple to search if the
objective function value of solutions increase or decrease as the distance to an
optimum increases or decreases. The correlation value may range from −1.0
(totally uncorrelated) to 1.0 (totally correlated) and is calculated as:

FDC =
∑𝑛

𝑖=1(𝑓𝑖 − ̄𝑓)(𝑑∗
𝑖 − ̄𝑑∗)

√∑𝑛
𝑖=1(𝑓𝑖 − ̄𝑓)2 ⋅ √∑𝑛

𝑖=1(𝑑∗
𝑖 − ̄𝑑∗)2

(4.25)

where 𝑛 is total number of sample points, 𝑥1, 𝑥2, … , 𝑥𝑛; 𝑓𝑖 represents the
associated objective function value for the points with ̄𝑓 being mean objective
function value within the sample. The distance, 𝑑∗

𝑖 , between points is calculated
as the distance between each point and the best point within the sample, with

̄𝑑∗ representing the mean distance of the sample of points.

4.3.2.7 Gradient measures

The gradient measures [177] estimate the steepness of the gradients present
within a problem search space. The gradients are determined between the
sampled points within a progressive random walk, with the gradient determined
between the points. A total of 𝑛+1 points are required to produce 𝑛 gradients
for the measures. Each gradient is calculated using

𝑔(𝐱𝑖) =
𝑓(𝐱𝑖+1) − 𝑓(𝐱𝑖)

d(𝐱𝑖+1, 𝐱𝑖)
(4.26)

where d(𝐱𝑖+1, 𝐱𝑖) is the Euclidean distances between the points.
Three different gradient metrics may be obtained using the calculated

gradient information between the sampled points:
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1. The average gradient, 𝐺𝑎𝑣𝑔, provides an indication of the average gra-
dient between neighbouring solutions within a random walk. Importantly,
only the absolute gradient value is considered for this measure. The use
of gradients is to quantify the perceived steepness within the optimisation
problem search space. As a result the direction of the gradient does not
matter and the absolute value is used in order to prevent the interference
between positive and negative values with the mean calculation.

2. Gradient standard deviation, 𝐺𝑠𝑡𝑑, is an indication of how the mea-
sured gradients differ from the mean throughout the landscape walk.
Lower deviation values would indicate that the average gradient is a
good indicator of gradients within the problem search space. Large val-
ues are indicative of severe gradient changes which would be the result
of cliffs and/or valleys being present within the search space. Another
possibility would be large plateaus within the problem search space that
differ from the rest of the search space.

3. The maximum gradient, 𝐺𝑚𝑎𝑥, provides the largest estimated gradient
within a random walk. If 𝐺𝑚𝑎𝑥 is larger than 𝐺𝑎𝑣𝑔 for a given random
walk through the problem search space, then there are parts of the
problem space that stand out from the remainder of the problem space.
Larger values for both the average gradient and the maximum gradient
indicate a highly rugged problem space.

4.4 Conclusion
This chapter discussed different DOP benchmark problems and introduced
the notion that generator functions for dynamic environments are a feasible
approach to create benchmark problems. The complexity of the dynamic opti-
misation problem landscapes was highlighted and that the problem instances
pose a challenge when attempting to compare optimisation algorithm perfor-
mances due to the non-deterministic change of problem landscapes. Of the
available benchmark problems and generators, the MPB is the most popular
generator function within literature with the most understood dynamism.

Adding problem constraints that also change over time to DOPs produces
instances of DCOPs where the complexity of the problem is arguably the
greatest for an optimisation algorithm. The current sets of benchmark problems
provide the groundwork for developing more capable optimisation algorithms,
but the benchmark problems are either developed for a specific purpose and
are not general enough. On the other hand, the available benchmarks that
do have an increased generality do not allow for a large number of decision
variables, limiting the usefulness of these benchmark problems.

Optimisation problem landscapes produced from generator functions can
differ based on control parameters of the benchmark instance generator and
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due to the use of randomness within the generator function itself. Regardless of
the observed differences between two problem instances generated in this way,
the instances will display similar characteristics because the same generator
function with the same control parameters was used. The MPB generator
function is particularly interesting because it has previously been shown to allow
for the derivation of a comprehensive set of of DOP instances [77]. The other
generator functions are not able to represent such a comprehensive classification
of optimisation problem instances.

In order to determine the complexities of an optimisation problem instance,
the use of FLA was considered. Although the complexity of the DCOP problem
instances is not fully understood, the landscape measures still remain the
only way feasible current method to quantify the perceived complexity of an
optimisation problem search space.

The next chapter will expand on the information obtained from the current
benchmark problems, for both DOPs and DCOPs, in order to produce a
generator function for DCOPs. The goal of this new generator function will
be to address the shortcomings of the current benchmark problem instances
and generator functions, whilst allowing for the representation of all possible
problem instance combinations.
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Chapter 5

Constrained Moving Peaks
Benchmark

Testing leads to failure, and failure leads to
understanding.

Burt Rutan

The number of DCOP problem instances that are possible is effectively infinite,
with each problem instance presenting a different level of optimisation problem
complexity. In order to attempt to understand the differences in optimisation
problem complexity, classification schemes about the characteristics of prob-
lem instances have started to be defined. From these classifications, multiple
DCOPs can be addressed based on the change patterns observed within the
optimisation problem over time.

The previous chapter discussed the differences between unconstrained DOPs
and DCOPs instances. From the current benchmarks and function generators,
the larger quantity of benchmark problems are available for DOPs. For DCOP
problem instances the available choices are far more restricted. Moreover,
the complexity of combining optimisation problem constraints together with
changing problem landscapes makes the generation, or definition, of these kinds
of optimisation problems far more difficult.

This chapter attempts to address the difficulty of producing DCOP bench-
mark instances by building upon solutions found within benchmark function
generators for DOPs. Section 5.1 proposes a new benchmark function generator
to generate DCOPs. The analysis of an empirical study of the new proposed
function generator for DCOPs is discussed in section 5.2. The chapter concludes
in section 5.3.
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5.1 Proposed Constrained Moving Peaks
Benchmark

The MPB is an optimisation problem generator that has established itself
within dynamic optimisation problem research [17, 18, 24–26, 29, 130, 156,
159, 201, 209, 248]. The problem classification of Duhain and Engelbrecht [77]
(discussed in section 2.2.5) classifies dynamic optimisation problems into 27 dif-
ferent problem instance categories and uses the MPB to generate these problem
instances. It should also be noted that the MPB is also capable of generating
static problem environments. By not allowing an environment change to occur
during the optimisation process, the problem environment remains constant.
For this reason, the number of problem environments described within [77] can
be extended to a total of 28 problem environments classifications.

When considering optimisation problem constraints, it is desirable to also
have the constraint landscape of the optimisation problem be constructed in
a manner that is similar to the objective landscape. Such a formulation of
the constraint landscape allows for the possibility of varying the constraint
landscape over time. By composing the generated objective and constraint
landscapes together, the result is a landscape where the objective landscape
and constraint landscape may change over time in complete isolation. The
constraint and objective function landscapes are generated using the MPB
problem generator. Landscape composition can therefore be performed by tak-
ing the difference between the objective and constraint landscapes as the MPB
produces maximisation problem landscapes with several peaks. Obtaining the
difference between the generated landscapes would produce a problem search
space that includes infeasible regions. The resulting optimisation problem is
defined as:

ℎ(𝐱) = 𝑓(𝐱) − 𝑔(𝐱) (5.1)

where 𝑓 defines the MPB generated objective function landscape and 𝑔 defines
the MPB generated constraint landscape, and 𝐱 is a location vector within the
optimisation problem search space of the objective landscape.

Each of the generated landscapes may have their own configuration pa-
rameters (refer to section 4.1.3) which allow for a different number of peaks
within the search space together with different peak modification and movement
characteristics. In the event that the 𝑓 and 𝑔 MPB generators have different
problem domains, it is recommended that the entities of the optimisation algo-
rithm be initialised based on the domain of the objective function landscape,
i.e., the domain of the 𝑓 generator function. The resulting composed optimisa-
tion problem will have a peak height range of [−minHeight𝑔, maxHeight𝑓] and
infeasible areas are indicated where ℎ(𝐱) < 0. Due to the independence of
the 𝑓 and 𝑔 generator functions, the frequency and the severity of change for
each independent generator function need not be the same. Furthermore, it is
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also recommended to have different streams of randomness for each generator
function.

The composed generator function, ℎ, has the following advantages:

• The problem and constraint problem spaces are independent from each
other. The problem space may remain constant, whilst varying the
constraint space, or any combination thereof.

• The dimensionality of the objective problem space and the constraint
problem space need not match. For example, a more complex constraint
problem space can be combined together with a less complex objective
problem space.

• Plotting the generated composed problem space is trivial when using 2D
and 3D visualisations.

• The composition allows for 28 environment types for both the objective
problem space and the constrained problem space. As a result, there
are a total of 282 = 784 possible problem instances. The 28 different
problem instances include the 27 problem instances as defined by Duhain
and Engelbrecht [77] together with a static problem instance, labelled
STA. To identify problem instances, the generator function ℎ can label
its problem instances using the form objective space behaviour/constraint
space behaviour which represents the composition of the objective and
constraint spaces. An example of this naming scheme is the A1C/STA
problem instance where the objective space and constraint spaces respec-
tively are the A1C and the STA problem instances.

• Inclusion of additional equality and inequality constraints to further
constrain the resultant composed problem space is still possible.

The problem formulation of the CMPB problem generator addresses the
criteria defined by Nguyen and Yao [208] which requires that:

1. The structure/percentage/shape of the feasible and infeasible regions
within the resulting problem space changes over time.

2. Optima within the problem search space may appear in different discon-
nected regions.

3. Changing constraints may reveal better optima in a static problem space.

One aspect of the criteria of Nguyen and Yao [208] that is not directly ad-
dressed by the CMPB is the notion of time-linkage. Time-linkage requires that
the evaluation of the algorithm on the optimisation problem may result in an
environment change. Although CMPB does not directly cater for this require-
ment, the requirement may be considered by observing when the optimisation

83



algorithm evaluates the current problem landscape and then to respond to the
evaluation.

Figure 5.1 illustrates a CMPB environment over nine environment changes,
with the initial environment labelled as environment 0. The three dimensional
environment is projected from a top-down view to show the interaction between
the peaks of the constraint and objective MPB landscapes.

5.2 Landscape Analysis of the Constrained
Moving Peaks Benchmark

This section examines the landscape characteristics of the CMPB problem
generator using the landscape metrics introduced in the previous section. Sec-
tion 5.2.1 explains the experimental setup for the investigation of the problem
space environments that are generated by the CMPB generator function. The
results of the experiments are presented in section 5.2.2 with the results indi-
cating a favourable behaviour for the CMPB generator function.

5.2.1 Experimental Approach
In order to evaluate the problem characteristics of the CMPB generator func-
tion, only progressive random walks through the problem search space are
considered to allow for the application of gradient-based metrics. A total of
numSteps consecutive candidate solutions are sampled during the progressive
random walk which begins from a random starting point on the boundary of
the problem search space.

From an initial, randomly generated problem environment a total of 30
independent random walks are sampled. Thereafter, the problem environment
will experience a change and a new problem search space will be generated,
derived from the current problem landscape generation parameters. The can-
didate solutions points within the independent random walks are evaluated
once again on the updated problem landscape. This process is repeated for 10
consecutive landscape changes, for each of the 30 independent random walks.

To ensure that there is complete fairness between problem landscape com-
parisons, the random walk sampling process as well as the problem environment
changes are managed by the CIlib software library. CIlib (discussed in part IV
of this thesis) enables the exact reproduction of environments and walks across
all the environment changes. Without the ability to exactly reproduce the
problem environments and random walks, the comparisons would be unfair
(possibly even invalid) as the problem environments and the independent ran-
dom walks cannot be guaranteed to agree.

An initial random seed value of 123456789L was used from which the ran-
dom number generators for the objective and constraint spaces were initialised.
By duplicating the walks for each problem environment a representative sample

84



Figure 5.1: Constrained MPB instance with nine consecutive environment changes.
Red coloured regions are infeasible (ℎ(𝑥) < 0). Black regions indicate feasible regions
without solutions (ℎ(𝑥) = 0); Blue regions have solutions present (ℎ(𝑥) > 0).
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is possible by limiting the differences to the underlying problem environment
alone. Figure 5.2 illustrates the mean fitness landscape metrics for each of the
10 problem instances with the top-down projection onto the 𝑥𝑦 plane for the
same problem instances, given in figure 5.1.

5.2.2 Landscape Analysis Results
The FSR metric for the environments in figure 5.2 displays the ratio of feasible
space across the problem instances. The percentage of feasible space ranges
from 0.38 to 0.84, which is seen as the grey and white search space regions in
the projection images within figure 5.1. As a result, the changes to the problem
environment allow the problem search space to transform from predominantly
feasible to predominantly infeasible when considering the composed landscape
produced by the CMPB problem generator. Furthermore, the regions of infea-
sible space change over time in both size and connectedness as the environment
changes.

The RFBx metric displays minimal variation in the obtained values, as
illustrated in figure 5.2. This minimal variation indicates that feasible regions
are not disjoint. The problem landscapes of figure 5.1 confirm that the metric
does not indicate that the generated problem spaces actually do contain disjoint
feasible regions. The domain of the generated problems is large and the random
walks did not traverse the problem search space in such a way that these regions
were identified. A combination of a larger number of random walks and/or
longer sampling lengths would result in a larger coverage of the problem search
space and should eventually encounter these disjoint feasible regions.

The dispersion metric produces a similar value for all of the generated
problem landscapes. The dispersion value is indicative of a good spread of
solutions within the problem space which provides a fair probability for an
optimisation algorithm to locate solutions.

The ruggedness of the generated problem spaces, as provided by the FEM
metric, indicates that the generated problem spaces vary from marginally to
slightly rugged. These values confirm the expectations for the generated MPB
problem landscapes because the MPB has a base being a flat plane with peaks
that are super-imposed into the problem space. With a larger number of peaks
as input to the problem generator, an even more rugged landscape will be
generated.

The searchability of the generated problem spaces, as provided by the
FCI metric, indicates that the generated problem landscapes do not aid in
the searchability of the problem itself. This is an expected result as the
disjointedness of the feasible regions, both in and outside of infeasible spaces,
do not guide an optimisation algorithm to a better solution.

The FDC metric shows that the generated problem landscapes display
correlations close to 0. A correlation of 0 indicates that marginal correlations
exist between the observed fitness values and the distance to optima. The FDC

86



FSR RFBx Dispersion FEM FCI FDC Gavg Gdev Gmax

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.97

0.972

0.974

0.976

0.978

0.98

0.982

0.984

-0.454

-0.453

-0.452

-0.451

-0.45

-0.449

-0.448

0.25

0.3

0.35

0.4

0.45

0.5

0.024

0.026

0.028

0.03

0.032

0.034

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

100

200

300

400

500

600

200

400

600

800

1000

1200

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 1 2 3 4 5 6 7 8 9

RFBx = Ratio feasibility boundary crossings FEM = First entropic measure
FCI = Fitness cloud index FDC = Fitness distance correlation
𝐺𝑎𝑣𝑔 = Average walk gradient 𝐺𝑑𝑒𝑣 = Walk deviation
𝐺𝑚𝑎𝑥 = Maximum gradient in walk

Figure 5.2: Fitness landscape characteristics of a dynamic, constrained optimisation
problem
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values suggest that the information present in the problem search space does
not aid an algorithm to a single optimum value but instead presents unbiased
alternate solutions.

The gradient metrics (𝐺𝑎𝑣𝑔, 𝐺𝑑𝑒𝑣, 𝐺𝑚𝑎𝑥) all display a similar trend of gen-
erally larger gradients. The results are not surprising and are expected based
on the definition of the MPB generator function. The MPB generator makes
the generation of large peaks with narrow bases probable as the peak gener-
ation requires the sampling of random numbers during the peak generation
process. The gradient metrics all display large values which is indicative of
large gradient changes in the problem space.

From the results the changes to the environment show no discernible pattern
in the calculated landscape metrics. Furthermore, the absence of a pattern
is also missing when visually inspecting the resulting environments within
figure 5.1.

5.3 Conclusion
This chapter proposed a new benchmark function generator, the CMPB, to
create DCOP benchmark instances. The new proposed generator function
allows for the generation of both the objective search space and the constraint
search space, before these landscapes are composed together to produce the
final optimisation problem search space. The CMPB generator function ad-
dresses the required criteria of DCOP benchmark problems, whilst removing
dimension restrictions visible in other DCOP instance generators. Moreover,
the CMPB problem generator can provide a wide selection of problem instances
by extending the comprehensive classification [77] for DOPs.

The quality and characteristics of the resulting problem instances from the
CMPB function generator were tested using FLA and different measures. From
the experimental results, it was shown that the problem instances produced
form the CMPB function generator are diverse and complex. Furthermore,
it was shown that the resulting problem instances do not expose attributes
and characteristics of the optimisation problem which may be exploited by
an optimisation algorithm. The result is a DCOP function generator which
can not only provide diverse problem instances, but the explicit generation
of benchmark problems for each of the SOSC, SODC, DOSC and DODC
categories of DCOP.
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Chapter 6

Performance Measures

Science cannot progress without reliable and accurate
measurement of what it is you are trying to study.
The key is measurement, simple as that.

Robert D. Hare

Previous chapters introduced the relationship between the optimisation prob-
lem, optimisation algorithm, and problem space constraints. Dynamic opti-
misation algorithms attempt to locate and to track solutions to optimisation
problems whilst considering the problem space constraints. Each of the above
mentioned aspects of the optimisation process may independently be either
static or dynamic in nature.

Section 6.1 discusses the need and requirements for performance measure-
ment within DOPs. Performance measures for dynamic optimisation algo-
rithms are discussed in section 6.2 by sub-dividing available measurements
into different categories before discussing the shortcomings of performance
measures. A new vector-based performance measure, which defines the algo-
rithm performance profile, is proposed in section 6.3. Final remarks for the
performance measures are presented in section 6.4.

6.1 Performance Measurement
The no free lunch theorem (NFL) [304] states that no single optimisation
algorithm is applicable to all optimisation problems and more appropriate
algorithms should be used for specific problems when possible. Measuring
the effectiveness or performance of an algorithm is an established and well-
understood practice for SOPs [85]. However, measures applicable to SOPs are
not always appropriate for use within DOPs [51, 130, 186]. Performance mea-
sures generally produce a single value for consideration when comparing the
performance of different algorithms. As a result, no single performance measure
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can quantify a dynamic optimisation algorithm unambiguously, often necessi-
tating multiple measures to explain optimisation algorithm behaviour [299].

The importance of accurate and precise measurement has already been
established in other scientific fields, such as chemistry. Therefore, performance
measurement within CI should be regarded with the same importance in order
to determine the most accurate results. This becomes more evident as the use
of CI increases.

6.2 Performance Measures for Dynamic
Optimisation Algorithms

Performance measures for DOPs may be grouped into two categories: optimal-
ity or behaviour based measures. Optimality-based measures are discussed in
section 6.2.1 and focus on the quality of solutions located by the optimisation
algorithm. Section 6.2.2 discusses behaviour-based measures which focus on
how changes to the problem landscape impact the behaviour of the optimisa-
tion algorithm. The shortcomings of the performance measures found within
existing literature are identified in section 6.2.3.

6.2.1 Optimality-Based Measures
Optimality-based performance measures focus on how accurate the solution
found by an optimisation algorithm is. Additionally, optimality measures allow
for a simple comparison of algorithm performance on DOPs [209].

When the optima of a problem search space are known ahead of time, found
solutions may be compared to the known best solution. The difference between
the known solution and the optimisation algorithm solution produces an error
value for the observed solution. The error value can only be determined if
the optimal solution is known across all problem change periods. If it is not
possible to determine the error in the quality of the produced solution, the
performance measures may instead measure the best current solution from the
current set of candidate solutions. The sub-sections that follow discuss the
most popular optimality-based performance measures.

6.2.1.1 Best of Generation

The best of generation (BOG) fitness records a series of fitness values for the
best candidate solution. The sampled fitness value is defined as

𝑃BOG(𝑡) = 𝑓(𝐱∗(𝑡), 𝑡) (6.1)

where 𝐱∗(𝑡) is the best candidate solution found by the optimisation algorithm
at iteration 𝑡 ∈ {1, 2, … , 𝑛𝑡}, and 𝑛𝑡 is the total number of algorithm itera-
tions. 𝑃BOG may be plotted against the algorithm iteration count to create
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a performance plot for the algorithm execution. The average BOG may also
be considered as an indication of the average best fitness value for the best
candidate solution over the course of the algorithm execution. The average
BOG measure is

𝑃BOG = 1
𝑛𝑡

𝑛𝑡

∑
𝑡=1

𝑃BOG(𝑡) (6.2)

𝑃BOG is closely related to the collective mean fitness (CMF) proposed by
Morrison [200], and by extension the collective mean error (CME).

6.2.1.2 Collective Mean Fitness

The CMF [200] is the mean fitness value of the best candidate solution, over
all algorithm iterations. The measure is defined as

𝑃CMF = 1
𝑛𝑡

𝑛𝑡

∑
𝑡=1

𝑓(𝐱∗(𝑡), 𝑡) (6.3)

where 𝐱∗(𝑡) is the best candidate solution at iteration 𝑡 and 𝑛𝑡 is the total
number of algorithm iterations.

6.2.1.3 Collective Mean Error

The CME [200] records the mean error of the best candidate solution over
the entire optimisation algorithm execution. Error values are the difference
between the current best candidate solution fitness value and the objective
function optimum value. The measure is defined as

𝑃CME = 1
𝑛𝑡

𝑛𝑡

∑
𝑡=1

𝑒𝑟𝑟(𝐱∗(𝑡), 𝑡) (6.4)

where 𝑛𝑡 is the number of iterations within an optimisation algorithm execution,
and 𝑒𝑟𝑟 is a function that calculates the error value at algorithm iteration 𝑡
for the current best candidate solution, 𝐱∗(𝑡).

The CME is identical to the CMF measure, except for the use of the error
value instead of the raw objective function value. The CME is regarded as a
good overall measure [200] to quantify optimisation algorithm performance on
a dynamic optimisation problem.

6.2.1.4 On-line Performance

The on-line performance (OP) [23, 63] considers the average fitness of all can-
didate solutions for all fitness evaluations, over the entire algorithm execution.
The measure is defined as:

𝑃OP = 1
𝑛𝑓𝑒

𝑛𝑓𝑒

∑
𝑒=1

𝑓(𝐱𝑒, 𝑒) (6.5)
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where 𝐱𝑒 is the candidate solution considered in fitness evaluation 𝑒 of the
optimisation algorithm.

The OP result will have a larger value when all candidate solutions are sim-
ilar; maximising the value returned by equation (6.5). DOPs require a diverse
set of candidate solutions in order to locate and track solutions. Within such
a diverse set of candidate solutions the likelihood of candidate solutions with
poor objective function values increases. As a result, the online performance
measure provides little to no benefit in understanding algorithm performance
within DOPs.

6.2.1.5 Modified Off-line Error

The modified off-line error (MOE) [23, 27] observes the average error of the best
performing candidate solution since the last change of the problem landscape.
The measure is a cumulative value which resets upon the problem experiencing
change and is calculated as

𝑃MOE = 1
𝑛𝑓𝑒

𝑛𝑓𝑒

∑
𝑒=1

𝑒𝑟𝑟(𝐱𝑒
𝑏𝑒𝑠𝑡, 𝑒) (6.6)

where 𝑛𝑓𝑒 is the total number of objective function evaluations and 𝑒𝑟𝑟(𝐱𝑒
𝑏𝑒𝑠𝑡, 𝑖)

is the error of the current best candidate solution, 𝐱𝑒
𝑏𝑒𝑠𝑡, since the last landscape

change.
Knowledge of the optimisation problem search space is required, including

knowledge of later problem landscapes. The knowledge of the landscape is
needed in order to provide a value for the global optimum value from which the
error between the current best candidate solution and search space optimum
is calculated. As with other measures, the value produced by the offline error
is not normalised, allowing bias within the optimisation problem search space
to change periods with large error values.

6.2.1.6 Modified Off-line Performance

The modified off-line performance (MOP) [23, 27] is identical to the MOE
measurement, but does not require exact knowledge of the global optimum
within the problem search space. This is also true for later problem landscapes
that are the result of the problem changes, originating from the original problem
search space. The MOP prefers the quality of the current best candidate
solution, within the current iteration, as the measurement result. The measure
is calculated as

𝑃MOP = 1
𝑛𝑓𝑒

𝑛𝑓𝑒

∑
𝑒=1

𝑓(𝐱𝑒
𝑏𝑒𝑠𝑡, 𝑒) (6.7)
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6.2.1.7 Relative Error

The relative error [91, 299] (or optimisation accuracy) normalises the fitness
of the best candidate solution over the minimum and maximum values for
the problem. The result is a single value between [0, 1] representing the al-
gorithm performance for the current iteration 𝑡. Values close to 0 indicate
poor algorithm performance, whereas values close to 1 indicate good algorithm
performance. The measure is formally defined as

𝑃RE(𝑡) = 𝑓best(𝑡) − 𝑓min(𝑡)
𝑓max(𝑡) − 𝑓min(𝑡)

(6.8)

where 𝑓best(𝑡) is the best candidate solution in iteration 𝑡, and 𝑓min(𝑡) and
𝑓max(𝑡) are the minimum and maximum quality values a candidate solution
may have.

The relative error is similar to the BOG measure but has the advantage
of normalising the resultant value. Furthermore, the relative error biases less
towards large errors in problem landscape change periods. Problem search
space knowledge (across change periods) is a prerequisite for this measure.

6.2.1.8 Normalised Score

The normalised score [206, 207] allows for the comparison of multiple algorithms
across multiple problem instances, even within a dynamic problem search space.
The resulting performance for a test instance 𝑗 would be normalised to the
range [0, 1]. The best performance is assigned the value of 1 and the worst is
assigned the value 0. The overall performance of an algorithm is the average of
the normalised scores. By averaging the normalised scores, a better performing
algorithm (which should have received more “wins” when compared to the other
considered algorithms) will have an average score value closer to 1. Similarly,
the worse performing algorithm will have an averaged score value closer to 0.
The normalised score for algorithm 𝑖 is calculated as

𝑃NS = 1
𝑛𝑐

𝑛𝑐

∑
𝑐=1

|𝑒max(𝑐) − 𝑒(𝑖, 𝑐)|
|𝑒max(𝑐) − 𝑒min(𝑐)|

, ∀𝑖 = 1, … , 𝑛ℎ (6.9)

where 𝑒(𝑖, 𝑐) is the MOE for algorithm 𝑖 in the change period 𝑐 of the problem
instance; 𝑒max(𝑗) and 𝑒min(𝑗) respectively are the largest and smallest MOE
across all algorithms for each problem landscape 𝑐, and 𝑛ℎ is the number
of algorithms being compared. The normalised score is similar to the 𝑃RE
measure, with the differences being the averaging process on the normalised
values and the choice of value to use within the normalisation process. The
normalised value may be any measured value for the algorithm performance
including candidate solution fitness; i.e., the BOG value. When the measure
was proposed [206, 207], there was no mention how randomness would influ-
ence changes to the problem landscape, nor how randomness sampling would
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impact the results obtained from equation (6.9). The comparison ability of
𝑃NS across algorithms and problems is therefore only possible if the initial
problem landscapes together with all landscape changes are identical and do
not interfere with the optimisation algorithm. Conversely, the optimisation
algorithm execution should also not interfere with the optimisation problem
landscape changes. An example of benchmark problems that observe a deter-
ministic landscape change is the G24 set of benchmark problems [206]. The
changes within these benchmark problems are a function of the number of
algorithm iterations (see section 4.2.2).

6.2.1.9 Window Accuracy

Weicker [299] quantified the accuracy of a dynamic optimisation algorithm as
a ratio. The ratio compares the current iteration performance to a window of
the previous 𝜔 algorithm iterations. The difference between the current best
and worst candidate solutions is compared to the difference of the best and
worst candidate solution fitness values found within the specified window. The
measurement is defined as (assuming maximisation):

𝑃WA(𝑡) = 𝑓(𝐱∗, 𝑡) − 𝑤worst(𝑡)
𝑤best(𝑡) − 𝑤worst(𝑡)

(6.10)

with

𝑤best(𝑡) = max {𝑓(𝐱best(𝑡′), 𝑡′) | 𝑡 − 𝜔 ≤ 𝑡′ ≤ 𝑡} (6.11)
𝑤worst(𝑡) = min {𝑓(𝐱worst(𝑡′), 𝑡′) | 𝑡 − 𝜔 ≤ 𝑡′ ≤ 𝑡} (6.12)

where 𝐱∗ is the best candidate solution at time step 𝑡; 𝐱best(𝑡) and 𝐱worst(𝑡) are
functions to respectively determine the best and the worst candidate solution
fitness values at the time step contained within the window.

6.2.2 Behaviour-Based Measures
Behaviour-based measures examine an optimisation algorithm’s response to
change in the problem landscape. The information provided by behaviour-
based measures is useful to explain algorithm behaviour within a problem
change period, or the behaviour as a result of a landscape change. As a result,
behaviour-based measures together with optimality-based measures will provide
a more complete indication of the algorithm behaviour and performance. The
sub-sections that follow discuss commonly used measures which focus on the
recovery behaviour of dynamic optimisation algorithms within DOPs.

6.2.2.1 Balancing Exploration and Exploitation

As a DOP undergoes change, a dynamic optimisation algorithm should locate
new and track existing solutions. In order to locate new solutions when the
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problem landscape changes, the algorithm should be able to explore the changed
problem search space. As a result, it is desirable to maintain a level of diversity
within the set of candidate solutions to achieve the required exploration of the
problem search space. The amount of diversity should also not prevent the
refinement of problem solutions, requiring a balance between exploration and
exploitation. One of the more common diversity measures is the mean diversity
measure [218], even though other diversity measures also exist [34, 85, 218].
For example, the centroid of the diversity calculation may be changed to use
the median instead of the mean for the 𝑗-th dimension value.

The percentage feasibility is a measure of the number of solutions within
feasible and infeasible regions of the problem search space for each algorithm
iteration. Plotting the percentage of feasible solutions over the entire algorithm
execution indicates whether an algorithm is able to direct the search process
away from infeasible spaces or not. Expanding the idea to be the average of a
number of algorithm executions (whilst ensuring that the problem landscapes
are exactly the same) may indicate how reliable or robust an algorithm is for
a specific instance of an optimisation problem.

The recovery rate for an optimisation algorithm determines how quickly the
algorithm is able to start converging onto optima (global or local) before the
next problem landscape change. Faster algorithm recovery indicates that the
algorithm is both robust and stable. The criteria for recovery is not limited
only to solution quality. In some scenarios it may be more beneficial to achieve
solutions that are at least feasible, regardless of the solution quality. Algorithm
recovery determines if the algorithm is able to effectively explore and/or exploit
regions of the problem search space after a problem change, indicating that
the algorithm is able to adapt to landscape changes.

6.2.2.2 Average Best Error Before Change

The average best error before change (ABEBC) measure highlights the exploita-
tive capability [279] of an optimisation algorithm. In other words, whether the
solution found by the optimisation algorithm just before the problem land-
scape changes a “good” solution. Knowledge of the global optimum within
the problem search space and for all problem landscape change periods, is a
prerequisite to use this measure. The measure is formally defined as

𝑃ABEBC = 1
𝑛𝑐

𝑛𝑐

∑
𝑐=0

𝑒𝑟𝑟(𝐱∗, 𝑡𝑐) (6.13)

where the error in fitness value of the current best candidate solution 𝐱∗

and the global optimum is calculated at algorithm iteration 𝑡𝑐, which is the
iteration where the problem landscape change 𝑐 occurs; 𝑛𝑐 is the total number
of landscape changes experienced by the optimisation problem.
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The average best error before change (ABEBC) has the same concern as
the BOG measure, where the values obtained are not normalised, potentially
biasing the measure towards change periods with large errors.

6.2.2.3 Average Best Error After Change

Optimisation algorithm stability [279] is the ability for an optimisation algo-
rithm to maintain a solution after the problem landscape changes. The average
best error after change (ABEAC) measure is identical to the ABEBC measure
with the exception that the measurement is taken directly after a problem
landscape changes, and not before the change occurs. The measure is defined
as:

𝑃ABEAC = 1
𝑛𝑐

𝑛𝑐

∑
𝑐=0

𝑒𝑟𝑟(𝐱∗, 𝑡𝑐 + 1) (6.14)

where 𝑒𝑟𝑟 is the function calculating the observed error value against the
current best candidate solution 𝐱∗ and 𝑡𝑐 is the algorithm iteration wherein
the problem landscape changed.

The concerns of the ABEBC measure are also applicable to the average
best error after change (ABEAC) measure. Such concerns include value nor-
malisation, knowledge of the landscape global optima for all change periods
and uncertainty regarding solution refinement.

6.2.2.4 Lowest/Highest Best Error Before Change

The lowest best error before change (LBEBC) and highest best error before
change (HBEBC) [161] respectively record the lowest and highest error values
for the best candidate solution across the problem landscape change periods.
The measurements are counterparts to the ABEBC and are defined as

𝑃LBEBC = min
𝑐=1,2,…,𝑛𝑐

𝑒𝑟𝑟(𝐱∗, 𝑡𝑐) (6.15)

𝑃HBEBC = max
𝑐=1,2,…,𝑛𝑐

𝑒𝑟𝑟(𝐱∗, 𝑡𝑐) (6.16)

where 𝑛𝑐 is the number of problem landscape changes experienced by the
optimisation problem, 𝐱∗ is the current best candidate solution and 𝑡𝑐 is the
iteration where the landscape change 𝑐 occurs.

6.2.2.5 Absolute Recovery Rate

The absolute recovery rate (ARR) [208] is a measure to calculate the recovery
rate of an optimisation algorithm after a problem landscape change. The ARR
is calculated as

𝑃ARR = 1
𝑛𝑐

𝑛𝑐

∑
𝑖=1

∑𝑝(𝑖)
𝑗=1(𝑓𝑏𝑒𝑠𝑡(𝑖, 𝑗) − 𝑓𝑏𝑒𝑠𝑡(𝑖, 1))
𝑝(𝑖)[𝑓∗(𝑖) − 𝑓𝑏𝑒𝑠𝑡(𝑖, 1)]

(6.17)

96



where 𝑓𝑏𝑒𝑠𝑡(𝑖, 𝑗) is the fitness of the best candidate solution since the last
problem landscape change, 𝑛𝑐 is the number of landscape changes, 𝑝(𝑖) is the
number of iterations within the problem landscape change period 𝑖, and 𝑓∗(𝑖)
is the global optimum value for the change period. The ARR results in a value
within the range [0, 1], where a value of 1 indicates that the algorithm was
able to locate and converge onto a global optimum. As with the ABEBC and
ABEAC measures, knowledge of the global optimum value, for each problem
landscape change, is required in order to use the ARR measure.

The ARR provides an indication of the change in algorithm performance
across the change period of the optimisation problem. This measure is not, how-
ever, an unambiguous indication of algorithm improvement and may present
poor results when an algorithm begins and ends the change period near a
good candidate solution. Therefore, the ARR results must be considered in
conjunction with other results.

6.2.3 Shortcomings of Existing Performance Measures
Development of performance measures occurs in order to improve the investi-
gation and explanation of specific algorithm behaviour questions. As a result,
each measure may require additional information to produce a value. An opti-
misation algorithm may then be scrutinised based on the measurement results.
Importantly, no performance measure is perfect for all scenarios and the short-
comings of measurements should be considered. The sub-sections that follow
broadly categorise these shortcomings.

6.2.3.1 Problem Search Space Knowledge

Knowledge of the problem search space may be required for the performance
measurement to calculate the performance value. This may include the max-
imum and minimum values for the optima, possibly together with optima
positions within the problem search space. For error based measurements,
which compare the fitness of a candidate solution to a target optima value,
problem landscape information is a requirement. Within DOPs, optima infor-
mation across all landscape changes may be required. The inclusion of problem
constraints in DOPs further increases the need for domain knowledge in order
to compensate for regions of the problem landscape becoming infeasible.

6.2.3.2 Outlier Sensitivity

Performance measures that aggregate values to produce a summary statistic are
sensitive to outliers. Inclusion of outliers within summary statistics produces
a distorted view of the sampled optimisation algorithm performance. If an
optimisation algorithm uses aggregate values to guide the search process, the
presence of outliers may impede the optimisation algorithm’s search behaviour.
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The calculation of an average (the mean) is an example of where outliers
interfere with the aggregate result. Additionally, scenarios that consider the
maximal and minimal values from a list are also affected by outliers.

6.2.3.3 Cardinality of Output

Performance measurements may provide a single scalar value to quantify the
performance measurement of an optimisation algorithm. The alternative is that
the performance measurement produces multiple data values. Scalar values
are simpler to work with, particularly within statistical tests, because a single
value is the representation of algorithm behaviour. Multiple values represent
a vector of time-series data which is indexed either by the algorithm fitness
evaluations or algorithm iterations.

Scalar values unfortunately also have the disadvantage that the value rep-
resents a series of values that have been aggregated. Common scalar values
include aggregates such as the mean, standard deviation and variance. The
most simplistic of these aggregations is the mean calculation. As previously
mentioned, the mean is sensitive to the presence of outliers, but it is also
insensitive to the specific scenario that the final result represents. Consider the
following simplistic example where an algorithm performance measure produces
a series of four unique values. In order to compare the algorithms, the produced
series data must be reduced into a scalar value using the mean calculation. Two
of the samples within the experiment data are the data arrays 𝐴 = [3, 3, 3, 3]
and 𝐵 = [6, 0, 6, 0]. Calculating the mean of these samples produces the same
aggregate value of 3. By only considering the mean of the samples, the two
algorithms are considered as having equivalent performance for the specific
problem in the experiment. Data array 𝐵 has a much larger variance than
data array 𝐴 and standard deviations are often used in conjunction with the
mean in publications for exactly this reason. The standard deviation together
with the mean provides a more complete picture of algorithm performance.
As a result, multiple aggregated scalar values are used in order to interrogate
algorithm performance.

It was noted by Cruz et al. [51], Moser and Chiong [201], and Nguyen et al.
[209] that a single aggregate value, determined at the end of the algorithm
execution, is insufficient to quantify the performance of an algorithm on a DOP
instance. Instead, the general recommendation is to measure performance
multiple times during algorithm execution.

6.2.3.4 Intuitive Understanding

Performance measures generally produce unit-less numbers which are not un-
derstood outside of the required context. The fitness of a candidate solution
makes little sense unless it is placed within the context of the current optimi-
sation problem. It is the optimisation problem that defines the optimisation
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scheme (either minimisation or maximisation) for the optimisation algorithm.
The optimisation scheme determines if the produced fitness values are “good”
or “bad”. The uncertainty of what a result suggests increases when the optimi-
sation problem changes over time.

An example of a performance measure that does not need to know about
the problem context is the error value, particularly the normalised error. Error
values are defined such that the best achievable result is that there is no
error observed. With no observed error, the obtained solution is the target
solution for the optimisation problem. Conceptually, error values encode the
optimisation target (minimisation or maximisation) during their calculation.

6.2.3.5 Susceptibility to Undefined Values

Ideally, the result of a performance measure should never be “undefined”. Un-
defined values, such as those produced within division with a zero denominator
or the square-root of a negative number, may not be noticed and could pro-
duce results that make no sense during comparisons. Different strategies are
available to mitigate, and possibly remove the occurrence of such errors. It is,
however, not a certainty that measures are capable of accepting these invalid
inputs. An example of a failure would be a performance measure returning the
special value of NaN (not a number). The IEEE specification for floating-point
numbers makes provision for a special “not a number” value which indicates
an error, yet is itself still regarded as a valid number. As a result, number
calculations that use a NaN as input, produce NaN as output and complicates
the process of locating the point of failure. Not all computing platforms allow
for the representation and use of NaN, but a large enough number do allow
its use to justify the importance of ensuring correct and robust handling of
undefined values.

Performance measures should be implemented such that invalid results
are not possible. However, when the possibility of an undefined result exists,
it should be recorded such that subsequent calculations are able to operate
with these missing values. Additionally, the cause of such errors may be the
result of an implementation error within the algorithm but manifest within the
performance measure.

6.2.3.6 Interpretation of Maximisation and Minimisation Problems

Performance measures may require different equations for minimisation and
maximisation problems. As a result, the possibility exists for the incorrect
formulation of the measurement calculation to be used, yielding incorrect
results. This is particularly evident when the optimisation scheme is required
after the algorithm execution within additional analytical processes. On the
other hand, performance measures producing a normalised error value do not
require knowledge of the optimisation scheme because the error value implicitly
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incorporates the notion of “good” and “bad”. Error values are still, however,
sensitive to and reliant on the optimisation scheme to calculate the error value.
Ultimately, additional care is needed when using performance measures that
are sensitive to the optimisation scheme. An example of how measurements
can be misinterpreted based on the optimisation scheme, is the sampled relative
error of Li et al. [161]. In the case of a minimisation problem, the sampled
relative error is calculated as

𝑟(𝑡) = 𝐹(𝐱∗(𝑡))
𝐹(𝐱𝑏𝑒𝑠𝑡(𝑡))

(6.18)

with the sampled relative error for a maximisation problem calculated as

𝑟(𝑡) = 𝐹(𝐱𝑏𝑒𝑠𝑡(𝑡))
𝐹(𝐱∗(𝑡))

(6.19)

where 𝐹(𝐱𝑏𝑒𝑠𝑡(𝑡)) is the fitness value of the best found solution and 𝐹(𝐱∗(𝑡))
is the fitness value of the optimum at time-step 𝑡. The interpretation of
𝑟(𝑡) increases hyperbolically for minimisation problems, but increases linearly
for maximisation problems as 𝐹(𝐱𝑏𝑒𝑠𝑡(𝑡)) approaches 𝐹(𝐱∗(𝑡)) [73]. As a
result, the meaning derived from the same measurement differs based on the
optimisation scheme. Additionally, the sampled relative error also allows for
the production of undefined values if either 𝐹(𝐱𝑏𝑒𝑠𝑡(𝑡)) or 𝐹(𝐱∗(𝑡)) are zero.

6.2.3.7 Landscape Scale Changes

When dramatic landscape changes occur within an optimisation problem, the
value of optima may be altered in a severe fashion. The calculated error value
to target optima will represent a different percentage change based on the
scale of the underlying problem search space. For example, when considering
an optimisation problem landscape before and after a problem change where
an optimum transforms from the lowest to the largest possible value. In
this scenario, the possible range for the optima value is [30, 70]. Before the
landscape change the impact of the observed raw error, 𝑒, is denoted by the ratio
𝑒

30 , whereas after the change the same error ratio would be 𝑒
70 . As a result,

the change of problem landscape has made the error before the landscape
change less severe within the updated problem landscape. Therefore, the use
of raw error or fitness values can produce confounding statistical results as the
problem landscape changes.

6.2.3.8 Variance Over Time

Optimisation algorithms may present as equivalently performing algorithms
because the algorithms achieved similar final results. Unfortunately, some
performance measures do not consider if an algorithm was experiencing erratic
behaviour before achieving the final result. In fact, the algorithm may actually
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still be experiencing volatile behaviour and similar performance results are
simply a coincidence based on algorithm execution termination criteria. For
example, all algorithm executions are terminated after the same number of
iterations.

As a result, multiple performance measures must be considered simulta-
neously in order to quantify the algorithm behaviour. An example is the
previously mentioned case where the mean algorithm fitness together with
the standard deviation are considered to describe algorithmic behaviour and
performance.

6.2.3.9 Parameters

When parameters are introduced into performance measures, the overall opti-
misation complexity increases. Performance measure parameters control the
behaviour of the performance measure used to evaluate an optimisation algo-
rithm. Multiple questions are necessary in order to determine the validity of
the performance measure for the current optimisation algorithm and problem.
For example, when performance measure parameters are required, it is uncer-
tain if the selected parameter values are optimal for the current optimisation
algorithm. Furthermore, would the optimality of measurement parameters re-
quire optimisation themselves, or is the selected value reasonable? As a result,
minimisation of the number of configurable parameters is always preferred to
optimising parameters.

6.2.3.10 Sensitivity to Optimisation Algorithm Execution

Population-based optimisation algorithms may execute in two distinct ways
when considering the algorithm iterations. The synchronous iteration processes
the entire collection of candidate solutions simultaneously, producing a new
candidate solution collection as a result. Asynchronous iterations update
each candidate solution independently, realising an updated objective function
value for the candidate solution immediately. Performance measures that
consider the entire collection of candidate solutions should consider the effect
of the different algorithm iteration strategies, or when every objective function
evaluation is considered.

6.2.3.11 Assumed Normality of Data

Studies have shown that parametric statistical tests are frequently the wrong
choice for CI algorithms [68, 96, 97]. Parametric statistics have a clear as-
sumption that the underlying data is normally distributed. For example, the
cumulative mean of calculation for an algorithm expects a normal distribution.
If the data is not distributed normally, a skewed perspective will be presented
for the algorithm performance.
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6.3 Vector-Based Measures
A number of measures mentioned in sections 6.2.1 and 6.2.2 (such as the 𝑃BOG
measure) do not result in a single scalar value, but instead yield a vector of
values as the result of the measurement process. The measurement frequency
determines the number of dimensions within the resulting vector. The most
granular level of measurement produces a value for each iteration of the al-
gorithm. This section describes how performance metric vectors allow for a
more representative comparison of optimisation algorithms, provided that all
other problem parameters and settings are identical. Section 6.3.1 discusses the
problems with scalar-based performance measures, whilst section 6.3.2 intro-
duces the notion of an algorithm performance profile. Section 6.3.3 highlights
how the measure is also applicable for static optimisation problems, whilst
section 6.3.4 relates the applicability of algorithm performance profiles within
DCOP search space.

6.3.1 Problems with Scalar Value Comparisons
Shortcomings of performance metrics used to compare optimisation algorithms
have been discussed in section 6.2.3. Scalar values are however still attractive
because the single value comparison is simple to use. Unfortunately, the largest
disadvantage with the use of scalar performance metrics is that the aggregation
functions which produce the final metric result often apply a “smoothing” effect
to the calculation. The simplest example of smoothing is the calculation of the
mean, where the vectors 𝐴 and 𝐵 within section 6.2.3.3 produce the same result
although the vectors are different. As a result of this smoothing, multiple scalar
results must be used together in order to explain the performance behaviour
of an algorithm.

In an attempt to overcome the problem with smoothing, Helbig and Engel-
brecht [116, 117] proposed a measurement scheme which considers individual
change periods for a DOP instance. The measurement scheme compares the
performance measures between algorithms and across change periods by per-
forming a Kruskal-Wallis test [150] to determine if a statistically significant
performance difference exists. If the Kruskal-Wallis test indicates a significant
difference, a pair-wise Mann-Whitney-U rank sum test is performed together
with Holm correction [121] to limit statistical type-I errors (i.e., false positives).
Based on the outcome of the test, an algorithm is assigned a “win” or a “loss”.
Wins are given the numerical value of 1 whilst losses are assigned the value of
−1; ties are rewarded with a value of 0. A wins-minus-losses score is assigned
to each algorithm for the DOP instance. For a given measurement taken within
a problem change period, the wins-minus-losses score is normalised as:

𝑛𝑜𝑟𝑚(𝑝, 𝑚) =
∑𝑛𝑐

𝑖=1(𝑤𝑖,𝑚 + 𝑙𝑖,𝑚)
𝑛𝑐

(6.20)
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where 𝑛𝑜𝑟𝑚(𝑝, 𝑚) is the average wins-minus-losses value for the problem 𝑝, for
measurement 𝑚. The wins-minus-losses process does not, however, address the
smoothing effect introduced by averaging the wins and losses achieved by an
algorithm. As a result the final wins-minus-losses value is the central tendency
value as the overall performance of the algorithm across change periods and
problem instances. The final result of the measurement scheme remains a
singular scalar value, with which the performances of algorithms is compared.

The wins-minus-losses approach is also sensitive to the shape of the under-
lying problem instance. Specifically, for the comparisons to be fair, the changes
experienced within the problem must produce identical problem search spaces
to allow for fair algorithm performance comparisons. Importantly, the com-
parison scheme cannot enforce that all problem landscapes within a DOP
are identical and should instead be regarded as an error in the experiment
formulation. Violation of the change period equivalence results in irreconcil-
able algorithm comparisons, because more variances are present than what is
accounted for.

6.3.2 Proposed Measure for Algorithm Performance
Profiles

In this section, vectors of performance measures are considered as a better
mechanism to compare algorithm performance. Section 6.3.2.1 describes the
expected target solution for performance profiles. The concept of distance
between vectors is discussed in section 6.3.2.2 where a new performance measure
is introduced. Extension of the distance measure for larger dimensions is
discussed in section 6.3.2.3, whilst advantages of the measure are given in
section 6.3.2.4.

6.3.2.1 Unambiguous Comparison Target

Performance measures which produce a vector of performance values have an
implicit ordering present within the resulting data vector. The implicit ordering
is a result of the optimisation algorithm and the changing problem landscape,
and is discarded when calculating aggregated scalars. As a result, due to the
significance of the vector value order, the entire vector of results should be
considered as the “performance profile” for an optimisation algorithm on a
given DOP instance. Result vectors should therefore be compared against
other result vectors to determine algorithm performance.

Consider the performance metric result vector 𝐛 = (𝑏1, 𝑏2, … , 𝑏𝑣) that
contains 𝑛𝑣 performance metric results. Each component within 𝐛 represents
a measured performance value, sampled for the optimisation at a specific time-
step. When 𝑛𝑣 = 𝑛𝑡, the performance measurement is sampled at the end of
every algorithm iteration, whereas the performance measure may be sampled
just before the problem landscape undergoes a change with 𝑛𝑣 = 𝑛𝑐.
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Performance measures that are normalised, intuitive and immune to the
majority of the shortcomings described in section 6.2.3 are ideal candidates for
algorithm performance profiles. One such performance metric is the relative
error metric (see section 6.2.1.7). The 𝑃RE performance measure considers
the optimality of solutions in relation to the current problem change period,
whilst providing an intuitive representation of the solution quality which is
also immune to any landscape scale changes. The one caveat for the 𝑃RE
performance measure is that the current problem change period optimum is
required in order to calculate 𝑃RE. 𝑃RE has the unique advantage that the
ideal target solution is when 𝑃RE = 1, thereby defining the target solution
vector as (1, 1, … , 1). When not possible to use the 𝑃RE measure, the 𝑃WA
measure can be used as an alternative. 𝑃WA estimates the target performance
vector based on the observed minimum and maximum values of the current set
of candidate solutions over a window of algorithm iterations.

6.3.2.2 Distances between Performance Profiles

To determine if one algorithm performance profile is better than another, the
performance profile vectors need to be compared. The comparison poses a
problem for the analytical process, highlighting the simplicity of using scalar
values. Determining the difference between two vectors is not an uncommon
task with the differences between binary bit-strings quantified through the use
of measures such as the Hamming distance [111]. As a result, the relative error
distance (𝑃RED) is a metric which can compare the performance profiles of
algorithms. Although comparing the difference between different performance
profiles is useful, it does not indicate how much better a given profile is when
compared to others.

The 𝑛𝑣 dimensional performance profile 𝐛 may be compared to the de-
sired performance profile 𝐝 = (1, 1, … , 1) to determine the performance profile
quality. As 𝐛 becomes more similar to 𝐝 (i.e., 𝑃RED(𝐛) ≈ 𝑃RED(𝐝)), the calcu-
lated distance between the vectors decreases. An increase in the dissimilarity
of the vectors would indicate performance profiles that are increasingly differ-
ent. When considering the distance between vectors within a 𝑛𝑣-dimensional
Euclidean space, 𝑃RED is defined as

𝑃RED(𝐛) =
√∑𝑛𝑣

𝑖=1(1 − 𝑏𝑖)2

√𝑛𝑣
(6.21)

where 𝑛𝑣 is the length of the performance profile and 1 − 𝑏𝑖 is the difference
between the target performance of dimension 𝑖 to the observed performance
𝑏𝑖.

Figure 6.1 illustrates the distance calculation using equation (6.21) within
a 2-dimensional vector space. Consider the example vectors 𝐴 = [3, 3, 3, 3]
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and 𝐵 = [6, 0, 6, 0] that were introduced within section 6.2.3.3. These vec-
tors represent the raw objective function vectors for the 𝑃BOG performance
measure across 4 algorithm iterations. The vectors 𝐴 and 𝐵 can be trans-
lated into vectors that contain the relative error by considering the optimi-
sation problem characteristics, which yields 𝑃RE(𝐴) = [0.5, 0.5, 0.5, 0.5] and
𝑃RE(𝐵) = [0, 1, 0, 1]. It is now possible to determine that 𝑃RED(𝐴) = 0.5
and 𝑃RED(𝐵) = 0.7071068 using equation (6.21). From the 𝑃RED results,
the performance profile of vector 𝐴 is the preferred result, because the total
component-wise distance to the target solution is less than the same component-
wise distance for vector 𝐵. The performance profile of 𝐴 presents more con-
sistent component-wise results than that of 𝐵, when compared to the ideal
problem search space solution.

0

1

1𝑥

𝑦

𝐛

𝐝

𝑃RED

Figure 6.1: 𝑃RED calculation within the 2-D Euclidean vector space

6.3.2.3 Relative Error Distances within Large Dimensions

The problems associated with random walk creation within FLA (see sec-
tion 4.3.1) for high dimensional data as also present for algorithm performance
measures when using the Euclidean distance. As the dimensionality of the
vector increases, the effects of the curse of dimensionality [144] become more
apparent. Beyer et al. [14] highlighted this effect, where the distance between
high dimensional vectors is shown to no longer be meaningful. Specifically,
the results indicated that the ratio between the nearest and farthest elements
for different distance measures approach the value of 1 for high dimensional
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spaces. As a result, the use of distance metrics to determine proximity in high
dimensions produces a result that is effectively meaningless whilst also being
unstable, because there is poor discrimination between neighbouring points.

In a study by Aggarwal et al. [1], the dimensionality curse is examined in
relation to the use of distance metrics for high dimensional data. The 𝐿𝑘 norm
is examined where the Euclidean distance (the 𝐿2 norm) is shown to be an
inferior choice for high dimensional data. Use of the 𝐿1 norm (also known as
the Manhattan distance) should instead be preferred for higher dimensional
spaces. The study also investigated the use of 𝐿𝑘 distance metrics for 𝑘 ∈ (0, 1).
Such metrics are referred to as fractional norms or quasi-norms and indicate
improved performances in the presence of noisy data. Equation (6.21) is defined
using the 𝐿2 norm which remains meaningful for lower dimensions. Within
high dimensional spaces 𝐿1 should instead be used for the definition of 𝑃RED:

𝑃RED,L1 =
∑𝑛𝑣

𝑖=1(|1 − 𝑏𝑖| + |𝑟𝑖|)
𝑛𝑣

(6.22)

where |1−𝑏𝑖| is the difference between the target and the observed performance
𝑏𝑖 for dimension 𝑖; 𝑟𝑖 is added to the performance difference in order to include
the additional distance for component 𝑖 to fulfil the additional required distance
to move to the target value. The vector 𝐫 is known as the rejection vector
for the projection of vector 𝐛 onto the target vector 𝐝. The rejection vector
𝐫 is calculated as the orthogonal vector which satisfies 𝐫 = 𝐛 − 𝐝∗, where 𝐝∗

is the vector 𝐛 projected onto 𝐝. The calculation of the rejection vector is
illustrated in figure 6.2 and may be directly calculated from the vectors 𝐛 and
𝐝 by manipulating the cosine angle formula to produce

𝐫 = 𝐛 − 𝐛 ⋅ 𝐝
𝐝 ⋅ 𝐝

𝐝 (6.23)

where ⋅ is the dot product between vectors.
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Figure 6.2: Rejection vector calculation
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The 𝐿1 metric produces a distance by considering the sum of all vector
components. As a result, the distance calculation defined by equation (6.22) is
shown in figure 6.3, where the sum of the individual vector components produce
a consistent distance metric for high dimensional vectors. If the example vectors
𝐴 and 𝐵 are once again considered, we obtain the results of 𝑃RED,L1(𝐴) = 0.5
and 𝑃RED,L1(𝐵) = 1.0. The results for the 𝑃RED,L1 formulation coincide with
the results for the 𝑃RED measure, whereby the performance profile of vector 𝐴
is the preferred solution. Vector 𝐴 contains observed 𝑃RE values that are the
most similar to the desired target solution vector.
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Figure 6.3: 𝑃RED,L1 distance calculation as the sum of vector components in a 2-D
vector space

6.3.2.4 Advantages of Relative Error Distance

The relative error distance metric has the following advantages that address the
shortcomings of DOP performance metrics identified in section 6.2.3. Beneficial
characteristics of the 𝑃RED metric (including those inherited from the relative
error metric) are:

1. Outlier sensitivity: The 𝑃RE measure places emphasis on the best
error observed instead of taking the effect of outliers into consideration.
As a result, the 𝑃RED measure is also resilient to the effects of outliers
and focuses on the error of the best performing candidate solution. Addi-
tionally, the relative error does not discriminate against algorithms that
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have exploratory behaviour. When a new and possibly better solution is
located, the observed relative error will simply reduce.

2. Flexible sampling strategies: The number of sampled values which
constitute the components of the algorithm’s performance profile (i.e.,
the 𝑛𝑣 sampled 𝑃RE values) is dependent on the investigation require-
ments. In the most granular scenario, a 𝑃RE value is sampled for every
objective function evaluation. Objective function evaluations provide the
relative error for each candidate solution to the known best which may
be required for a specific study purpose. More generally, the sampled
values are focused on the best candidate solution and samples are taken
at each iteration. Such sampling will allow for more thorough analysis
within DOPs, particularly when considering how the problem changes
over time. By taking samples of the performance both before and after
the problem landscape change, information about the severity of a change
may be determined based on how the candidate solution is affected by
the problem landscape change.

3. Minimal partiality: The values reported by the 𝑃RED measure have a
fixed range of [0, 1]. Partiality, when considering the metric evaluation
process, implies that there are specific cases where the returned metric
value is undefined. Undefined values introduce discontinuities within the
landscape that would be produced by the performance metric if every
point within the problem search space were measured. The 𝑃RE metric
has an exception where an undefined value may be produced. This only
occurs when the problem search space is a flat plane and can easily be
accounted for by an inspection of the problem landscape ahead of time or
within the implementation of the metric to account for undefined values
(such as those created by division with 0).

4. Intuitive interpretation: As with the 𝑃RE measure the result of 𝑃RED
is a value within the range of [0, 1], representing the desirability of the
solution. Additionally, both the input and the output of the 𝑃RED metric
calculation has the same domain which adds to the intuition of the
measure.

5. Agnostic optimisation scheme handling: From the sampled relative
error values, the notion of good and bad is implicitly encoded into the
resulting measure value. Good 𝑃RE values are not dependent on the
current algorithm optimisation scheme whilst still providing the necessary
information to allow for context-free interpretation of the result which is
within the range [0, 1]. 𝑃RED inherits this trait from the 𝑃RE measure,
albeit in a vector-based form.

6. Preventing the smoothing effect: As previously mentioned, the
smoothing effect ultimately results in a loss of algorithm performance
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information. Aggregated values do not indicate all the nuance that is
present within an algorithm’s execution and especially not when the
underlying optimisation problem changes over time. Each component
within the algorithm performance profile is considered when determining
the 𝑃RED value. As a result, the 𝑃RED value provides a more holistic
perspective of the algorithm performance. The example vectors 𝐴 and
𝐵 from previous discussions have shown how the use of the algorithm
performance profile will still provide an indication of which vector has
better overall performance when the mean calculation does not. From
the algorithm performance profiles, the variance of algorithms across
iterations and problem change periods is considered for each component
within the 𝑛𝑣-dimensional performance profile.

7. Parameterless construction: Without additional parameters, 𝑃RED
can be used to measure algorithm performances without requiring addi-
tional computation to tune or configure the metric for use.

8. Assumption-free data distribution: No assumptions are made re-
garding the underlying data distribution which is sampled by the 𝑃RED
metric. Instead, a bare distance value is calculated from the sampled 𝑛𝑣-
dimensional vectors which is an objective view of algorithm performance
profiles. The 𝑃RED or 𝑃RED,L1 measure formulations are available, with
the dimensionality of the performance profile determining which measure
formulation is most applicable.

6.3.3 Performance Profiles for Static Optimisation
Problems

The 𝑃RED metric is not limited to use within DOPs, and can also be used
within SOPs. Ultimately, the algorithm performance profile is a record of how
efficiently an optimisation algorithm is able to obtain the desired solution. Such
performance profiles are often represented as plots that track the best objective
function value as the optimisation algorithm executes. The measurement
frequency is also configurable within SOPs, allowing the measurement to take
place per iteration for the best candidate solution, at every objective function
evaluation or at some other arbitrarily selected time interval. Using 𝑃RED
allows for the comparison of these “fitness plots” and will produce a measure of
similarity between the actual and observed algorithm performances. Provided
that all other aspects of the optimisation problem remain the same and the
variation in obtaining solutions is limited to optimisation algorithms only,
the performance profiles of the algorithms will be comparable to one another.
The benefits previously stated for the use of 𝑃RED as a measure of algorithm
performance will also apply to static problem search spaces.
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Figure 6.4 plots the performance plots of different optimisation algorithms
that are searching for a minimum within a static optimisation problem search
space. Algorithms 𝐴1, 𝐴2 and 𝐴3 obtain identical final candidate solutions,
implying that the objective function values are also the same at the end of
1000 iterations. If the final result were to be used as the overall performance
indicator for the algorithms, there would be no observable difference between
the algorithms.
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Figure 6.4: Hypothetical algorithm performance profiles for a static optimisation
problem

When using algorithm performance profiles instead of the final value, the
respective 𝑃RED results for algorithms 𝐴1, 𝐴2 and 𝐴3 are 0.7120516, 0.591608
and 0.3698243. From these performance profiles, it can be seen that the best
overall 𝑃RED value is that of algorithm 𝐴3. The 𝑃RED value indicates that
algorithm 𝐴3 approached the desired optimum value more consistently over
the 1000 iterations when compared to the other algorithms. After all, within
static problem search spaces, the aim is to obtain the best possible solution as
quickly as possible. The more efficiently an algorithm can produce the desired
solution implies that an algorithm may obtain the same solution more quickly
than other algorithms; that is in fewer algorithm iterations.

6.3.4 Performance Measures and Constrained
Optimisation Problems

It has already been established that the 𝑃RED measurement is capable of dis-
cerning the performance of an optimisation algorithm for both static and dy-
namic optimisation problem search spaces. Optimisation problem constraints
limit the feasible regions of the problem landscape from which candidate so-
lutions can be obtained. For static, constrained optimisation problems the
goal of the optimisation algorithm remains the same, that is to obtain the best
possible solution within the problem landscape. Although the optimisation
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problem constraints place restrictions on the feasible regions within the opti-
misation problem, it is still possible to determine the optimal solution within
the problem search space, even if the calculation is done ahead of time.

Within dynamically changing optimisation problems, the use of optionally
changing problem constraints presents a additional computational cost if the
best solution within the current problem landscape were to be calculated
explicitly. Unfortunately, this is not practical as locating the best solution
within the DCOP is one of the goals of the optimisation algorithm, thereby
resulting in two optimisation processes executing concurrently. The additional
computational cost could only be justified if perfect knowledge of the sample
benchmark problems existed, but again this is not generally the case and
therefore not practical. The problem is then that within DCOPs, how does
the performance of the current optimisation algorithm get quantified when the
optimisation problem is constrained and changes over time.

Within DCOPs, where very little in known about the optimisation problem,
the optimum value for the optimisation problem search space in the current
change period is unknown. Although the precise optimum value is unknown,
the following still hold:

• The current performance can still be sampled from the collection of
candidate solutions. The bounds of the optimisation problem should
also be known, particularly as the bounds information is a requirement
for the initialisation process for candidate solutions within the optimisa-
tion algorithm. Moreover, the allowable minimum and maximum values
for the objective function are usually known, albeit that the values are
conservative. The resulting sampled 𝑃RE values will represent the cur-
rent performance of the best candidate solution to the unknown “target”
optimum.

• The alterations to the optimisation problem as a result of problem level
constraints will serve to either reduce or accentuate features within the
problem landscape. Any unknown, conservative bounds should be able
to account for the changing feasible and infeasible regions of the problem
search space.

• The goal of an optimisation algorith m with DOPs is to locate and to
track optima. By allowing the algorithm to continue to find the best
possible solutions and to track how these solutions change over time
remains unchanged, even when the target optimum is unknown.

• Performance metrics can only measure the candidate solutions within
the optimisation algorithm for a given iteration. Information about
the characteristics of the optimisation problem may be used within the
performance measure, using the conservative values when the problem
characteristics are not fully known.
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Therefore, the performance profile of the algorithm can be regarded as an
estimated performance profile which can be compared to a hypothetical perfect
solution, even if such a solution does not exist. The aim is merely to obtain
a 𝑃RED value that is as close to the hypothetical perfect solution as possible.
Furthermore, once the performance profiles are evaluated against the target
best solution, the individual performance profiles may then be compared to
each other using 𝑃RED.

For example, consider the CMPB introduced in section 5.1. The problem
constraints are generated through the use of the MPB generator and the
final optimisation problem search space is produced as the composition of the
constraint and objective function landscapes. The composition specifies that
the range of values for the peak heights will be within [minHeight𝑔, maxHeight𝑓],
but feasible solutions are only found within the range [0, maxHeight𝑓]. As a
result, the 𝑃RE calculation is still possible, except that the value of maxHeight𝑓
becomes the target optimum value even though none of the peaks within
the search space potentially have that value. In other words, the maximal
peak value of the objective behaviour space becomes the best possible value
that can be achieved for the optimisation problem. From this reasonable
assumption, the performance metric sampling may take place and the resulting
comparisons between algorithm performance profiles through the use of 𝑃RED
or 𝑃RED,L1 is possible. By using this kind of formulation it is therefore possible
to have the optimisation problem search space adjust throughout all problem
change periods, whilst comparing performance profiles to a theoretical “best”
value. This hypothetical target vector for the performance profile will be the
𝐝 = (1, 1, … , 1) vector within the 𝑃RED and 𝑃RED,L1 calculations.

6.4 Conclusion
This chapter introduced the relevance of performance metrics and how these
metrics inform the analysis process. Not all performance metrics exhibit the
same behaviour, nor do all metrics produce the same kind of result. Scalar val-
ues or vectors may be the produced result from a performance metric. Within
the context of DOPs, performance metrics are especially troublesome because
the notion of optimality is only relevant between problem change periods. Once
the problem landscape undergoes change, performance metrics may not neces-
sarily be compared to each other in a fair manner. If the characteristics of the
optimisation problem have changed such that the observed scale within the
same metric differs, the comparison is no longer valid. Thankfully, a number
of performance metrics exist that take optimisation problem scale changes into
account and are able to normalise the performance metric results.

The notion of metric smoothing was discussed, highlighting that the smooth-
ing effect is most problematic when the final metric result is a scalar value. As
a result of this smoothing, the metric result may present a partial truth of the
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algorithm performance and often necessitates the use of multiple metrics to
explain the performance of an algorithm. The smoothing effect is only exacer-
bated within DOPs and promoted the investigation in a performance metric
that uses vectors instead of an aggregated scalar value.

The use of performance vectors, or algorithm performance profiles, pro-
vides a detailed view of the algorithm performance at each sampling time
interval. The biggest disadvantage of performance vectors is that the vectors
are cumbersome to work with even though they represent a more accurate
view of algorithm performance. As a result, a new performance metric which
determines the distance between performance vectors was introduced. Using
this metric (𝑃RED), algorithm performances can be compared such that every
component of the performance profile impacts the comparison between two vec-
tors. Therefore, the 𝑃RED measure is able to discriminate between algorithm
performances by considering much more information that what is available
with scalar metrics. Finally, the 𝑃RED metric was extended to allow for its
use within DCOPs, where there is an uncertainty to the target optimum value
within each problem change period.

113



Part III

Algorithm Performance on
Dynamic, Constrainted
Optimisation Problems
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Chapter 7

Self-Adaptive Quantum Particle
Swarm Optimisation

There’s a lot of automation that can happen that isn’t
a replacement of humans but of mind-numbing
behavior.

Stewart Butterfield

The QPSO algorithm, as introduced by Blackwell and Branke [17, 18] (see
section 3.2.5), describes a PSO variant for dynamic optimisation problems. The
problem dependant control parameter 𝑟𝑐𝑙𝑜𝑢𝑑 was introduced to control the size
of the quantum swarm within the QPSO. The introduction of such a parameter
becomes problematic when considering DOPs and DCOPs. It is possible that
a portion of the quantum swarm may reside within an infeasible portion of
the problem search space, thereby rendering all possible solutions within that
part of the quantum cloud as infeasible. The 𝑟𝑐𝑙𝑜𝑢𝑑 control parameter should,
therefore, become a managed value to ensure that an appropriate radius size
is used for the quantum cloud, particularly in DOPs.

This chapter proposes a variant of the QPSO that removes the need to
define a value for 𝑟𝑐𝑙𝑜𝑢𝑑, and is organised as follows. Section 7.1 discusses alter-
native radius strategies that have previously been proposed, with section 7.2
proposing a new radius management strategy that dynamically adjusts the
size of 𝑟𝑐𝑙𝑜𝑢𝑑 during algorithm execution. The experimental procedure is dis-
cussed in section 7.3. The results are analysed in section 7.4, with section 7.5
concluding the chapter.
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7.1 Alternative Radius Management
Strategies

Blackwell et al. [20] suggested using different kinds of probability distributions
to influence the movement of quantum particles. Although this approach does
hint at adjusting the size of the quantum cloud radius, quantum particles may
move to positions beyond the range of the quantum cloud radius, provided that
the distribution is a non-bounded distribution. Consider the sampled random
values from a multivariate Gaussian distribution; the majority of the sampled
random vectors will be within the bounds of the distribution. However, the
multivariate Gaussian distribution still allows for sampled points to lie outside
of the quantum cloud. Consequently, it is possible to move quantum particles
to positions outside the bounds of the problem search space itself. Solutions
outside of the problem search space are infeasible solutions and may have
boundary constraints applied to them, but at the same time these solutions
overcome the problems illustrated and discussed in section 3.2.5.

The performance of QPSO is sensitive to the distribution used. Harrison
et al. [113] showed that the choice of probability distribution is dependent on
the type of search space dynamism. It was also noted that smaller quantum
cloud radius values lead to improved QPSO performance, except for chaotic
problem landscapes. More importantly, Harrison et al. [113] concluded that the
uniform distribution is a poor probability distribution choice. In an attempt
to remove the 𝑟𝑐𝑙𝑜𝑢𝑑 parameter and probability distribution from the QPSO,
Harrison et al. [112] modified the QPSO to use a PCX [65] operator instead.
The result of the modification is an algorithm which cannot be regarded as
a QPSO variant because the quantum metaphor no longer exists within the
algorithm. However, the resulting algorithm does address the problem with
diversity loss, because the PCX operator was designed to introduce diversity.
Unfortunately, the modified algorithm also introduces two additional control
parameters, namely the deviations of Gaussian distributions used within the
PCX operator itself.

7.2 Self-Adaptive Quantum Particle Swarm
Optimisation

An alteration to the QPSO algorithm is proposed in this section which dynam-
ically adapts the value of the quantum cloud radius, 𝑟𝑐𝑙𝑜𝑢𝑑. The self-adaption
process of 𝑟𝑐𝑙𝑜𝑢𝑑 considers the neutral and quantum particle subgroups within
the QPSO independently. The diversity for each subgroup is calculated by
using particles that are contained within feasible regions of the problem search
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space, defined as

𝐷(𝑆(𝑡)) = 1
𝑛𝑠

𝑛𝑠

∑
𝑖=1

√√√
⎷

𝑛𝑥

∑
𝑗=1

(𝑥𝑖𝑗(𝑡) − ̄𝑥𝑗(𝑡))2 (7.1)

where 𝑛𝑠 is the size of the particle swarm and ̄𝑥𝑗(𝑡) is the average value for the
𝑗-th dimension across all feasible particles. The average value for dimension 𝑗,
is calculated as

̄𝑥𝑗(𝑡) =
∑𝑛𝑠

𝑖=1 𝑥𝑖𝑗(𝑡)
𝑛𝑠

(7.2)

The initial value for 𝑟𝑐𝑙𝑜𝑢𝑑 is calculated by considering the initial positions of
particles within the problem search space. The maximum diversity is considered
based on the effect of changes within the DOP instance. When the problem
search space undergoes a change, the location of problem optima before the
change may no longer be present in the newly changed problem search space.
A larger search radius may facilitate locating new, possibly better, optima by
considering more of the problem search space. Figure 7.1 presents an artificial
scenario of a QPSO swarm: Given a number of algorithm iterations, without
the problem search space undergoing any changes, the particle swarm starts
to converge on the global best particle, ̂y(𝑡). As the swarm converges onto the
global best particle, the size of 𝑟𝑐𝑙𝑜𝑢𝑑 (i.e., the diversity of the swarm) also
reduces in size. After a change to the problem search space, the optimum value
moves from ̂y(𝑡) to a new location in the problem search space (with label 𝐴)
and the particle swarm no longer contains any problem optima. The change
in the problem search space causes the size of 𝑟𝑐𝑙𝑜𝑢𝑑 to once again increase by
having quantum particles re-initialise within the problem search space domain.
The quantum particle re-initialisation facilitates exploration within the new
problem search space by increasing the diversity of the quantum particles,
which results in an increase in the size of 𝑟𝑐𝑙𝑜𝑢𝑑. The iteration process proceeds
to continue, with the size of 𝑟𝑐𝑙𝑜𝑢𝑑 once again reducing as the swarm converges
onto a new search space position.

The rate of 𝑟𝑐𝑙𝑜𝑢𝑑 size reduction is determined by the type of probability
distribution used in equation (3.6). A bounded distribution places a limit on
the upper bound value that the distribution may return. Consequently, the
upper bound limit also defines the upper bound value that any dimension
within the position of the quantum particle may assume. Over a number of
iterations, the resulting trend will be to constrain quantum particles around
the global best particle more aggressively as 𝑟𝑐𝑙𝑜𝑢𝑑 continues to reduce in size.
Unbounded distributions allow sampling values that are larger than the defined
𝑟𝑐𝑙𝑜𝑢𝑑 value. Sampling values that are larger than 𝑟𝑐𝑙𝑜𝑢𝑑 will resist collapsing
onto the global best particle for longer than a bounded distribution. Figures 7.2
and 7.3 illustrate a sample of 1000 randomly selected points within a radius
of 1 from the origin. The upper bound value is visible in figure 7.3 with no
sample points extending past the defined boundaries.
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𝑟𝑐𝑙𝑜𝑢𝑑

Neutral particle
Charged particle

̂y - Global best particle
𝐴 - New location of optimum

Figure 7.1: Artificial scenario after problem landscape experiences change with
high spatial severity
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Figure 7.2: Multi-variate Gaussian distribution in two dimensions

The 𝑟𝑐𝑙𝑜𝑢𝑑 value is calculated as

𝑟𝑐𝑙𝑜𝑢𝑑 = max{𝐷(𝑆𝑛(𝑡)), 𝐷(𝑆𝑞(𝑡))} (7.3)

where 𝑆𝑛(𝑡) and 𝑆𝑞(𝑡) are the neutral and quantum particle subgroups at time
step 𝑡, with the diversity of each particle group obtained using equation (7.1).
Figure 7.4 illustrates the calculation of the 𝑟𝑐𝑙𝑜𝑢𝑑 value and how this value
defines the radius of the quantum cloud hyper-sphere, within which quantum
particles move, centred at the current global best particle.

The memory of the neutral particles may be stale after a problem search
space change occurs within the DOP, referring to positions that are no longer
best positions. The memory of the neutral particles should update to match
the new problem search space, otherwise neutral particles may be attracted
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Figure 7.3: Two-dimensional multi-variate uniform distribution
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Figure 7.4: Dynamic radius calculation from subgroup diversity values

to areas of the search space which are now undesirable. The personal best
position of neutral particles updates only if the new best position remains
within the problem search space [86]. Algorithm 7.1 provides pseudo-code for
the SaQPSO algorithm.

7.3 Experimental Procedure
The main objective of this experimental work is to demonstrate that a self-
adapting 𝑟𝑐𝑙𝑜𝑢𝑑 is either better than or performs similar, when compared against
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Algorithm 7.1 Self-adaptive Quantum Particle Swarm Optimisation
(𝑆𝑛, 𝑆𝑞) ← Initialise swarm with subgroups for neutral and quantum parti-

cles
𝑟𝑐𝑙𝑜𝑢𝑑 ← Calculate quantum radius using equation (7.3)
repeat

for each neutral particle 𝑝 ∈ 𝑆𝑛 do
update velocity using equation (3.1)
update particle position using equation (3.2)
calculate and assign objective function value
update the personal best position iff the position is within problem

domain
end for
for each quantum particle 𝑝 ∈ 𝑆𝑞 do

update position using equation (3.6)
calculate and assign objective function value

end for
𝑟𝑐𝑙𝑜𝑢𝑑 ← Calculate quantum radius using equation (7.3)

until stopping condition is true

control algorithms with predefined values for 𝑟𝑐𝑙𝑜𝑢𝑑. In other words, no sig-
nificant difference in performance should exist between QPSOs with static or
adapting 𝑟𝑐𝑙𝑜𝑢𝑑 values.

This section describes the required considerations to allow for the evalua-
tion of the QPSO and the SaQPSO, on a set of dynamic optimisation problems.
Section 7.3.1 describes the design of the experiments, with section 7.3.2 describ-
ing the measurements which quantify algorithm performance, together with
the statistical process.

7.3.1 Experimental Design
The most important consideration of the experimental work is that the under-
lying problem search spaces are exactly the same between algorithm executions.
Without the guarantee that the same problem is used for different algorithms, a
fair comparison of algorithm performance is not possible. Furthermore, execu-
tion of QPSO variants should not produce side-effects as the algorithm executes
that could alter the optimisation problem. If the optimisation problems were
changed during the execution of the algorithm, it would not be possible to per-
form a fair comparison between algorithms unless it could be guaranteed that
the same changes are performed by the other algorithms. To ensure that this
property remains an invariant for all experiments, the software library CIlib
was developed to allow for the precise control over optimisation algorithms and
optimisation problems. CIlib, a crucial part of the experimentation process, is
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not relevant for this discussion and is instead presented within part IV of this
thesis.

PSO parameter choices are based on PSO convergence properties [41, 115,
285], with the lbest topology providing slower information propagation through-
out the neutral particles. Sampling a Gaussian distribution centred at the
global best position of the neutral particle subgroup allows for quantum parti-
cle movement with a central tendency at the global best position. Quantum
particle movement from the global best position of the neutral particle sub-
group still allows for unconstrained movement that may exceed the boundaries
of the quantum cloud. Table 7.1 lists the PSO control parameter values for
the QPSO algorithms. For the experimental work, three QPSO algorithms
with static 𝑟𝑐𝑙𝑜𝑢𝑑 ∈ {5, 10, 50}, together with the SaQPSO are considered. The
static QPSO variants are identified by the size of the associated radius, namely
QPSO-5, QPSO-10, and QPSO-50 for 𝑟𝑐𝑙𝑜𝑢𝑑 values of 5, 10 and 50 respectively.

Table 7.1: QPSO algorithm parameters

Parameter Value

Particles 40
Proportion quantum particles 50%

𝜔 0.729844
𝑐1, 𝑐2 1.496180

Topology l-best (size 3)
Iteration strategy Synchronous

PRNG Seed 123456789L
Static radius values 𝑟𝑐𝑙𝑜𝑢𝑑 ∈ [5, 10, 50]

Quantum cloud distribution Gaussian

The benchmark problems were defined to match the classification of Duhain
and Engelbrecht [77], using the MPB generator (refer to section 4.1.3) to create
the problem instances. Each problem search space contained 10 peaks and was
configured using the parameters defined in table 7.2. Each problem search space
classification was also defined to be a Type III problem search space [123]. Each
algorithm configuration was executed for a total of 30 independent executions,
for 1000 iterations. The optimisation problem search space defined a five
dimensional landscape, with each dimension bound to the domain [0, 100].

7.3.2 Performance Measures for Quantum Particle
Swarm Optimisation Algorithms

Duhain [76] and Duhain and Engelbrecht [77] recommend that better choices
for performance measurement of dynamic problem search spaces include the
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Table 7.2: MPB benchmark generator parameters

Parameter Static Progressive Abrupt Chaotic

Peak count 10 10 10 10
Peak height [30, 70] [30, 70] [30, 70] [30, 70]
Peak width [1, 12] [1, 12] [1, 12] [1, 12]

Height change severity 1 1 10 10
Width change severity 0.05 0.05 0.05 0.05

Change severity 1 1 10 10
Random movement % (𝜆) 0 0 0 0

Change freqency (iterations) 200 1 200 5

accuracy of the solutions over time, the stability (solution quality after the
problem search space experiences change), and algorithm exploitative capacity,
which is the quality of the best solution between the changes of a problem
search space. Whilst considering the performance measures used for the QPSO
in literature [18, 20, 76], a subset of the measurements are selected. This subset
will allow for simpler comparisons to QPSO results within existing literature.
As a result, vector-based performance measurements are not considered for
these experiments. The set of “good” performance measures which observe the
performance of all QPSO algorithms include

• CME (see section 6.2.1.3),

• ABEBC (see section 6.2.2.2), and

• ABEAC (see section 6.2.2.3).

The performance results of the QPSO algorithms was tested by applying
a Mann-Whitney-U rank sum test, together with a Holm correction in order
to determine if there is a significant difference (𝛼 = 0.05) in algorithm perfor-
mance. For each comparison between algorithms, a value of 1 is allocated to
the superior algorithm performance with the inferior performance being allo-
cated a value of −1. In the case where there is no difference between algorithm
performances (i.e., a tie in performance) a value of 0 is allocated to both algo-
rithms. The allocated scores are then summed to produce a wins-minus-losses
aggregate.

7.4 Experimental Result Analysis
This section contains the analysis of the experimental results for the four algo-
rithms (QPSO-5, QPSO-10, QPSO-50 and SaQPSO). Sections 7.4.1 to 7.4.3
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respectively discuss the results for the CME, ABEBC and ABEAC perfor-
mance measurements. An analysis of the size of the quantum cloud follows in
section 7.4.4.

7.4.1 Analysis of Collective Mean Error
Table 7.3 provides algorithm rankings with respect to the CME measurement.
For the CME measurement, the rankings indicate that the SaQPSO performed
the best across the different problems search space types. QPSO-50 was the
second best performing algorithm, followed by QPSO-10 and QPSO-5. As
shown in figure 7.5, a similar trend to the ranking data can be observed when
comparing algorithm performances. For the abrupt and progressive problem
spaces all algorithms achieved similar performances, but the wins-minus-losses
favours the SaQPSO within these problem search spaces.

After the problem search space experiences a change, the SaQPSO has
an increase in diversity, as illustrated in figure 7.8. The increase in diversity
results in a larger area for quantum particles to explore, and as the swarm starts
to converge on an optimum, the radius value decreases. With a decreasing
radius, quantum particles begin exploitation of the search space around the
optimum. The error values in figure 7.5 also show that the QPSO is sensitive
to the frequency of problem search space change: the lower error values were
achieved for the quasi-static search space where the frequency of change is low.
Compared to the static QPSOs, it should be noted that the SaQPSO did not
perform worse.

Progressive Static

Abrupt Chaotic

QPSO-5 QPSO-10 QPSO-50 SaQPSO QPSO-5 QPSO-10 QPSO-50 SaQPSO

20

40
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QPSO-5 QPSO-10 QPSO-50 SaQPSO

Figure 7.5: CME performance results over MPB problem search space types
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Table 7.3: Algorithm performance ranking

Problem Measure QPSO-5 QPSO-10 QPSO-50 SaQPSO

Quasi-static CME (Win/Loss) (0/-3) (1/-2) (2/-1) (3/0)
ABEBC (Win/Loss) (0/-3) (1/-2) (3/0) (2/-1)
ABEAC (Win/Loss) (0/-3) (3/0) (1/-2) (2/-1)

Win+Loss -9 -1 3 5
Rank 1 2 3 4

Progressive CME (Win/Loss) (0/-2) (2/-1) (0/-1) (2/0)
ABEBC (Win/Loss) (0/-2) (2/-1) (0/-1) (2/0)
ABEAC (Win/Loss) (0/-2) (2/-1) (0/-1) (2/0)

Win+Loss -6 3 -3 6
Rank 1 3 2 4

Abrupt CME (Win/Loss) (0/-3) (1/-2) (2/0) (2/0)
ABEBC (Win/Loss) (0/-3) (1/-2) (2/-1) (3/0)
ABEAC (Win/Loss) (0/-3) (1/-2) (2/-1) (3/0)

Win+Loss -9 -3 4 8
Rank 1 2 3 4

Chaotic CME (Win/Loss) (0/-3) (1/-2) (2/-1) (3/0)
ABEBC (Win/Loss) (0/-3) (1/-2) (2/-1) (3/0)
ABEAC (Win/Loss) (0/-3) (1/-2) (2/-1) (3/0)

Win+Loss -9 -3 3 9
Rank 1 2 3 4

Win/Loss total -33 1 7 28

7.4.2 Analysis of Average Best Error Before Change
Figure 7.6 illustrates that all four algorithms managed to achieve values of
less than 20 for the ABEBC within the quasi-static problem search space. For
the other search spaces, the same trend of the CME measurement is evident,
with none of the algorithms particularly providing a clearly better solution,
and a similar spread of error values. Because the ABEBC demonstrates the
exploratory capacity of an algorithm, it is clear that none of the algorithms were
able to effectively locate a new solution before the search space experienced
change. The SaQPSO achieved comparable performance when compared to
the static QPSO variants.

7.4.3 Analysis of Average Best Error After Change
After the problem search space experiences change, the QPSO-10 and SaQPSO
managed to achieve median values that are lower than that of the other QPSO
algorithms for the quasi-static problem spaces. Unfortunately, for the other
problem search space types, no one algorithm displayed a clear improvement,
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Figure 7.6: ABEBC performance results over MPB problem search space types

and all algorithms (including the SaQPSO) achieved equally poor results.
These performances are illustrated in figure 7.7.
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Figure 7.7: ABEAC performance results over MPB problem search space types
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7.4.4 Analysis of the Dynamic Quantum Radius and
Diversity

For the SaQPSO, the average radius size is illustrated in figure 7.8 for each
problem search space type over 1000 iterations. From the graph it is clear that
the diversity (which is the cloud radius value), did change over the course of
algorithm execution. For search spaces with high temporal severity (chaotic and
progressive), the cloud radius size fluctuated at a large value which is roughly
half of the problem domain. Due to the frequency of the search space changes,
there is not enough time between the problem space changes for particles to
share enough information in order to attract the swarm to a specific region
within the search space. Therefore, the re-initialization process maintains a
large diversity.

The quasi-static problem search space plot shows that the radius reduced
to a small value and increased as the problem search space changed (every 200
iterations), albeit a small change. The size of the cloud radius for the abruptly
changing problem spaces reduced similarly to the quasi-static problems, but
at 400 iterations, increased to a value under half of the problem domain size
and remained there for the remainder of the algorithm execution. It is not
clear why this behaviour is observed. As expected, the size of the cloud radius
remained large for the progressive and chaotic problem search spaces where
the frequency of change is high.
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Figure 7.8: Average diversity/quantum cloud radius across algorithm iterations for
all MPB problem search space types
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7.5 Conclusion
This chapter investigated the radius management of the QPSO. During the
investigation it was observed that the quantum cloud radius parameter, 𝑟𝑐𝑙𝑜𝑢𝑑,
is a problematic algorithm control parameter that is problem dependant. Alter-
native radius management strategies have been proposed, however, the results
do not always leave the behaviour of the QPSO algorithm unchanged. A new
variant of the QPSO for dynamic problem search spaces was proposed where
the value of 𝑟𝑐𝑙𝑜𝑢𝑑 can adjust dynamically during the execution of the algo-
rithm, thereby removing the requirement to determine a suitable value for
𝑟𝑐𝑙𝑜𝑢𝑑 in advance.

From the reported experimental results and the analysis of performance
measurements, it was shown that the proposed SaQPSO algorithm did not
perform any worse, nor any better than three statically configured QPSO
algorithms. The results indicate a promising outcome: the SaQPSO may sub-
stitute any QPSO algorithm without the loss of performance whilst providing
the benefit of letting the 𝑟𝑐𝑙𝑜𝑢𝑑 control parameter become independent of the
optimisation problem. The next chapter incorporates the SaQPSO into an
algorithm suitable for DCOP.
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Chapter 8

Co-Evolutionary Algorithms for
Dynamic, Constrained
Optimisation Problems

If I have seen further it is by standing on the
shoulders of Giants.

Isaac Newton

Dynamic optimisation algorithms have been shown to be successful in both
tracking and maintaining solutions within a changing optimisation problem
landscape. When optimisation problem constraints are considered in addition
to the dynamic problem landscape, the use of simpler constraint handling
methods (such as penalty functions) are preferred. Penalty functions are par-
ticularly favourable due to the minimal additional complexity they introduce
into the optimisation process, whilst being simple to implement. When con-
sidering DCOPs, problem landscapes become particularly challenging for opti-
misation algorithms as the complexity of the optimisation problem increases.
A co-evolutionary approach decomposes the more complex problem search
spaces into an alternative representation. Within this alternative representa-
tion, constraint violations are minimised in a separate process simultaneous to
minimisation of the objective function. The general co-evolutionary framework
(discussed in section 3.3) provides an overview of the co-evolutionary process
for both cooperative and competitive framework variants.

In this chapter, a new dynamic co-evolutionary framework is proposed to
cater for dynamic, constrained optimisation problems. The new framework
formulation takes inspiration from the cooperative co-evolutionary particle
swarm optimisation (CCPSO) algorithm [256], but differs by having the inner
individual optimisation algorithms be dynamic variants of static optimisation
algorithms. Notably, this new formulation allows for the definition of dynamic
co-evolutionary algorithms to solve DCOPs instances.
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This chapter is structured as follows: Section 8.1 discusses the reformula-
tion of constrained optimisation problems, using a co-evolutionary approach.
The proposed dynamic co-evolutionary framework is proposed in section 8.2,
together with a discussion of possible algorithms to solve DCOPs. The chapter
concludes with section 8.3.

8.1 A Co-Evolutionary Approach for Static,
Constrained Optimisation Problems

Shi and Krohling [256] proposed a formulation of the co-evolutionary framework
using two PSO swarms. This algorithm formulation, hereafter referred to as
CCPSO, transforms the optimisation problem into an unconstrained min-max
problem, through the use of Lagrangian multipliers (see definition 2.5). This is
in contrast to the more commonplace approaches which involve the preservation
of feasible solutions, the repair of infeasible solutions, the use of decoders,
penalty functions, and hybrid algorithms. Figure 8.1 illustrates the how the
PSOs cooperate within the CCPSO.

𝐿(𝐱, 𝝁, 𝝀)

𝐱∗ 𝑔

(𝝁∗, 𝝀∗)𝑓

Objective
space

swarm (𝐱)
𝑃1

Penalty
swarm

(Lagrangian
multipliers)

(𝝁, 𝝀)

𝑃2

Figure 8.1: Graphical representation of the CCPSO knowledge transfer and PSO
specific objective function creation between cooperating PSOs.

Within figure 8.1, the dual Lagrangian formulation 𝐿(𝐱, 𝝁, 𝝀) is the mech-
anism through which the swarms are able to cooperate. Each swarm obtains
its fitness function by filling the missing parameters within 𝐿(𝐱, 𝝁, 𝝀) with
information obtained from the other cooperating swarm. The fitness function
𝑓 of the objective space swarm (i.e., the “min” swarm) is obtained by partially
applying 𝐿(𝐱, 𝝁, 𝝀) with the current best Lagrangian multipliers, (𝝁∗, 𝝀∗),
from the penalty swarm. The resulting fitness function for the objective space
swarm is

𝑓(𝝁∗, 𝝀∗) = min
𝐱∈𝑃1

𝐿(𝐱, 𝝁∗, 𝝀∗) (8.1)
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where 𝝁∗ and 𝝀∗ respectively represent the coefficients to the inequality and
equality constraints of 𝐿(𝐱, 𝝁, 𝝀) and 𝑃1 represents the particles of the objec-
tive space swarm.

For the penalty swarm (i.e., the “max” swarm), the fitness function 𝑔
represents the penalty function within 𝐿(𝐱, 𝝁, 𝝀) and is obtained by partially
applying 𝐿(𝐱, 𝝁, 𝝀) with the current best solution, 𝐱∗, within objective space.
The fitness function for the penalty swarm is defined as

𝑔(𝐱∗) = max
𝝁,𝝀∈𝑃2

𝐿(𝐱∗, 𝝁, 𝝀) (8.2)

where 𝑃2 represents the penalty swarm particles.
At each iteration of the CCPSO the fitness function of each swarm is

updated before each swarm updates its particles using the velocity update
(see equation (3.1)) and position update (see equation (3.2)) of the canonical
PSO algorithm (see algorithm 3.3). Pseudo-code for the CCPSO algorithm is
provided in algorithm 8.1.

Algorithm 8.1 Co-Evolutionary Particle Swarm Optimisation
𝐿(𝐱, 𝝁, 𝝀) ← Formulate the Lagrangian optimisation

problem (i.e., the dual problem)
▷ definition 2.5

𝑃1 ← Initialise PSO swarm for solution
𝑃2 ← Initialise PSO swarm for Lagrangian multipliers
repeat

𝑔(𝝁, 𝝀) ← Apply current best solution from 𝑃1 to 𝐿(𝐱, 𝝁, 𝝀)
𝑓(𝐱) ← Apply current best solution from 𝑃2 to 𝐿(𝐱, 𝝁, 𝝀)
Execute PSO 𝑃1 with objective function 𝑓 ▷ Algorithm 3.3
Execute PSO 𝑃2 with objective function 𝑔 ▷ Algorithm 3.3
Re-evaluate personal best positions for particles in 𝑃1 and 𝑃2

until stopping condition(s) satisfied

8.2 Co-Evolutionary Approach for Dynamic,
Constrained Optimisation Problems

This section proposes an approach to solve DCOPs using a co-evolutionary algo-
rithm formulation, which is similar to the algorithm formulation in section 8.1.
When considering DCOPs, an optimisation algorithm should be able to not
only adapt to the changing problem landscape (by tracking and maintaining
solutions), but should also adapt to any changing problem constraints.

A new dynamic co-evolutionary algorithm framework is presented in sec-
tion 8.2.1, whilst section 8.2.2 discusses possible algorithm combinations that
use the dynamic co-evolutionary framework.
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8.2.1 Proposed Co-Evolutionary Framework for
Dynamic, Constrained Optimisation Problems

For each DCOP category, the following observations can be made based on the
complexity of the problem search space and actions required when either the
problem landscape or constraints change:

• SOSC problem search spaces are the most simplistic DCOP problem class.
The CCPSO described in section 8.1 is sufficient to provide solutions,
because both problem search space and constraints remain static.

• SODC problems provide a challenge to the optimisation algorithm due to
the constraints changing over time. The method of constraint handling
should adapt in order to cater for the changes to the optimisation problem
constraints.

• DOSC problem spaces are somewhat similar to SODC in that only a
single aspect of the optimisation problem experiences change. The prob-
lem constraints remain static whilst the problem landscape experiences
changes. As a result, a simpler constraint handling method may be suffi-
cient, whilst a dynamic optimisation algorithm can optimise the objective
problem space.

• DODC problem spaces are the most complex combination, where both
the problem landscape and the problem constraints change. As a result,
it is reasonable that the optimisation algorithm should be able to adapt
to changes to both the objective landscape and the optimisation problem
constraints, during the optimisation process.

The co-evolutionary approach described in section 8.1 allows for both the
min function and the max function to be simultaneously optimised. Unfor-
tunately, for dynamically changing optimisation problems the CCPSO is not
capable of responding appropriately to any changes experienced by the opti-
misation problem. As a result, the particles from both the objective space
swarm and the penalty swarm will suffer from outdated memory values (see
section 3.2) where the best found positions are no longer valid. Furthermore,
the particles from both the objective space swarm and the penalty swarm will
also lose diversity as both swarms settle onto an equilibrium state.

When the optimisation problem constraints change, the number of problem
constraints need not remain the same. If the number of constraints changes,
then so too does the number of Lagrangian multipliers. Therefore, the search
space dimensionality of the CCPSO penalty swarm changes and necessitates
that the particle position and the particle velocity vectors also update to match
the new search space dimensionality.

By replacing the static optimisation algorithms (i.e., the PSOs) within the
CCPSO with dynamic optimisation algorithms, the co-evolutionary approach
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Algorithm 8.2 Dynamic Co-Evolutionary Framework
𝐿(𝐱, 𝝁, 𝝀) ← Formulate the Lagrangian optimisation

problem (i.e., the dual problem)
▷ definition 2.5

𝑃1 ← Initialise dynamic optimisation algorithm for objective space solu-
tions

𝑃2 ← Initialise dynamic optimisation algorithm for Lagrangian multipliers
repeat

Detect and react to objective space and/or problem constraint changes
for 𝑃1 and 𝑃2 candidate solutions

𝑔(𝝁, 𝝀) ← Apply current best solution from 𝑃1 to 𝐿(𝐱, 𝝁, 𝝀)
𝑓(𝐱) ← Apply current best solution from 𝑃2 to 𝐿(𝐱, 𝝁, 𝝀)
Execute dynamic optimisation algorithm with objective function 𝑓 on

candidate solutions from 𝑃1
Execute dynamic optimisation algorithm with objective function 𝑔 on

candidate solutions from 𝑃2
until stopping condition(s) satisfied

may be adapted for DCOPs. The result is a co-evolutionary algorithm frame-
work that uses dynamic optimisation algorithms to simultaneously optimise
both the objective function and the constraint handling function for DCOP
instances. Optimisation of these functions then provides a solution to the
DCOP itself through the cooperation of the dynamic optimisation algorithms.
Additionally, the proposed dynamic co-evolutionary framework can be applied
to all DCOP categories, including SOSC problem instances irrespective of no
changes being experienced by the SOSC optimisation problem. A notable
aspect of the dynamic co-evolutionary framework is that any change within
the optimisation problem search space or in the problem constraints produces
a new optimisation problem search space. This effect is also demonstrated for
the CMPB in chapter 5.

Algorithm 8.2 provides high-level pseudo-code for the proposed dynamic
co-evolutionary framework for DCOPs.

8.2.2 Proposed Co-Evolutionary Algorithms
By using the proposed dynamic co-evolutionary framework, it is possible to
define different co-evolutionary algorithms for DCOPs. When examining the
Lagrangian transformation, it is evident that the “domains” of the dynamic
optimisation algorithms are not the same. The Lagrangian multiplier vector
(the combination of both 𝜇 and 𝜆 multiplier coefficients) does not maintain the
same decision variable domain as that of the solution vector, and changes as
the number of constraints within the optimisation problems changes. When
selecting dynamic optimisation algorithms to optimise the candidate solutions
of either 𝑃1 or 𝑃2, the domains of the candidate solutions should be considered.
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For example, assume that the same dynamic optimisation algorithm is used
for both the objective space solutions and the Lagrangian multipliers. As
noted in section 9.3.2, the tuning of dynamic optimisation algorithm control
parameters does not make sense. However, the algorithmic control parameters
still control the ultimate behaviour of the optimisation algorithm. When
algorithmic control parameters have values that are either too large or too
small, the performance of the dynamic optimisation algorithm will be affected
negatively. Therefore, dynamic optimisation algorithms with fewer user defined
control parameters, or with self-adapting control parameters, are better choices
within the dynamic co-evolutionary algorithm framework.

Six DCOP optimisation algorithms are proposed using the dynamic co-
evolutionary framework together with dynamic optimisation algorithms. The
dynamic optimisation algorithms that are considered for use with the dynamic
co-evolutionary framework manage the diversity of the candidate solutions by
either introducing diversity or maintaining diversity levels. The same dynamic
optimisation algorithm is used for both the objective and Lagrangian multiplier
algorithms. The proposed dynamic co-evolutionary algorithms all contain
dynamic optimisation algorithms that do not require any problem-specific
control parameters, with the same dynamic optimisation algorithm used for
both 𝑃1 and 𝑃2 candidate solutions. Changes to the optimisation problem
are detected by candidate solutions observing a decrease in fitness. When
the optimisation problem experiences a change in either the objective space
or in the constraint space, the candidate solutions are re-evaluated to update
any maintained memory values. If a change in dimensionality is observed
for the optimisation problem constraints, the candidate solutions of 𝑃2 are
re-initialised. The proposed algorithms, based on the dynamic co-evolutionary
framework are

CCRIGA: The RIGA allowed the GA to be applied to DOPs by introducing
new genetic material, which is randomly generated after each algorithm
iteration. These “random immigrants” ensure that the diversity of the
candidate solutions remain high from iteration to iteration. Embed-
ding RIGA into the dynamic co-evolutionary framework allows for the
definition of the cooperative co-evolutionary random immigrant genetic
algorithm (CCRIGA).

CCHyperM: Hyper-mutation adapts the GA by observing the diversity
within the candidate solutions, allowing for a period of “hyper muta-
tion” in order to improve candidate solution diversity. The resulting
co-evolutionary algorithm, using the internal HyperM for both 𝑃1 and
𝑃2 candidate solutions, is known as the cooperative co-evolutionary hyper
mutation genetic algorithm (CCHyperM).

CCSaDE: SaDE is an adaptive algorithm, whereby the control parameters
of the algorithm are adapted in order to obtain the best parameter
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combination for the current optimisation problem. The diversity of
the SaDE is maintained through one of the defined DE trial vector
creation processes within the algorithm. Using the SaDE as the individual
optimisation algorithms within the dynamic co-evolutionary framework
defines the cooperative co-evolutionary self-adaptive differential evolution
(CCSaDE) algorithm.

CCSaQPSO: As previously mentioned, the SaQPSO algorithm is a self-
adaptive PSO variant for dynamic environments, without the requirement
to specify the problem-dependent control parameter 𝑟𝑐𝑙𝑜𝑢𝑑. SaQPSO
attempts to maintain the diversity of the candidate solutions through-
out the execution of the algorithm. The dynamic co-evolutionary algo-
rithm that uses the SaQPSO is known as cooperative co-evolutionary
self-adaptive quantum paritcle swarm optimisation (CCSaQPSO).

CCGVPSO: GVPSO defines a dynamic PSO variant that moves particles
throughout the problem search space by controlling the particle step-size
with a Gaussian distribution. Although GVPSO was originally devel-
oped for SOPs, it is possible to use GVPSO within a DOP because the
movement of the particles is resilient to landscape changes. Particle
diversity is maintained due to the probabilistic particle movement de-
scribed in equations (3.4) and (3.5).The dynamic co-evolutionary variant
of the GVPSO is the cooperative co-evolutionary gaussian-valued particle
swarm optimisation (CCGVPSO) algorithm.

CCSaQGVPSO: Within SaQPSO, the neutral particles adhere to the update
process of the canonical PSO algorithm (i.e., equations (3.1) and (3.2)).
The self-adaptive quantum gaussian-valued particle swarm optimisation
(SaQGVPSO) algorithm is identical to the SaQPSO algorithm, except
that the neutral particles use the update equations of the GVPSO in-
stead. SaQGVPSO is another dynamic variant of PSO, which can be
used within the proposed dynamic co-evolutionary framework to produce
the cooperative co-evolutionary self-adaptive quantum gaussian-valued
particle swarm optimisation (CCSaQGVPSO) algorithm.

8.3 Conclusion
This chapter discussed the CCPSO algorithm for constrained, static optimi-
sation problems. From the static co-evolutionary algorithm framework a new
dynamic co-evolutionary framework was derived and proposed. The new co-
evolutionary framework substitutes dynamic variants of the static optimisation
algorithms within the co-evolutionary framework to allow for use within dy-
namic, constrained optimisation problems. Using the Lagrangian method for
constraint handling, it is recommended that self-adaptive dynamic optimisation

134



algorithms are used within the dynamic co-evolutionary framework, allowing
for consideration of the different candidate solution domains. Six dynamic
co-evolutionary algorithms were discussed and proposed as co-evolutionary al-
gorithms for DCOPs, using different approaches to manage algorithm diversity.
These newly proposed dynamic co-evolutionary algorithms will be used within
the empirical work in subsequent chapters.
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Chapter 9

Empirical Process

Observation is a passive science, experimentation an
active science.

Claude Bernard

Optimisation algorithms operating within DOP problem landscapes are handi-
capped: Although the ultimate goal is to locate and to track solutions within
the problem search space, the manner in which the underlying optimisation
problem changes is unknown to the algorithm. Furthermore, the different
kinds of changes that a problem search space may experience is not finite even
though the types of changes can be classified into distinct categories. When
considering changing constraints within a problem search space, the complex-
ity present within a changing landscape increases even further, providing a
great challenge to the optimisation process and algorithm. Using the dynamic
co-evolutionary framework and the derived algorithms from section 8.2.2, ex-
periments and simulations can be defined in order to test the effectiveness of
algorithms, defined within the dynamic co-evolutionary framework, to solve
DCOPs. For comparison, non-coevolutionary algorithms are also considered
to solve DCOPs.

The experimental procedure followed to test the dynamic co-evolutionary
optimisation algorithms, as well as the non-coevolutionary optimisation algo-
rithms, is presented in this chapter and is structured as follows: Section 9.1
presents the research questions for the experimental work, together with their
motivation. The benchmark problems for the simulations are discussed in
section 9.2, whilst section 9.3 discusses the selection of algorithms for the simu-
lations in addition to the defined dynamic co-evolutionary algorithms. In order
to test the efficacy of the optimisation algorithms on the benchmark prob-
lems, the selection of performance measurements are discussed in section 9.4.
Section 9.5 presents the statistical procedure with which the algorithm perfor-
mances are compared. This chapter concludes in section 9.6.
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9.1 Motivation for Experimental Work
A fair synopsis of the research into DCOP problem instances would be that
the current work has only started to scratch the surface. DCOPs provide an
incredible challenge to optimisation algorithms, where the amount of variability
within the problems is potentially greater than the capability of current opti-
misation algorithms. Furthermore, existing studies on solving DCOPs [83, 166,
171, 179, 207, 245, 311] have focused on benchmark problems that are compara-
tively simple, maintaining only a few decision variables. Nevertheless, a better
understanding of algorithm behaviour and performance on such problems may
allow for the design and development of algorithms that are better suited to
adapting to the variability within DCOPs. For a comprehensive set of DCOP
problem instances, the performance characteristics of the proposed dynamic
co-evolutionary algorithms (defined in section 8.2.2) are compared to a set of
non-coevolutionary dynamic optimisation algorithms. The following research
questions are formulated for the experimental work in order to compare these
optimisation algorithms:

1. Can algorithms based on the dynamic co-evolutionary framework provide
solutions to DCOPs?
It has already been established that CCPSO is capable of providing
solutions to SOSC problem instances [256]. Is it reasonable to expect
that the use of dynamic optimisation algorithms within a co-evolutionary
algorithm will result in feasible solutions to DCOPs? Furthermore, is
it reasonable to expect that feasible solutions are obtained for even the
most complex category of DCOPs? This research question is addressed
by evaluating the six newly proposed dynamic co-evolutionary algorithms
(see chapter 8), the SaQPSO (see chapter 7) and five non-coevolutionary
algorithms on a comprehensive set of DCOP instances.

2. Does the choice of constraint handling approach matter?
The dynamic co-evolutionary framework transforms the optimisation
problem through the use of the Lagrangian transformation. As a result,
the Lagrangian multipliers are optimised during the execution of the al-
gorithm and adapt as dictated by the inter-algorithm knowledge transfer
and objective function evaluation. Alternative constraint handling meth-
ods, such as the addition of penalties, have been shown to be effective for
SOSC optimisation problems. Penalty based constraint handling may be
applied to more complex categories of DCOP, provided that the penalty
functions can adapt to the changing optimisation problem. Even so, it
is not certain that penalty based constraint handling be preferred over
the co-evolutionary Lagrangian formulation.
This research question is addressed by evaluating the performance of
the same base optimisation algorithm. The base optimisation algorithm
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is a specific dynamic optimisation algorithm (e.g., RIGA) from which
variant optimisation algorithms are derived. From the base optimisation
algorithm, pairs of optimisation algorithm variants are compared which
either use the Lagrangian transformation or the 𝛼-constraint approach
to handle optimisation problem constraints.

3. Does the ratio of feasible to infeasible solutions reduce as the problem
complexity increases?
Less complex optimisation problem landscapes should allow an optimi-
sation algorithm to more effectively focus on solutions within feasible
problem space. As a result, the ratio of feasible to infeasible solutions
should favour feasible solutions. If the ratio instead favours infeasible
problem spaces, the implication would be that the algorithm is unable
to guide the search process, or that the algorithm is simply exploring
within infeasible search space regions.
This research question is addressed by evaluating the percentage of feasi-
ble solutions produced by an optimisation algorithm across all algorithm
iterations. These vectors of feasibility are then compared using the 𝑃RED
measure to determine how effectively the optimisation algorithm can pro-
duce feasible solutions when compared to the hypothetical best, which
consists of only feasible solutions.

4. Does candidate solution diversity provide an indication of algorithm
performance for DCOPs?
The importance of candidate solution diversity is established with dy-
namic optimisation algorithms. Enough diversity ensures that current
solutions continue to be tracked and that new solutions can be located
within the optimisation problem search space.
Given the complexity of DCOPs, it is assumed that candidate solution di-
versity is an important consideration for optimisation algorithms because
of the changes these problem instances can experience. Furthermore, do
the constraint handling methods within these optimisation algorithms
impact the candidate solution diversity during the execution of the opti-
misation algorithms?
This research question is addressed by evaluating the candidate solu-
tion diversity across all algorithm iterations, for all objective space and
constraint space behaviours.

5. Which approaches recover the best after the optimisation problem experi-
ences a change?
Once the optimisation problem experiences a change, the current opti-
misation algorithm is required to adapt in order to continue to track
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solutions and to locate new feasible solutions within the DCOP. An algo-
rithm with a good recovery ability should be able to notice the change in
the optimisation problem. Once the change is identified, the optimisation
algorithm can adjust its control parameters, the candidate solutions or
a combination of both in order to continue tracking and locating feasi-
ble solutions. The Lagrangian formulation of the optimisation problem
presents as a more complex optimisation process, necessitating a co-
evolutionary algorithm to simultaneously optimise the objective decision
variables and penalty function. This is in contrast to the complexity
of the optimisation process when a single population based, dynamic
optimisation algorithm with an adaptive penalty based constraint han-
dling method is used. Would the recovery process of the optimisation
algorithm be influenced by the choice of constraint handling method?
This research question is addressed by evaluating the performance of
the dynamic co-evolutionary algorithms and the non-coevolutionary al-
gorithms before, after and across the changes experienced by DCOP
instances.

6. Are there differences in optimisation algorithm performance based on the
category of DCOP instance?
DCOPs are the composition of both the objective landscape and the con-
straint landscape. One possible categorisation of DCOPs differentiates
instances based on the dynamic nature of the objective and constraint
landscapes. From this categorisation, the possible instance groups are
SOSC, SODC, DOSC and DODC problem instances.
Another possible categorisation is based on the behaviour of the changes
experienced by the objective space and the constraint space. For each
constituent landscape of the final composed optimisation problem, the
landscape behaviour can be categorised based on the spatial and temporal
severity of the search space changes. This allows for the grouping of
problem instances based on progressive, abrupt, chaotic or static change
behaviour for both the objective landscape and the constraint landscape.
From these categorisations, are any differences observed for the perfor-
mance of the optimisation algorithms? This research question is ad-
dressed by evaluating the performance profiles of the optimisation algo-
rithms for above mentioned categories of optimisation problem instances.

9.2 Benchmark Problem Instances
As descried in chapter 5, it is possible to define a comprehensive set of DCOP
benchmark problems by building on the classification of Duhain and Engel-
brecht [77]. The CMPB problem generator can produce DCOP instances by
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composing a MPB objective problem space together with a MPB constraint
problem space. As a result, a total of 282 = 784 unique problem instances
can be generated with the CMPB generator. These problem instances differ
in complexity and range from static objective and constraint landscapes, to
landscapes that combine chaotic objective and chaotic constraint landscapes.
Following from this definition of the possible problem search spaces, all of
the DCOP categories (i.e., SOSC, SODC, DOSC and DODC) are represented
within the resulting set of benchmark problems.

The objective and constraint landscape MPB generators have the same
benchmark function generator parameters and change frequencies, provided in
table 9.1. As mentioned within section 5.1, each problem instance is uniquely
labelled by considering the problem space behaviour of both the objective and
constraint landscapes. For example, when considering the benchmark problem
label A1R/C1L, the objective space behaviour experiences abrupt landscape
changes with random, type I optima movement. In contrast, the constraint
landscape experiences chaotic landscape changes, together with linear, type I
movement of the optima.

The dimensions defined within the CMPB parameters are slightly larger
than the dimensions used within currently available literature, as highlighted
in section 4.2, providing optimisation problem landscapes that are more com-
plex. Although the CMPB may easily be defined for large dimensions, the
selected dimension is low enough to hopefully still provide a similar intuition
about the problem spaces, when considering other studies. Furthermore, high
dimensional search spaces introduce other complications [1, 144, 172, 181, 283,
315] (such as the curse of dimensionality, interdependence of dimensions and
high dimensional smoothing), and are not considered within this study.

Table 9.1: MPB benchmark generator parameters

Parameter Static Progressive Abrupt Chaotic

Domain [0, 100] [0, 100] [0, 100] [0, 100]
Number of dimensions 5 5 5 5

Peak count 10 10 10 10
Peak height [30, 70] [30, 70] [30, 70] [30, 70]
Peak width [1, 12] [1, 12] [1, 12] [1, 12]

Height change severity 1 1 10 10
Width change severity 0.05 0.05 0.05 0.05

Change severity 1 1 10 10
Random movement % (𝜆) 0 0 0 0

Change frequency (iterations) ∞ 20 100 30
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9.3 Algorithms and Control Parameters
The sections that follow discuss the set of optimisation algorithms for DCOPs
together with the control parameters of these algorithms. Section 9.3.1 dis-
cusses both newly proposed and existing optimisation algorithms for DCOPs,
together with the assigned constraint handling method for the algorithms. The
algorithm control parameters for the discussed algorithms are presented in
section 9.3.2.

9.3.1 Algorithms
Together with the six proposed dynamic co-evolutionary algorithms of sec-
tion 8.2.2 and SaQPSO (see chapter 7), an additional five dynamic algorithms
are considered for the experimental work. These additional algorithms have
been taken from existing literature to determine if these algorithms are capable
of providing solutions to DCOPs, simply with the addition of a constraint
handling method. The algorithms taken from literature are

• RIGA [104]

• HyperM [43]

• DDECV [2]

• SaDE [238]

• GVPSO [115]

These DOP algorithms have been shown to provide good performance and
are able to maintain decision space diversity. Diversity is managed by either
maintaining the current, already present levels of diversity, or by introducing
new diversity into the algorithm during execution.

The proposed dynamic co-evolutionary algorithms use the Lagrangian trans-
formation to convert the DCOP into an unconstrained DOP, handling con-
straints as part of the optimisation process. For the additional DOP algo-
rithms and SaQPSO, constraint handling is achieved through the use of the
𝛼-constraint [271, 273] which provides an adaptive penalty function. Table 9.2
summaries the algorithms based on type and constraint handling method used
within the experimental work. Note that SaQPSO, CCRIGA, CCHyperM,
CCSaDE, CCSaQPSO, CCGVPSO and CCSaQGVPSO are all new algorithms
proposed by this thesis.

9.3.2 Algorithm Control Parameter Selection
Emphasis to obtain an optimal set of control parameters for optimisation algo-
rithms already exists, particularly within static optimisation problem search
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Table 9.2: Optimisation algorithm and constraint handling association

Constraint handing Algorithm type Algorithm

𝛼-constraint

Dynamic RIGA
HyperM

Adaptive

SaQPSO
DDECV
SaDE
GVPSO

Lagrangian
transformation Co-evolutionary

CCRIGA
CCHyperM
CCSaDE
CCSaQPSO
CCGVPSO
CCSaQGVPSO

spaces. The procedure to obtain such a parameter set often requires the consid-
eration of all possible parameter value combinations, which grow exponentially
as more control parameters are considered. Tools [172] have been developed
in order to reduce the complexity of combinatorial searches of the control pa-
rameter space. A statistical approach is taken within the tools to determine
when a control parameter change will not yield better results, upon which
large portions of the control parameter search space can be excluded. The
general idea is that, for a given optimisation problem, each algorithm should
be compared using its own best set of control parameters. Doing so will give
each algorithm the best possible chance to provide the best solution to the
common optimisation problem.

Within dynamically changing problem landscapes, the number of algorithm
control parameter sets would need to increase to match the number of landscape
change periods. Due to a static problem landscape existing between landscape
changes, it is conceivable that an optimal set of algorithm control parameters
for each landscape change period should be determined because the landscape
characteristics may have changed. Unfortunately, such a strategy is simply not
practical with the currently available tools. As a result, tuning optimisation
algorithm control parameters for DOPs can be seen as a fruitless endeavour.
Currently, algorithm control parameters are not managed for each change
period and tuned control parameters are usually only valid for the first problem
landscape. There is no guarantee that the selected control parameter values
are optimal for subsequent problem landscapes [6, 22, 113, 156, 212, 283],
possibly becoming ineffective as the landscape changes. This will remain the
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status quo until experimental frameworks that explicitly control randomness
and optimisation algorithm control parameters become more commonplace
within the research community.

Due to the above mentioned concerns, the choice of optimisation control pa-
rameters is based on previous literature where appropriate. For example, PSOs
have the advantage of preexisting theoretical work [40, 41, 234, 278] which de-
fines the criteria for “good” control parameters. Where such information is not
available, the preference is for self-adaptive control parameter strategies which
adjust and adapt the algorithm control parameters over time. Initialisation of
all algorithms is done uniformly. Particles within the PSOs are initialised to
have zeroed velocity vectors, with personal best updates only occurring when
improved solutions are found within the bounds of the problem search space.
Table 9.3 lists the control parameters for the mentioned algorithms.

Table 9.3: Selected optimisation algorithm control parameters

Algorithm Parameter Value Source

General 𝑛𝑠 50

RIGA 𝑝𝑐 0.1 [104, 209]
𝑝𝑚 0.15
𝑝𝑖𝑚 0.3

HyperM 𝑝𝑐 0.6 [43, 209]
𝑝𝑚 0.001
𝑝ℎ𝑦𝑝𝑒𝑟 0.5

DDECV 𝑝𝑐 0.6 [2]
𝐹𝑏𝑒𝑓𝑜𝑟𝑒 0.9644
𝐹𝑎𝑓𝑡𝑒𝑟 1.0820

QPSO Quantum split 50% [18, 112, 113, 156]
𝜔 0.729844
𝑐1, 𝑐2 1.496180
Topology l-best (size 3) +

quantum particles
Iteration
strategy

Synchronous

GVPSO 𝑒 0.5 [115]
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9.4 Performance Measures
The performance measures attempt to quantify how efficiently and accurately
the optimisation algorithms produce solutions. The following performance
measures were observed for each optimisation algorithm, at every algorithm
iteration:

Accuracy To determine the accuracy of an optimisation algorithm, the error
of the best solution is recorded at each algorithm iteration, producing
the algorithm performance profile (see section 6.3). Performance pro-
files provide a unique “signature” for the performance of a particular
optimisation algorithm on a given problem instance. Importantly, the
optimisation problem instance should be identical for all optimisation
algorithms, thereby eliminating differences in optimisation algorithm per-
formance resulting from differences in the optimisation problems. The
proposed 𝑃RED measurement (see section 6.3.2) determines the similarity
between a given performance profile to the hypothetical ideal solution
performance profile. Different performance profiles can then be compared
based on the value of the 𝑃RED measure. The 𝑃RED measure will be the
main measurement for algorithm accuracy across optimisation problem
search spaces.

Diversity The convergence between candidate solutions can be measured by
the diversity of the candidate solutions. Lower diversity values indicate
an increase in the homogeneity of the candidate solutions. It has already
been shown that dynamic optimisation algorithms benefit from larger
diversity values because the goal of these algorithms is to track current
and locate new optima within the changing problem landscape. Therefore,
it is also important for a DCOP optimisation algorithm to maintain the
correct levels of diversity to not only continue to track and locate new
solutions, but to guide the search for solutions within feasible regions of
the problem landscape. Equation (7.1) provides the diversity calculation
for this performance measure.

Recovery The ability of a dynamic optimisation algorithm to recover after the
problem landscape experiences change allows the algorithm to continue
tracking and searching for new candidate solutions. As with the diversity
measurement, this characteristic of DCOP optimisation algorithms is
important in order to understand if the algorithm can recover to feasible
solutions. After a change to the optimisation problem, current optima
may have not only moved to new search space locations, but likely into
infeasible regions of the changed problem search space. To determine
how effective the DCOP optimisation algorithm’s recovery process is,
three different measurements are considered:
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• ABEBC (see section 6.2.2.2) provides the indication of the average
error of the candidate solutions before the problem search space
undergoes a change.

• The maintained error after the problem search space change is
determined by the ABEAC measurement (see section 6.2.2.3).

• The rate at which the optimisation algorithm recovers to a solution
is given by the ARR measurement (see section 6.2.2.5).

Solution Feasibility This measure indicates the percentage of the candidate
solutions that are located within the feasible regions of the optimisation
problem search space. It should also be noted that different diversity
introduction and maintenance methods may produce candidate solutions
within infeasible regions of the problem search space. Even so, the fea-
sibility percentage still provides an indication of which feasibility region
most of the candidate solutions occupy.

From these measures, multiple measurement vectors are produced. These
measurement vectors contain the iteration-based chronological behaviour of the
optimistion algorithm across the change periods of the optimisation problem.
Section 6.3 discusses the reasons for preferring measurement vectors instead of
scalar values, because they provide for a more holistic view of an optimisation
algorithm for a given DOP instance. When considering DCOPs, the importance
of such vector-based measurements becomes even more important based on the
number and type changes experienced by the optimisation problem or problem
constraints. The number of change periods within DCOPs increases as both
optimisation problem landscapes and problem constraints change.

9.5 Statistical Analysis Process
To determine if optimisation algorithms are able to effectively locate, main-
tain and refine solutions within the different combinations of objective and
constraint spaces, the optimisation algorithms are evaluated on all 784 CMPB
problem instances (refer to section 9.2). For each CMPB problem instance,
each algorithm was evaluated for 50 independent executions, where each inde-
pendent execution contained 1000 algorithm iterations.

For performance measures that produced a vector of measurements, the
performance profiles for the each dependant execution were compared using the
𝑃RED measure (refer to section 6.3.2.2). These resulting samples of 𝑃RED results
were then used as the input for analysis in the statistical procedure outlined by
García and Herrera [96] and García et al. [97]. For each benchmark problem a
Friedman test was performed to determine if any algorithm produced a result
that was significantly different from the other algorithms. If the Friedman test
indicated that at least one of the algorithms produced a significant result, a
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post-hoc test was then performed with Schaffer’s correction [96, 97] applied to
the resulting p-values. A significance level of 𝛼 = 0.05 was assigned for all the
performed statistical tests.

To prevent the smoothing concerns of aggregate values, whilst not consid-
ering the underlying distribution of the results, the median performance from
each of the 50 algorithm executions was taken as the representative perfor-
mance of each algorithm in order to assign wins and losses. If the reported
performance was better than the other performances, the associated algorithm
was assigned a win (value of 1), whilst the inferior performances were assigned
a loss (value of −1). In the case of ties between algorithms, a value of 0 is
assigned to each of the algorithms. From these wins and losses, the difference
in performance (also known as the win-minus-losses) was calculated and then
used to determine the final ranking of the algorithm performance, for each
benchmark problem. The statistical procedure is illustrated in figure 9.1 and
implemented using the scmamp [30] library for R [274].

The overall performance of the optimisation algorithms may be illustrated
with a critical difference plot. A critical difference plot displays the critical
range together with the calculated test-statistic value for each optimisation
algorithm. Any optimisation algorithm towards the left hand side of the
test-statistic axis has achieved a better performance than the optimisation
algorithms immediately to the right. Optimisation algorithms that score a
test-statistic value contained within the critical difference range, have achieved
a statistically significant result. When any optimisation algorithms are con-
nected by a horizontal line, beneath the value test-statistic axis, these linked
optimisation algorithms display equivalent performance statistically. For such
linked optimisation algorithms, the left most algorithm is still the preferred
optimisation algorithm choice.

In order to address the concerns of reproducibility which were highlighted
in previous chapters, the CI software library CIlib [222, 224, 226] was used
to implement, execute and collect the data of the performed experiments.
As a result, the experiments can be fully reproduced and the description of
how CIlib enables this important property is discussed and motivated within
part IV of this thesis. For all experiments, the initial positions of the candidate
solutions and all problem landscape changes were identical. Therefore, the
obtained execution results allow for fair comparisons by limiting any variability
observed within the results to be solely that of the optimisation algorithm.

9.6 Conclusion
This chapter proposed the evaluation procedure for dynamic co-evolutionary
algorithms and dynamic optimisation with the 𝛼-constraint penalty method,
on a comprehensive set of benchmark problem instances. A set of research
questtions were proposed to determine the efficacy of the optimisation algo-
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Sample 1 Sample 2 ... Sample 𝑁

Combine samples

Omnibus tests
(Friedmann)

Difference
observed
between
samples?

No difference
between samples.
Nothing further

to calculate

Post-hoc tests

Outputs produced
(p-values, ranking matrix, plots, etc.)

yes

no

Figure 9.1: Statistical procedure for the comparison of algorithms

rithms using a set of measurements for the empirical work. In order to obtain
answers to the research questions the statistical procedure was discussed. This
statistical procedure follows established guidelines for the evaluation of mul-
tiple optimisation algorithms. The next chapter will use this procedure to
compare the performances of the optimisation algorithms.
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Chapter 10

Performance Analysis

Science is beautiful when it makes simple explanations
of phenomena or connections between different
observations. Examples include the double helix in
biology and the fundamental equations of physics.

Stephen Hawking

Although the ultimate goal of an optimisation algorithm is to locate and to
track solutions within the problem search space, the manner in which the un-
derlying optimisation problem changes is unknown to the algorithm. Moreover,
the different kinds of changes that a problem search space may experience is
not finite even though the types of changes can be classified into distinct cate-
gories. When considering changing constraints within a problem search space,
the complexity present within a changing landscape increases even further,
providing a great challenge to the optimisation process and algorithm.

Chapter 9 presented the optimisation algorithms for the experimental work.
This chapter aims to determine how effective these DCOPs optimisation algo-
rithms are at providing solutions to DCOPs, whilst providing answers to the
research questions that are enumerated in section 9.1.

This chapter presents the analysis of the results obtained from the exper-
imental work. Section 10.1 presents the analysis of the DCOP optimisation
algorithm accuracy. The maintained diversity of the optimisation algorithms
is presented in section 10.2, whilst optimisation algorithm recovery is discussed
in section 10.3. Optimisation algorithm solution feasibility is discussed in sec-
tion 10.4, before conclusions for the chapter are presented within section 10.5.

10.1 Analysis of Algorithm Accuracy
Optimisation algorithm performance profiles indicate how effectively the algo-
rithm is able to provide solutions to an optimisation problem. Specifically, the
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performance profiles represent the accuracy of the optimisation algorithm as
the underlying problem instance changes over time. In order to investigate
the performance of algorithms, the results in this section are analysed from
two perspectives of the DCOP instance, namely the objective space behaviour
perspective and the constraint space behaviour perspective. These perspectives
are derived from the objective space behaviour/constraint space behaviour label
of each individual problem instance.

Consider the constraint space behaviour P2L. For the objective space be-
haviour perspective of the P2L constraint space behaviour, all algorithm per-
formance samples are considered where the constraint space behaviour is P2L.
This provides an indication of how optimisation algorithms performed across
all objective space behaviours, with a fixed constraint space behaviour. This
is repeated for the remaining constraint space behaviours to provide an indi-
cation of algorithm performance with changing objective space behaviours. A
similar process for the constraint behaviour space perspective is done by fixing
the objective space behaviour and then considering all algorithm performance
samples. The performance samples of the optimisation algorithms are vectors
of fitness error values, quantified using the 𝑃RED measurement.

This section presents the algorithm performances from the perspective of the
objective space behaviours in section 10.1.1. The constraint space behaviours
perspective is given in section 10.1.2, before the analysis of optimisation al-
gorithm accuracy in section 10.1.3.3. The performance of the optimisation
algorithms on a sample of simple, moderate and complex DCOPs optimisation
problem instances is presented in section 10.1.4. This section concludes with a
summary in section 10.1.5.

10.1.1 Objective Space Behaviour
The purpose of this section is to analyse the ability to cope with objective
space changes whilst the constraint behaviour space is fixed. Figures 10.1
and 10.2 illustrate the objective space results across all optimisation algorithms
as a series of box-plots. Across all the constraint space behaviours, the same
trend in optimisation algorithm performance is visible. The only algorithms
that consistently provide the smallest inter-quartile range are CCSaDE and
DDECV, albeit that some outliers are observed. This shows that the algorithms
provide more consistent results, compared to the other algorithms, especially
when considering that a 𝑃RED value that is closer to 0 indicates greater result
accuracy.

If the optimisation algorithms were to be paired up based on the base
algorithm they were derived from, similar performance results become visible
for these algorithm pairs. These optimisation algorithm pairings consist of both
the dynamic co-evolutionary algorithm and dynamic optimisation algorithm
variant. The algorithm pairings of CCRIGA and RIGA, CCHyperM and
HyperM, CCGVPSO and GVPSO, as well as CCSaQPSO and SaQPSO display
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similar reported inter-quartile ranges, with differing median results. Generally,
the median result for CCRIGA is better than that of RIGA, with the opposite
being observed for CCHyperM and HyperM. Only within the progressive and
static constraint behaviour spaces is a shift observed between CCSaQPSO
and SaQPSO. Although the median result comparison between CCGVPSO
and GVPSO appears to be indistinguishable, CCGVPSO does provide slightly
better median results for the majority of the objective spaces. Within these
constraint space behaviours, the median result for SaQPSO becomes noticeably
worse than that of CCSaQPSO.

For the algorithms that indicate larger variances within their results, namely
CCRIGA, RIGA, CCSaQPSO and SaQPSO, median results are close to that
of the lower-bound of the inter-quartile range. Again, the only exception is
for SaQPSO on the progressive and static constraint space behaviours. Larger
inter-quartile ranges are also observed for SaDE for all constraint space be-
haviours, except for the progressive and chaotic constraint behaviour spaces.
With an increased number of changes for these behaviour spaces, the vari-
ance within the inter-quartile range is small, but the reported 𝑃RED values are
larger than those reported for most of the other algorithms. An interesting
observation is that the performance difference between CCSaDE and SaDE is
notably large, with CCSaDE providing superior performances when compared
to SaDE. Within the STA objective behaviour space, a similar result is present
even though no changes are experienced with the optimisation problem search
space.

From these results, the overall behaviour of CCSaDE and DDECV does
indicate that the algorithms are able to adjust to, and cope with, changes with
respect to the fixed objective behaviour space. This does not mean that the
other algorithms are not able to provide solutions, but the results are not as
desirable as that of CCSaDE and DDECV.
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Figure 10.1: Objective space perspective of constraint behaviour spaces: A1C to
C3C
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Figure 10.2: Objective space perspective of constraint behaviour spaces: C3L to
STA
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10.1.2 Constraint Space Behaviour
The purpose of this section is to analyse the ability to cope with changes in the
constraint behaviour space whilst the objective behaviour space is fixed. Similar
to the objective space behaviour results, CCSaDE and DDECV produced the
best results for the constraint space perspective, illustrated in the box-plots
in figure 10.3. From the results, CCSaDE and DDECV are able to provide
good results which agree with the observations with respect to the objective
behaviour space perspective. The remainder of the algorithms consistently
provided results that were less desirable and which varied across the range of
𝑃RED. The constraint behaviour space performance of the CCGVPSO, GVPSO
and SaDE are consistently part of the worst performing algorithms across all
constraint behaviour spaces. More consistent results between the algorithms
were present within the progressive objective behaviour spaces.

As mentioned in section 10.1.1, CCGVPSO, GVPSO and SaDE displayed
larger inter-quartile ranges for the abrupt objective behaviour spaces as well as
the STA behaviour space. The only exception to this observation is for the A1C
constraint behaviour space, which also provided the worst overall 𝑃RED results
for all the abrupt constraint behaviour spaces. For the progressive objective
behaviour spaces (i.e., the P** problem instances), SaQPSO presented the
largest inter-quartile range. A large difference in performance can be seen
between CCSaQPSO and SaQPSO for the progressive constraint behaviour
space box-plots. This difference in performance agrees with the degraded
performance of SaQPSO observed within the progressive objective behaviour
spaces.

Results for constraint behaviour spaces *1C and *3C indicate that these
constraint space behaviours were the most challenging for the optimisation
algorithms, with larger 𝑃RED measurements. As a result, the algorithms display
worse performances for constraint behaviours where the position of optima
within the optimisation problem change, whilst displaying a circular movement
pattern.
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Figure 10.3: Constraint space perspective of objective behaviour spaces
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10.1.3 Algorithm Performance on Benchmark Problem
Instances

This section discusses the optimisation algorithm accuracy results based on
the different main optimisation problem categorisations, related to the charac-
teristics of the individual benchmark problem instances.

Section 10.1.3.1 groups the benchmark problem instances based on the
category of DCOP problems. The spatial and temporal characteristics of the
benchmark problem instances are used to evaluate optimisation algorithm accu-
racy in section 10.1.3.2. Lastly, the overall accuracy results for the optimisation
algorithms across all of the optimisation problem instances are discussed in
section 10.1.3.3.

10.1.3.1 Accuracy Based on DCOP Category

To investigate the accuracy of the optimisation algorithms, each category of
DCOP is considered individually. The wins and losses for the optimisation
algorithms were assigned based on the statistical comparison process described
in section 9.5. Figures 10.4a to 10.4d respectively illustrate the win-minus-loss
results for the SOSC, SODC, DOSC and DODC categories of the 784 DCOP
unique instances.

For the SOSC problem instances, the optimisation algorithms with the
largest number of wins are SaQPSO, SaDE, CCSaDE, RIGA, DDECV and
CCSaDE. From these “winning” algorithms, the SaQPSO achieved the most
wins. Three dynamic co-evolutionary algorithms produced more losses than
wins for the SOSC problem instance, namely CCHyperM, CCSaQPSO and
CCSaQGVPSO. Considering that the SOSC category of DCOPs is the least
complex, it is also the least represented from the 784 unique problem instances.
Notably, the SOSC problem instances are static, constrained optimisation
problems and do not require any adaptation from the optimisation algorithm
nor the constraint handling method.

The SODC category of DCOPs, demonstrate win-minus-loss results that
differ greatly from the SOSC results: GVPSO achieved the most losses. The
wining optimisation algorithms in descending order are SaQPSO, CCSaDE,
RIGA, DDECV, CCRIGA and CCSaQGVPSO. Although the winning optimi-
sation algorithms contain a mixture of both constraint handling methods, the
optimisation algorithms that use the 𝛼-constraint method achieved a greater
number of overall wins based on the combined win-minus-loss results of the
optimisation algorithms.

Within the DOSC category of problem instances, the order of algorithms
differs from the ordering obtained within the SOSC and SODC categories of
DCOPs. The win-minus-loss results demonstrate that the CCSaDE dominated
the other algorithms, followed by DDECV as the next best performing optimi-
sation algorithm. Figure 10.4c shows that the win-minus-loss results for the
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Figure 10.4: Algorithm wins and losses for the categories of DCOP instances based
on median 𝑃RED results
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optimisation algorithms that are not on the far left or right of the plot present
similar performances, with the GVPSO and CCGVPSO almost achieving the
same final loss values. This result is similar to the results presented for the ob-
jective space behaviour of CCSaDE and DDECV. However, it should be noted
that the objective space behaviour plots consider all 784 problem instances
instead of just the DOSC group of problem instances.

For the most complex category of problem instances, namely the DODC in-
stances, the algorithm ordering based on the wins-minus-losses nearly matches
that of the DOSC problem instances. The winning optimisation algorithms
present the same order as the DOSC optimisation algorithms, with the actual
win-minus-loss values being larger because the majority of the DCOP instances
fall into this category. The optimisation algorithm order for the algorithms
achieving a larger number of losses is different to the optimisation algorithms
within the DOSC problem instances. The SaDE achieved more losses than
wins to provide the third worse algorithm performance, whilst CCSaQGVPSO
achieved the least number of losses. These results indicate that the winning
optimisation algorithms provided better performances and achieved more wins
for more of the problem instances.

10.1.3.2 Accuracy for Temporal and Spatial Severity Problem
Categories

Figures 10.5 and 10.6 respectively illustrate the algorithm performances based
on the severity of spatial and temporal changes of the objective and constraint
behaviour spaces. The benchmark problems where categorised based on the
categories defined by Duhain and Engelbrecht [77].

For the objective behaviour spaces, figures 10.5a to 10.5d present the op-
timisation algorithm wins-minus-losses for each spatial and temporal change
category. For all change types that have a temporal change severity, the results
indicate that CCSaDE and DDECV remain the best performing optimisation
algorithms, particularly for abrupt and chaotically changing problem instances.
Across all spatial and temporal severity categories for the objective space
behaviour plots, CCGVPSO and GVPSO achieved the worst win-minus-loss
results. However, for the static and progressive problem instances, SaQPSO
displays better win-minus-loss results by achieving the second best performance
for the progressive problem instances whilst performing the best for the static
objective space behaviour. Because the problem landscape changes within
progressive problem instances are small but frequent, SaQPSO using the 𝛼-
constraint method indicates that it is able to successfully track the current
solutions.

The constraint behaviour spaces in figure 10.6, regardless of the spatial
and temporal change category, indicate that the best performing optimisation
algorithms are CCSaDE and DDECV. Optimisation algorithm ordering for the
win-minus-loss results remained largely the same, but the abrupt and chaotic
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Figure 10.5: Algorithm preference based on objective behaviour space DCOP
classes
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Figure 10.6: Algorithm preference based on constraint behaviour space DCOP
classes
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problem instances show that RIGA obtains slightly better than SaQPSO for
abruptly changing spaces whereas the SaQPSO is preferred for chaotic problem
instances. In contrast, for the progressive and static problem instances, the
only changes in optimisation algorithm ordering occur within the algorithms
that achieved more losses. The winning algorithms, excluding CCSaDE and
DDECV, within the progressive and static problem instances display similar
win-minus-loss results for both categories with SaQPSO performing better
within the progressive problem instances.

10.1.3.3 Accuracy Across All Benchmark Problem Instances

The overall win-minus-loss results across all benchmark problem instances are
illustrated in figure 10.7, which indicates that the best performing algorithm
is CCSaDE, followed by DDECV, SaQPSO, CCRIGA and RIGA. From these
best performing algorithms, DDECV, SaQPSO and RIGA used the 𝛼-con-
straint method. The optimisation algorithms that obtained more losses were
CCGVPSO and GVPSO. For the remainder of the algorithms with more
losses than wins, the least number of losses are obtained by the dynamic
co-evolutionary algorithms.

Performance results for all algorithms across the 784 instances is provided
in table A.1 which contains the win-minus-loss information. Additionally,
the number of changes experienced by each objective space behaviour and
constraint space behaviour combination is also provided. From the individ-
ual instance data, the progressive objective behaviour spaces tend to favour
SaQPSO and is confirmed in figure 10.5b. No discernible pattern can be
observed to indicate which combination of objective space behaviour and con-
straint space behaviour would be favoured by DDECV. The largest number of
wins for DDECV present themselves within the A2R objective behaviour space,
with additional winning performances achieved for the C1C and P2R objective
behaviour spaces. For the remainder of the benchmark problems, CCSaDE
displays dominant performance results. A smaller number of problem instances
are won by either RIGA or CCRIGA, with CCRIGA winning slightly more
instances between these algorithms.

Figure 10.8 illustrates the overall statistical performance of the algorithms
across all DCOP benchmark problem instances. It is clear that CCSaDE pro-
vides a statistically significant performance by being the only optimisation
algorithm to be contained within the critical difference band. With the excep-
tion of DDECV and CCSaQPSO, the remaining algorithms can be grouped
together in clusters which indicate equivalent performances. The best perform-
ing cluster contains the SaQPSO, CCRIGA and RIGA algorithms with the
remaining four clusters providing results that are poorer than those obtained
by CCSaQGVPSO. The ordering of algorithms from best to worst (from left to
right on the critical difference plot) shows that more dynamic co-evolutionary
algorithms are on the left hand side when compared to the other algorithms.
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Figure 10.7: Overall algorithm wins and losses across all DCOP instances based
on median 𝑃RED results

Therefore, except for the performances of DDECV, SaQPSO and RIGA, the
dynamic co-evolutionary algorithms provide preferred algorithm performances
across the 784 DCOP problem instances. Moreover, the only statistically sig-
nificant result was obtained by an algorithm that makes use of the Lagrangian
reformulation of the optimisation problem, namely CCSaDE.

10.1.4 Sampled Individual Problem Performances
The previous section discussed the performance of the proposed dynamic co-
evolutionary algorithms, and dynamic optimisation algorithms with 𝛼-con-
straint, across all the optimisation problem benchmark instances. Because the
DODC category of DCOP instances represents the most difficult optimisation
problems, the results within this section focus on DODC problems only.

In this section, an analysis is performed for specific problem instances within
the DODC category of instances. This is done to analyse the performance
for easy to more difficult within the DODC category of problem instances.
The problem instances were selected based solely on the characteristics of the
objective space behaviour and constraint space behaviour. The selected sample
of problem instances, in increasing complexity, are

• A1L/A1L (Low)
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Figure 10.8: Critical different plot of overall algorithm performance across all
problems

• P2C/P2C (Medium)

• C3R/C3R (High)

Figure 10.9 illustrates the algorithm win-minus-loss performances for each of
the above mentioned problem benchmark instances. Across the these problem
instances, CCSaDE and DDECV produced the most number of wins, mirror-
ing the general trend observed across all problem instances in section 10.1.3.3.
For the other algorithms, the results indicate varied performances for each of
the individual benchmark problem instances. The A1L/A1L problem instance
demonstrates that SaDE is able to achieve wins, albeit rare when based on the
performances within appendix A. The SaQPSO provides a respectable perfor-
mance for the P2C/P2C, whilst also showing that the variants CCSaQGVPSO
and CCSaQPSO can also provided better performances for the progressive
problem instance. For C3R/C3R, both HyperM and CCHyperM performed well
even if the overall performance results indicate contrary results across all prob-
lem instances. For each of the sampled individual problem instances, CCSaDE
was the best performing algorithm with the most wins, followed by DDECV.

The algorithm performance profiles, based on the 𝑃𝑅𝐸 measure, for the
sampled individual problem instances are illustrated in figure 10.10. For the
A1L/A1L problem instance, CCSaDE and DDECV start the optimisation pro-
cess by improving on the relative error of the best candidate solution. Around
algorithm iteration 150 both CCSaDE and DDECV begin to settle on their
performances and maintain this result, with minor observed fluctuations. The
general trend of improvement is seen for all algorithms except for CCSaQPSO
and SaQPSO, which both initially show improved results before deteriorating to
achieve the worst final results. For the P2C/P2C instance, CCSaDE and DDECV
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Figure 10.9: Algorithm performances for individual low, medium and high com-
plexity benchmark problem instances
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Figure 10.10: Algorithm relative error per iteration for individual CMPB bench-
mark problems

once again show improvement in the observed results, with the improvement
continuing across the algorithm iterations. In addition, the CCHyperM, Hy-
perM and SaDE show improvements. However, the SaDE improvement is
marginal. The remaining algorithms display an initial improvement, but de-
grade from the initial success over the course of algorithm execution. For
the C3R/C3R problem instance a noticeable performance difference is observed,
with only CCSaDE and DDECV able to produce good quality solutions. Poor
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solutions are obtained from CCSaQPSO and SaQPSO for the A1L/A1L and
C3R/C3R benchmark problem instances. Overall, the performance profile results
for the sampled individual problem instances agree with the win-minus-loss
results in section 10.1.3.3.

10.1.5 Conclusion
The performance results indicate that accurate solutions are produced by all
optimisation algorithms, but only CCSaDE and DDECV produced solutions
that are close to the desired target solution based on the 𝑃RED measurement.
Objective behaviour spaces and constraint behaviour spaces have a significant
impact on algorithm performance, as shown in sections 10.1.3.1 and 10.1.3.2
where the categories of DCOPs were isolated. When considering the objective
behaviour space and constraint behaviour space, the objective behaviours dis-
played more variability with respect to algorithm preference when compared
to the constraint behaviour spaces. Although CCSaDE achieved the overall
best algorithm performance for the benchmark problems, SaQPSO displayed
improved performances for the progressive and the static objective behaviour
spaces.

Examination of the individual problem instances highlighted the perfor-
mance of the algorithms across iterations. The abrupt and chaotic objective
behaviour spaces indicated a preference for CCSaDE and DDECV, whilst the
static and progressive objective behaviour spaces also included SaQPSO as
an algorithm that performs well. Because progressive landscapes maintain a
sequence of small changes to the optimisation problem, SaQPSO was able to
provide solutions to these problem landscapes more efficiently. In contrast, for
abrupt and chaotic objective behaviour spaces, where the frequency of change is
larger, the win-minus-loss results of SaQPSO demonstrated that the algorithm
achieved more losses. Because CCSaDE and DDECV are able to produce new
candidate solutions in areas that are not restricted by the quantum cloud, the
amount of exploration in these algorithms is larger than that for SaQPSO.

The constraint handling methods within the algorithms do influence the
final results (from the objective behaviour space perspective), but the impact of
the constraint handling is overshadowed by the ability of the algorithm to adapt
to problem landscape changes. Without adequate adaption, the algorithms
are unable to produce better performances even when the constraint handling
method encourages feasible solutions. Both CCSaDE and DDECV indicate
that they are able to adapt to problem landscape changes and are thus able
to produce better performances. The better performance is in spite of the
fact that different constraint handling methods are used in the CCSaDE and
DDECV algorithms.
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10.2 Analysis of Algorithm Diversity
The diversity of candidate solutions provides an indication of the degree of
homogeneity, with low homogeneity indicating a state of exploration, and high
homogeneity indicating a state of exploitation. Tracking the diversity is es-
pecially helpful for dynamic optimisation algorithms, where larger diversity
levels aid the optimisation algorithm in coping with change in the optimisation
problem. This section aims to determine how the diversity of candidate solu-
tions influences the performance of the optimisation algorithms. As with the
accuracy result analysis in section 10.1, the diversity of the optimisation algo-
rithms is considered by taking both objective behaviour space and constraint
behaviour space into consideration.

This section presents the diversity of the objective behaviour space in
section 10.2.1, followed by the diversity of the constraint behaviour space in
section 10.2.2. An analysis of the diversity for individually sampled problem
instances, introduced in section 10.1.4, is given in section 10.2.3. This section
concludes with section 10.2.4.

10.2.1 Objective Behaviour Space
The purpose of this section is to analyse the levels of diversity with objective
space changes whilst the constraint behaviour space is fixed. The diversity of
the optimisation algorithms across all benchmark problems, grouped by the
objective behaviour space, is illustrated in figure 10.11.

Across the objective behaviour spaces, the majority of the optimisation
algorithms display a fairly stable amount of diversity throughout the entire
execution of the optimisation algorithms. As a result, the optimisation algo-
rithms continue to explore the optimisation problem search space because the
homogeneity of the candidate solutions does not drop below this stable diversity
level. The majority of the algorithms had larger starting diversity values which
reduced over time to an oscillating diversity value, before algorithm stopped
execution at the last iteration. Both HyperM and SaDE maintained an almost
constant amount of diversity for all objective behaviour spaces.

The largest amount of diversity was present within the SaQPSO for most of
the object behaviour spaces. However, for the progressive objective behaviour
spaces the amount of diversity within SaQPSO continued to increase, indicat-
ing diverging particle behaviour within the algorithm. Due to the diverging
particles, SaQPSO was not able to provide a solution and the exploding di-
versity values for SaQPSO may indicate a failure in the constraint handling
method within the algorithm. On the other hand, this observation makes no
distinction between the neutral and quantum particles of SaQPSO. The size
of the quantum cloud (i.e., 𝑟𝑐𝑙𝑜𝑢𝑑) self-adapts throughout the execution of the
algorithm, and for the progressive environments the size of the quantum cloud
continued to increase. Therefore, the amount of diversity within the SaQPSO
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increases without limit even though SaQPSO was able to obtain solutions to
the progressive problem instances. For the non-progressive problem instances
the SaQPSO was able to initially increase the diversity and then reduce the
diversity as the algorithm execution approached termination. These results
indicate that although SaQPSO was able to provide greater diversity levels
than the other algorithms, it was not always possible to prevent the diversity
from exploding to large values.

The continued divergence observed with SaQPSO occurs due to the self-
adaption of the 𝑟𝑐𝑙𝑜𝑢𝑑 control parameter. By taking the maximum between the
neural particle diversity and the quantum particle diversity (see equation (7.3)),
a divergent behaviour can occur when particles roam and do not have enough
time to return to the defined problem bounds. In this case, the diversity
of the neutral particles can be larger than that of the quantum particles.
Thereafter, the quantum cloud centred at the current best particle can attract
particles to positions further away from the defined problem domain. This
behaviour is exacerbated further by the loss of information after a change in
the problem landscape, when neutral particle memory is re-evaluated. The
abruptly changing behaviours observe lower diversity with fewer changes in the
optimisation problem and allows more time for roaming particles to return.
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Figure 10.11: Algorithm diversity across objective behaviour spaces
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10.2.2 Constraint Behaviour Space
This section analyses the levels of diversity with constraint space changes
whilst the objective behaviour space is fixed. The diversity for the constraint
behaviour spaces is provided in figure 10.12.

The observed diversity within these box-plots indicate that more reasonable
diversity values are obtained for the optimisation algorithms. That is to say
that the observed diversity of the optimisation algorithms appears to be similar
to that of the objective behaviour space perspective (see section 10.2.1).

For all the optimisation algorithms, except for SaQPSO, the observed
diversity levels remain flat for the majority of the algorithm iterations. The
observed diversity of these algorithms are similar diversity profiles than that of
the objective behaviour space with SaDE and HyperM having larger continuous
diversity values.

For SaQPSO, the constraint behaviour spaces of P1L and P1R display ever
increasing diversity values. As discussed in section 10.2.1, the divergent be-
haviour is due to the combined effect of frequent optimisation problem changes,
resulting in repeated particle roaming, and the use of the maximum diversity
between neutral and quantum particles. The constraint behaviours of C1C
and P3R appear to begin to diverge, however a reduction in the diversity is
observed just before the final algorithm iteration. The observed diversity for
the abruptly changing problem search spaces as well as for the static constraint
behaviour space demonstrate lower general diversity levels for the SaQPSO.
Fewer optimisation problem changes is observed for the abruptly changing
problem search spaces and for the static behaviour space, allowing for the
return of roaming particles.
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Figure 10.12: Algorithm diversity across constraint behaviour spaces
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10.2.3 Diversity of Individual Problem Instances
Figure 10.13 illustrates the diversity profiles for the optimisation algorithms on
the individually selected problem instances. Across all three problem instances,
the diversity of SaDE and HyperM remained larger than almost all other
algorithms without any indicated reduction in diversity. The diversity of
SaQPSO was initially the largest diversity value, but does not remain at that
level for many iterations. For A1L/A1L, SaQPSO reduced diversity over time to
an almost constant value that is slightly larger than the majority of the tested
algorithms. However, for P2C/P2C and C3R/C3R, the diversity of SaQPSO
continued to increase as demonstrated in sections 10.2.1 and 10.2.2. Diversity
for best performing optimisation algorithms, CCSaDE and DDECV, continued
to oscillate across algorithm iterations with figure 10.13 not being granular
enough to make the oscillation visible.
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Figure 10.13: Diversity of individual problem instances

10.2.4 Conclusion
For all optimisation algorithms different levels of diversity can be observed
across all iterations. With the better performing optimisation algorithms, the
diversity values do not approach zero whereas the optimisation algorithms
that achieved worse accuracy performances display a reduction in diversity.
As the diversity of the candidate solutions decreases, the homogeneity of the
candidate solutions increases. Therefore, a consistent amount of diversity
provides improved exploration of the optimisation problem search space and
allows for the discovery of new solutions.

The algorithm with the most difficulty in managing and maintaining diver-
sity was SaQPSO, which had ever increasing diversity values displayed within
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the objective behaviour spaces. Possible explanations have been provided for
this behaviour, but does motivate further investigations to understand this
behaviour.

10.3 Algorithm Recovery in Dynamic
Constrained Optimisation Problems

Changes within the optimisation problem are disruptive to the optimisation
process, but especially to the optimisation algorithm. For optimisation algo-
rithms to cope with the changes in the optimisation problem landscape, the
candidate solutions show be adjusted to reflect the updated problem search
space to allow for the continued search for better candidate solutions. Multiple
performance measures have been suggested as indicators of the resilience of
an optimisation algorithm to changes within the optimisation problem. This
section considers three performance measures to understand the effect that
changes in optimisation problem have on the optimisation algorithm with
reference to DCOPs.

The ability of the optimisation algorithms to recover before a change is ex-
perienced by the optimisation problem is discussed in section 10.3.1, whilst the
recovery after experiencing a change in the optimisation problem is discussed
in section 10.3.2. Section 10.3.3 discusses whether optimisation algorithms
are able to recover across the individual changes experienced in the optimisa-
tion problem. The overall recovery performing is discussed in section 10.3.4.
Optimisation algorithm recovery for the three individually sampled problem
instances is provided in section 10.3.5. Lastly, section 10.3.6 concludes this
section.

10.3.1 Algorithm Resilience Before Landscape Changes
The observed errors preceding a landscape change are investigated with the
𝑃ABEBC performance measure (see section 6.2.2.2). Figure 10.14 provides box-
plots of algorithm performance, based on the objective space behaviour, just
before the optimisation problem experiences a change. From the accuracy
results in section 10.1, CCSaDE and DDECV provide the best performances
for most of the object space behaviours based on the 𝑃RE performance measure.
The inter-quartile range for CCSaDE and DDECV is shorter than that of the
other algorithms for the majority of the objective space behaviours. The shorter
inter-quartile range implies that a smaller amount of variance exists within
the results of CCSaDE and DDECV. Larger variances in the performance of
CCSaDE and DDECV is observed within the *1C objective space behaviours,
suggesting greater challenges for the optimisation algorithms to continue to
track and locate solutions. The CCHyperM and HyperM algorithms displayed
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the largest inter-quartile ranges for all objective space behaviours and demon-
strated performances that vary from not finding a solution at all to finding
solutions, albeit that the solutions are sub-optimal. As with the observed
accuracy performances in section 10.1 and diversity in section 10.2, SaQPSO
achieved better results within the progressive object space behaviours, with
only P1C displaying large variance results.

For the constraint space behaviours, the box-plots demonstrate similar
performances for the optimisation algorithms and is illustrated in figure 10.15.
Although CCSaDE and DDECV have short inter-quartile ranges, they are the
only algorithms that displayed the most number of outlier results. The result
for the constraint space behaviour does not disagree with the optimisation
algorithm performance results that are observed in previous sections.
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Figure 10.14: ABEBC for algorithms across benchmark problem instances from
the objective landscape perspective

173



P3C P3L P3R STA

P1R P2C P2L P2R

C3L C3R P1C P1L

C2C C2L C2R C3C

A3R C1C C1L C1R

A2L A2R A3C A3L

A1C A1L A1R A2C

C
C

G
V

PS
O

C
C

H
yp

er
M

C
C

R
IG

A
C

C
Sa

D
E

C
C

Sa
Q

G
V

PS
O

C
C

Sa
Q

PS
O

D
D

EC
V

G
V

PS
O

H
yp

er
M

R
IG

A
Sa

D
E

Sa
Q

PS
O

C
C

G
V

PS
O

C
C

H
yp

er
M

C
C

R
IG

A
C

C
Sa

D
E

C
C

Sa
Q

G
V

PS
O

C
C

Sa
Q

PS
O

D
D

EC
V

G
V

PS
O

H
yp

er
M

R
IG

A
Sa

D
E

Sa
Q

PS
O

C
C

G
V

PS
O

C
C

H
yp

er
M

C
C

R
IG

A
C

C
Sa

D
E

C
C

Sa
Q

G
V

PS
O

C
C

Sa
Q

PS
O

D
D

EC
V

G
V

PS
O

H
yp

er
M

R
IG

A
Sa

D
E

Sa
Q

PS
O

C
C

G
V

PS
O

C
C

H
yp

er
M

C
C

R
IG

A
C

C
Sa

D
E

C
C

Sa
Q

G
V

PS
O

C
C

Sa
Q

PS
O

D
D

EC
V

G
V

PS
O

H
yp

er
M

R
IG

A
Sa

D
E

Sa
Q

PS
O

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

Figure 10.15: ABEBC for algorithms across benchmark problem instances from
the constraint landscape perspective
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10.3.2 Algorithm Resilience After Landscape Changes
Once the optimisation problem search space has undergone a change, the
optimisation algorithm needs to adapt in order to allow the search process to
continue. The 𝑃ABEAC (see section 6.2.2.3) measures the 𝑃RE of the candidate
solutions directly after the optimisation problem has experienced a change
and indicates how stable the optimisation algorithm is after the optimisation
problem experiences change.

For the objective space behaviours, CCSaDE and DDECV demonstrate
performance results that are better or comparable to the other algorithms
across objective space behaviours. The type II problem instances (i.e., the *2*
problem instances) demonstrate better 𝑃RED results for the majority of the
optimisation algorithms. This should be expected, because optima changes for
type II problem instances allow for the change in optima value but the position
of optima within the optimisation problem remain unchanged. The CCHyperM
and HyperM algorithm results indicate that these algorithms produced the
most varied performance results after the change to the optimisation problem,
suggesting that the problem space changes affect these algorithms the most.
Compared to the 𝑃ABEBC results, a larger number of outlier results are present
with the 𝑃ABEAC performance results.

The constraint space behaviour box-plots, given in figure 10.17, mirror the
findings of the constraint space behaviours for the 𝑃ABEBC measure. Across
all constraint space behaviours, the results are similar for all optimisation
algorithms where CCSaDE and DDECV achieved the best 𝑃RED results, albeit
with outlier results. The worst performing optimisation algorithms for the
all constraint space behaviours are CCGVPSO, GVPSO and SaDE. These
performances indicate that these algorithms are not as stable as the other
optimisation algorithms after a change in the optimisation problem.
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Figure 10.16: ABEAC for algorithms across benchmark problem instances from
the objective landscape perspective
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Figure 10.17: ABEAC for algorithms across benchmark problem instances from
the constraint landscape perspective
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10.3.3 Algorithm Recovery Between Landscape
Changes

Between subsequent optimisation problem landscape changes the search space
remains static. The period of time between subsequent changes to the optimi-
sation problem also defines the change period of the optimisation problem and
each change period defines a unique static optimisation problem. Within these
change periods, an optimisation algorithm may explore and refine solutions be-
fore the problem landscape changes, thereby forcing the optimisation algorithm
to restart the search process for the changed problem landscape. The 𝑃ARR
measure (see section 6.2.2.5) quantifies how well the optimisation algorithm
is able to recover to the global optimum within a change period. However,
with the benchmark problems used within the experimental work, it is not a
certainty that an optimum within the objective search space is present within
the resultant composed problem search space. Optima can fall into infeasible
regions of the final optimisation problem once the constraint search space has
been composed.

Consider the top-down projections of the sequence of nine consecutive
problem search spaces of the CMPB illustrated in figure 5.1. As a consequence
of the stochastic nature of the landscape changes within both the MPB and
CMPB no guarantee can be made to ensure that the composed problem search
space will always have optima in feasible regions. This uncertainty increases
as the number of peaks within the objective problem space for the CMPB
approaches zero, or when the number of constraints within the constraint search
space increases to cover more of the problem domain. When no optima in the
composed problem search space are feasible, the best possible performance
that can be obtained is that of the base problem landscape. Within the
two-dimensional Cartesian space, the base problem landscape for the MPB
generator function is found where 𝑦 = 0. A solution found on the base problem
landscape still provides a better solution when compared to infeasible solutions.
After all, the found solution is within the feasible region of the composed
problem search space of the CMPB.

Figures 10.18 and 10.19 respectively provide 𝑃ARR results for the objective
space behaviours and the constraint space behaviours, for the optimisation
algorithms considered in the experimental work. For the objective space be-
haviours, the results presented in figure 10.18 indicate that the algorithms
were not able to consistently recover to the expected global optimum within a
given change period. Better 𝑃ARR results are present for the abruptly chang-
ing objective space behaviours, with the progressive and chaotic behaviours
showing a noticable reduction in 𝑃ARR value. Referring to the number of
changes experienced by each problem instance in appendix A for the objective
behaviour spaces, a minimum of 10 to a maximum of 50 search space changes
are experienced for the abruptly changing objective behaviour space. A similar
improvement in 𝑃ARR value is visible for the STA objective behaviour space
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which has a maximum number of 33 problem changes. However, the progressive
and chaotic objective behaviour spaces report that a minimum of 50 changes
occur across all optimisation algorithm iterations. By considering both the
frequency of change within the DCOP instances together with the problem
instance complexity, the recovery of the optimisation algorithms do indicate
some recovery within the problem change period. The recovery is, however, not
always to the expected global optimum of the objective search space, which
is measured by the 𝑃ARR measure. Moreover, shorter change periods prevent
the optimisation algorithm from locating improved solutions, before the next
change is experienced.

Similar recovery is observed for the optimisation algorithms within the
constraint behaviour spaces presented in figure 10.19. The abruptly changing
and STA constraint space behaviours indicate increased algorithm recovery.
Progressive and chaotic constraint behaviour spaces indicate a reduced recovery,
but as discussed for the objective space behaviours, the results are misleading
when all behaviour characteristics of the problem instances are not considered.
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Figure 10.18: ARR of algorithms from the objective landscape perspective
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Figure 10.19: ARR of algorithms from the constraint landscape perspective
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10.3.4 Overall Algorithm Recovery
Figure 10.20 provides an overview of the optimisation algorithm recovery across
the optimisation problem instances. For each of the recovery measures, namely
𝑃ABEBC, 𝑃ABEAC and 𝑃ARR, a critical difference plot illustrates the algorithm
performance preferences. From these critical difference plots, the same results
are obtained that are previously observed, where CCSaDE and DDECV are
undoubtedly the better performing algorithms for both 𝑃ABEBC and 𝑃ABEAC
measurements, followed by SaQPSO. The dynamic co-evolutionary algorithms
also generally present a slight preference over the non-coevolutionary variants.
The critical difference plots indicate that no algorithm provided statistically
significant performance based on the recovery measures. For the 𝑃ARR criti-
cal difference plot, the performance of SaDE displayed the best improvement
within change periods and is the best performing algorithm for this perfor-
mance measure. As expected for the static optimisation problem within the
optimisation problem change period, GVPSO and CCGVPSO display better
recovery rates than the other algorithms, except for the performance of SaDE.

10.3.5 Recovery on Sampled Individual Problem
Instances

The sampled individual problem instances introduced in section 10.1.4 have
their recovery profiles illustrated in figure 10.21 for the 𝑃ABEBC, 𝑃ABEAC and
𝑃ARR measures. For each of the individual sampled problem instances, the
optimisation algorithm recovery for the performance measures agree with the
trends observed in sections 10.3.1 to 10.3.3.

For the 𝑃ABEBC measure in figure 10.21a, CCSaDE and DDECV provided
better 𝑃ABEBC values for a large number of the total algorithm iterations within
the A1L/A1L and C3R/C3R problem instances. The SaQPSO, CCSaQGVPSO
and CCGVPSO initially provided larger 𝑃ABEBC results but decayed to values
lower than what the other algorithms managed to achieve. The remaining algo-
rithms displayed fairly consistent 𝑃ABEBC results for the A1L/A1L and C3R/C3R
problems. Problem instance P2C/P2C illustrates that DDECV achieved the
best 𝑃ABEBC results, with more algorithms being able to increase their 𝑃ABEBC
values. Almost unchanged results are observed for CCHyperM, HyperM and
SaDE, yet these results also indicate that the algorithms did not manage to
provide any real improvements to possible found solutions.

Figure 10.21b illustrates similar results for the 𝑃ABEAC to that of the
𝑃ABEBC measure. The main difference between the 𝑃ABEBC and 𝑃ABEAC results
are that for the A1L/A1L and C3R/C3R problems, more algorithms displayed a
drop in the 𝑃ABEAC as the optimisation algorithm execution proceeded. This
result implies that more of the algorithms did not maintain stable results
after a change occurred in the optimisation problem. To be fair, this is not a
completely unexpected result because the algorithms presenting a worse result
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Figure 10.20: Critical difference plots of algorithm recovery measurements
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Figure 10.21: Recovery of optimisation algorithms on individual problem instances
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after the problem change also did not maintaining good solutions before the
change to the optimisation problem. The P2C/P2C problem instance for the
𝑃ABEAC measure also displayed similar results, whereby the SaDE, CCGVPSO
and HyperM indicated lower 𝑃ABEAC values.

Results for the 𝑃ARR measure are provided in figure 10.21c and indicate
that the best performance was by the SaDE algorithm. The other optimisation
algorithms displayed reducing 𝑃ARR results as the algorithm iterations increase.
The performance results for CCHyperM and HyperM remained similar to that
of the 𝑃ABEBC and 𝑃ABEAC measures, but are still worse than that of SaDE.

10.3.6 Conclusion
The results presented for algorithm recovery across the 784 unique DCOP
problem instances indicate that the optimisation algorithms are able to pro-
vide solutions to the optimisation problems. The results presented for the
𝑃ABEBC, 𝑃ABEAC and 𝑃ARR algorithm performance measures highlight that
no single recovery measure is conclusive by itself and that multiple measures
are needed to provide a more complete understanding of algorithm recovery
performance. Recovery data supports the algorithm performance profile re-
sults within section 10.1, with a more clear representation of the recovery data
provided within the critical difference plots in figure 10.20. From these critical
difference plots, the same results are obtained as in section 10.1, where CC-
SaDE and DDECV are the better performing algorithms for both 𝑃ABEBC and
𝑃ABEAC measures. The critical difference plots also indicate that no algorithm
provided statistically significant performance based on the recovery measures.

10.4 Analysis of Solution Feasibility
The feasibility of solutions within the optimisation algorithms is calculated as
a simple percentage of the number of feasible solutions over the total number
of candidate solutions. Performance profile vectors (see section 6.3) of the
algorithm percentage feasibilty are considered to obtain a holistic view of
performance across all algorithm iterations. The hypothetical ideal feasibility
vector for an optimisation algorithm has all candidate solutions as feasible
solutions. In other words, the hypothetical best feasibility for each algorithm
iteration across optimisation problem changes would be 100%. However, such
a feasibility vector is not likely nor practical. If the optimisation problem were
to experience a change, a current infeasible candidate solution may become
feasible, or a feasible candidate solution may become infeasible. Therefore,
a balance of solution feasibility should be maintained not only to help the
diversity of candidate solutions, but to also allow for better algorithm recovery
after optimisation problem landscape changes.
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This section begins with section 10.4.1 providing the feasibility percentages
for the objective behaviour spaces, whilst the feasibility percentages for the
constraint behaviour spaces are provided in section 10.4.2. The sampled indi-
vidual problem instances from section 10.1.4 have their feasibility percentages
discussed in section 10.4.3. Section 10.4.4 concludes this section.

10.4.1 Objective Space Behaviour
For the objective space behaviours provided in figure 10.22, a large percentage
of the candidate solutions remain feasible through the execution of the optimi-
sation algorithm. The profile plots across the algorithm iterations demonstrate
that the feasible percentage of solutions never reduces below 80% when consid-
ering outlier results. Performance of the PSO algorithms are the most variable,
however, this is not surprising because unlike with the GA and DE based algo-
rithms, new genetic material is not continually being added to the candidate
solutions of the PSO algorithms. The particles are instead re-evaluated and
are encouraged to move into feasible problem search space through a particle
update process. For example, the neutral particles of QPSO-based algorithms
move through the problem search space by updating their velocity and position
vectors respectively with equations (3.1) and (3.2). As a result of this particle
movement, the percentage feasibility of SaQPSO displayed the largest inter-
quartile range when compared to the other optimisation algorithms. Although
a variance was observed across the iterations, the difference in percentage
feasibility was at most 5% across the median results for SaQPSO.

The profile plots in figure 10.22 illustrate how the percentage feasibility
drops at regular intervals. These intervals coincide with the changes experi-
enced by the optimisation problem. An expected increase in the number of
changes was observed for both the progressive and chaotic change behaviours
within the percentage feasibility profiles.

10.4.2 Constraint Space Behaviour
The constraint behaviour space displayed similar feasibility percentages as the
objective behaviour space. The PSO algorithms display the most variance
and quantity of outliers whilst maintaining that at least 80% of the candidate
solutions remain feasible.

From the perspective of the constraint behaviour space, more varied feasi-
bility percentages are observed. The behaviour spaces with linear and random
peak movement patterns produced observable fluctuations in the feasibilty per-
centages, particularly for HyperM, SaDE, CCHyperM and SaQPSO algorithms.
The largest differences for these algorithms are observed within the *2L be-
haviour spaces, with the least amount of fluctuation observed in the A1C, A3C,
C1C, C3C and P1C behaviour spaces. The most erratic and varied feasibility
percentages are observed in the C2L behaviour space. Similar fluctuations are
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observed for the A2L and P2L behaviour spaces. Moreover, this trend can be
observed for all optimisation algorithms within these behaviour spaces.

As noted in section 10.2 the diversity of both HyperM and CCHyperM
remain high throughout all behaviour spaces. The hyper mutation operator
within these algorithms ensures that the diversity of the algorithm is main-
tained, but also allows for the possibility that infeasible candidate solutions
are still possible as a result of the mutation operator. Furthermore, the poor
recovery results (see section 10.3.6) obtained by both HyperM and CCHyperM
also explain the varied percentage feasibility results because the algorithms
are not able to sufficiently adapt before and after the optimisation problem
experiences change.
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Figure 10.22: Feasibility percentage for the objective space perspective of constraint
behaviour spaces
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Figure 10.23: Feasibility percentage for the constraint space perspective of objec-
tive behaviour spaces
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10.4.3 Feasibility Percentage of Sampled Individual
Problem Instances

Solution feasibility for the sampled problem instances is illustrated in fig-
ure 10.24. From the feasibility information, the adjustments to the optimisa-
tion algorithms in order to cope with the change in the optimisation problem
is clearly visible with the A1L/A1L problem instance. The A1L/A1L problem
instance displays periodic jumps in the candidate solution feasibility which co-
incides with the changes to the optimisation problem. These periodic jumps are
present with an increased frequency within the P2C/P2C and C3R/C3R problem
instances which demonstrate increased problem complexity.

Across these individual problem instances it can be seen that the candidate
solutions move towards feasible regions of the problem search space. For the
C3R/C3R problem instance, the trend towards feasibility is far more erratic,
because the problem instance experiences more changes than what are experi-
enced for the P2C/P2C and A1L/A1L problem instances. Figure 10.24 also shows
that, even though the candidate solutions are feasible solutions to the optimi-
sation problem, the quality of the candidate solutions should be determined
from accuracy measures and not only from the feasibility of solutions. However,
lower accuracy results are obtained for algorithms that indicate more erratic
feasibility percentages (see section 10.1). For the algorithms that obtained
better performances in these problem instances (namely CCSaDE, DDECV,
CCRIGA and RIGA) a more stable feasibility percentage was observed.

10.4.4 Conclusion
The candidate solution feasibility presented in this section for the 784 DCOP
instances demonstrate that both the 𝛼-constraint and Lagrangian formulation
are able to maintain feasible solutions. The results also indicate that the
performance of the optimisation algorithm itself is more influential to the final
results than the constraint handling method alone. Although the constraint
handling does encourage feasible solutions for the optimisation problems, the
ability for the optimisation algorithm to adapt and adjust to the changing
problem landscape remains an important concern for DCOPs.
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10.5 Conclusion
This chapter analysed the obtained results from the empirical process defined
in chapter 9. The research questions raised in section 9.1 have been answered
through the performance analysis of the dynamic co-evolutionary algorithms
and the dynamic optimisation algorithms with 𝛼-constraint. The overall con-
clusions for the research questions are as follows:

1. Can algorithms based on the dynamic co-evolutionary framework provide
solutions to DCOPs?
The accuracy results provided in chapter 10 indicate that the dynamic
co-evolutionary algorithms are able to provide solutions to DCOPs. In
particular, the best performing algorithm was also the only algorithm
to have achieved results that are statistically different, in a significant
manner, from the rest of the optimisation algorithms. The best perfor-
mance was obtained from the CCSaDE algorithm, which is a dynamic co-
evolutionary algorithm. The other considered dynamic co-evolutionary
algorithms displayed competitive results when compared to the dynamic
optimisation algorithms with 𝛼-constraint. The dynamic co-evolutionary
algorithms did provide solutions for all DCOP categories, namely SOSC,
SODC, DOSC and DODC problem instances, as shown in section 10.1.3.1.
It was observed for the SOSC and SODC categories of DCOPs that the
SaQPSO algorithm achieved the best performance for all optimisation
algorithms, but was followed by CCSaDE. In the DOSC and DODC cat-
egories, CCSaDE provided significant performance results for the DODC
category of problem instances in particular. This is a significant result
because the DODC category of DCOPs represents the majority of the
problem instances within the benchmark problems.

2. Does the choice of constraint handling approach matter?
From the accuracy performances of the optimisation algorithms it can be
concluded that the choice of constraint handling approach does make a
difference. For example, the accuracy performance results indicate that
the SaDE algorithm using the 𝛼-constraint method provided the worst
performances for the majority of the optimisation problem instances. The
only exception was the only SOSC problem instance where SaDE achieved
the best results, but was followed by CCSaDE. The poor performance of
SaDE is overshadowed by the performance of CCSaDE, where problem
constraints are handled using the Lagrangian formulation of the problem.
Similar differences in behaviour can be seen between CCRIGA and RIGA
with the 𝛼-constraint.
Although the choice of constraint handling method does impact the
performance of the optimisation algorithm, the performance of the opti-
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misation algorithm itself has a far greater influence to the performance
than the constraint handling method.

3. Does the ratio of feasible to infeasible solutions reduce as the problem
complexity increases?
The percentage of feasible candidate solutions in section 10.4 indicate
that the number of feasible solutions does decrease as the complexity of
the optimisation problem increases. This reduction in feasibility is partic-
ularly evident in the DODC category of DCOP problem instances. For
the DODC problem instances, the progressive and chaotically changing
problem instances demonstrate a larger variation in the feasibility per-
centage across algorithm iterations, for example, reductions of up to 10%
are observed for the constraint behaviour space C2L. The STA problem
instance provides an indication that the percentage of feasibility does
increase for simpler DCOP categories in general. The CCHyperM and
HyperM algorithms do, however, display lower feasibility percentages
across the algorithm iterations, but this is explained through the process
of diversity maintenance within the HyperM algorithm.

4. Does candidate solution diversity provide an indication of algorithm
performance for DCOPs?
The diversity analysis results presented in section 10.2 demonstrate that
optimisation algorithms with larger diversity values do tend to have lower
performances. Both the CCHyperM and HyperM algorithms provided
mediocre accuracy performances whilst also being the only two algorithms
to provide the largest consistent levels of diversity amongst the algorithms.
Generally, the algorithms that maintained a slightly lower diversity level
than that of CCHyperM, HyperM and SaDE provided better overall
performance results. Therefore, candidate solution diversity remains an
important consideration for DOPs as well as for DCOPs.

5. Which approaches recover the best after the optimisation problem experi-
ences a change?
Recovery performances for the optimisation algorithms were analysed in
section 10.3. Figures 10.20a and 10.20b illustrate that the algorithms
with the best performances are also the algorithms that displayed the best
recovery when the optimisation problem changes. The best performances,
in order, are from CCSaDE and DDECV, followed by SaQPSO, CCRIGA
and RIGA. Even though different constraint handling methods are used
by the better performing algorithms, the constraint handling method does
not directly impact the algorithm performance. Perhaps it is more fair
to rather highlight that the performance of the optimisation algorithm
itself provides a far greater impact to the overall algorithm than what the
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constraint handling method alone can do, particularly for more complex
DCOPs.

6. Are there differences in optimisation algorithm performance based on the
category of DCOP instance?
The accuracy performance results in sections 10.1.3.1 and 10.1.3.2 show
that algorithm preference differs based on the category of DCOP as
well as the change type based on spatial and temporal severity. Simpler
optimisation problem instances tend to favour dynamic optimisation
algorithms whereas problem instances with an increased difficulty have
more success with dynamic co-evolutionary algorithms. Furthermore,
dynamic co-evolutionary algorithms tend to be the better performing
algorithms for problem instances with larger spatial and temporal change
severity.

From the answers obtained within the addressed research questions, it can
be concluded that dynamic co-evolutionary algorithms are a viable option
to solve DCOPs. Additionally, the choice of optimisation algorithm remains
the most important choice for the optimisation process in totality because
the optimisation algorithm determines candidate solutions. The constraint
handling method remains important to influence the optimisation algorithm.
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Part IV

Reproducible Computational
Intelligence
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Chapter 11

Reproducible Research

An article about computational science in a scientific
publication is not the scholarship itself, it is merely
advertising of the scholarship. The actual scholarship
is the complete software development environment and
the complete set of instructions which generated the
figures.

D. Donoho

This chapter elaborates on the importance of applying the scientific method in
order to affirm or disprove the theories presented by researchers, both within
and outside of the field of CI. A discussion about the importance of reproducible
research follows, including an overview of the currently observed process fol-
lowed by practitioners. Popular software tools are examined and concerns
about the tools are highlighted. The remainder of the chapter discusses the
required fundamentals for software used within the scientific pursuits of the
field of CI, followed by a discussion of a new software library which achieves
the identified requirements.

11.1 Overview
As research continues within the field of CI, new algorithms and techniques
are produced. The umbrella term of CI encompasses different research areas
which include neural networks, evolutionary algorithms, swarm intelligence,
fuzzy systems, and artificial immune systems [84]. The most prolifically ob-
served CI research process can best be described as a “one-shot” or “once-off”
culture, whereby experimentation and investigation are performed solely for
the purposes of publication. Once results are published, the work performed to
produce the research output is often forgotten. However, when further research
into a subject is possible, the likelihood of forgetting or abandoning work is
reduced. Researchers hope that the work which produced a publication would
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have been archived in some form, so that it may be retrieved when required.
Questioning, critiquing and verifying the work within a publication may pro-
vide answers to questions about unclear descriptions or about the process
followed to achieve the reported results. Replication of published results is a
critical part of the scientific method which may serve to confirm or debunk the
presented results. The currently observed research process could be outlined
as the following approximate process:

1. create and design a new process (algorithm or technique) that addresses
a problem,

2. test the proposed process by evaluating its effectiveness on a set of
benchmark problems and with competing algorithms and techniques
that are accepted by the field as representative, and

3. analyse the obtained results and present them to the research community
through a publication.

Unfortunately, reproducing data sets used within a publication requires a
large time investment. The process is usually challenging when considering CI
algorithms, where computations rely on non-deterministic or randomness to
produce the data sets of solutions to an optimization problem. Although the
random effects make it possible for algorithms to achieve performance goals,
they simultaneously create unintended complexity, and through this complexity
effectively prevent result duplication. Unintended omissions within the descrip-
tion of the algorithm implementation only serve to compound the difficulties
associated with result data set duplication. Ultimately, the complexities of
duplicating a data set precludes any algorithmic comparison described within
a publication without access to the original program. The inability for com-
parison is however always present, even when the effects of non-determinism
are ignored. Thankfully, other research areas of computer science, such as
programming language theory, have developed representational schemes to ex-
press the representation of instructions and expressions for computer programs.
Additionally, these representations are also verifiable by a computer language
compiler thereby preventing invalid representations of expressions. The derived
abstractions within mathematical logic create a specialized langauge which ap-
plies formal logic to mathematics in order to study the expressive power of
formal systems as well as the deductice power of formal proof system. The
abstractions present within the mathematical fields of topology [291], category
theory [232] and homotopy type theory [281] in particular are directly applica-
ble to computer science. By considering and including the improvements from
mathematics and other research areas, the possibility exists to allow for more
succinct problem representations and tools to reduce the inherent complexity
within CI.
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Removing the burden to recreate the design work of a publication in an
attempt to reproduce its results is a very attractive proposition. The required
time investment would reduce and allow for more interesting work instead
of re-implementing the work presented within other publications. Previously,
frameworks and libraries aiming to reduce this burden have been made available
for use, often as free and open-source software. Open-source projects cannot
remove all the complexity in implementing algorithms, but can make the
process far simpler. The simplification of the process is usually due to the open-
source projects focusing on reducing the time required to define an algorithm
implementation. From these accelerated algorithm definitions new results
sets may be produced far sooner than what would normally be the algorithm
development process. Importantly, the improved speed of result production
does not necessarily allow for the replication of results. Without the repeatable
reproduction of results, the fundamental problem with the observed research
process remains unchanged and possibly even more severe.

11.2 Importance of Reproducible
Computational Intelligence

The reproduction of a study may be seen as being more than the sole repro-
duction of the initial data set. Data set reproduction should be possible, not
only for the data, but also for the publication itself. Publications manipu-
late data sets and process the contained results to create summary statistics,
which may be represented in tables or as graphs, or figures or plots. Solutions
already exist to allow for the reproduction of a publication based on data
sets. Literate programming [143] allows for the creation of documents where
the data manipulation processes are included as part of the document itself.
When creating the final publication document, the embedded logic within the
document sources are evaluated, with the results becoming embedded into the
publication document either as tables, figures, plots or as formatted output
from the process itself. Importantly, the document creation process is reliant on
plain text input documents which allow for simplified file management within
version control systems. For example, the file formats produced by the more
popular tools (such as Microsoft Word or Juputer Notebooks) maintain and
produce files that tend to include binary data and is cumbersome for version
control systems. Plain text input tools that are available for use which achieve
this behaviour include:

• LATEX documents with embedded Sweave [274] code blocks,

• Markdown or LATEX documents with embedded R [274] code blocks where
the documents are processed with a tool such as knitr [307–309], and
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• org-mode [70, 253, 254] documents with embedded code blocks from
different languages and tools.

Although literate programming documents fulfil the requirement to have
the publication itself reproduced, other concerns should be considered in order
to achieve a truly reproducible environment from which the publication may
be produced. In the sections that follow, different data set representations
are discussed in section 11.2.1 which are the output from reproducible opti-
mization algorithms. The challenge of reproducible optimization algorithms is
discussed in section 11.2.2 with a complete reproducible execution environment
for reproducible research discussed in section 11.2.3.

11.2.1 Data Set Formats
Without the experimental data it is not possible to derive a publication. As a
result, the value of a data set cannot be overstated. Another equally important
concern is the file structure of the data set itself. In this case, the referred
to structure is the file format of the data set. The most common formats
for a data set are based on plain text files. Plain text files include formats
such as comma separated values (CSV) text or encoded data formats such as
JavaScript Object Notation (JSON), which is persisted onto a storage media
as plain text. Although such data representations are valid, the disadvantages
associated with the use of plain text files negatively impacts the tools that
consume the data to derive information. The disadvantages for plain text
formats include:

• File size: To represent data within a plain text file, all data types are
converted into strings. The string based representation results in large
files which may become cumbersome to use. Large text files may also
necessitate the use of external applications in order to compress the file
contents. Smaller sized files are simpler to transfer and allows for more
efficient use of storage media. Formats such as JSON only add to the size
of the file by enforcing that all data be encoded into a structure defined
by a grammar within the plain text representation.

• Data orientation and inefficient querying: The data items for plain
text formats have a row based orientation. Each data record is written
to the file as a contiguous block of text. For example, extracting the
𝑛-th column from a CSV file requires reading and/or passing over all
𝑛−1 preceding columns, for each row within the file. During the analysis
of data, columns are often considered in isolation in order to calculate
derived values, such as summary statistics.

• Absence of schema: Textual formats may only represent a textual
type of data. The implication is that during data processing, the data
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within the file must be interrogated in order to determine the types of
data that the textual items represent. The interrogation process usually
requires a parser program which attempts to guess the correct data type
for a piece of data. Parsing is a slow process which requires a percentage
of the data file to be processed (at a minimum) in order to assign data
types to the data. Alternatively, a user may explicitly tell the parser
what data types are expected. This explicit process has the drawback
that the user should instead interrogate the data in some manner to
determine the expected data types if they are not already known.

Extensions to plain text data formats have been developed in attempts to
alleviate the need to assign data types during the paring process. For example,
the specification for JSON-Schema [135] attempts to add a schema definition
to JSON data, requiring a query of the schema to determine the expected
data types. The defined schema is far smaller in size than the actual data and
dramatically reduces the interrogation processing time of the contained data.
Although a schema does remove the problem of data type assignment, the
data items are still stored in a row-orientated manner which results in wasted
processing time when a single column value is required. To improve the speed
of data access, a data set may be stored in the running memory of a computer.
The data in memory may still prove to be too large, possibly necessitating
“on the fly” compression. Dynamic compression techniques may prove to be
effective but as the size of the data set increases, the techniques may fail to
scale efficiently.

Columnar storage data formats achieve solutions to most of the previously
mentioned disadvantages to row-orientated data formats. Columnar formats
allow for efficient retrieval of a given column of data values and may also
allow for compression of the columnar data because the same type of data
is contained within a single column. Columnar data files are akin to a table
within a database:

• data values may be accessed directly;

• columns of data types may be compressed using a compression scheme
suited to the type of data within the column;

• data can be more efficiently stored using binary representations instead
of plain text;

• file sizes are reduced due to the use of binary representations and com-
pression; and

• the schema for the data is implicitly available without additional process-
ing.
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As data sets grow in size and become more common place, particularly
with machine learning algorithms becoming more popular, several proposals
for binary columnar data set formats have been made. Importantly, the data
file format should be an open-source format. By defining the format as an
open-source format, analysis tools are generally more amenable to integrate
such formats. Better integrations with analysis tools allows for more choice by
the user of the analysis tool.

The current recommended format is the parquet [5, 188] file format. Parquet
files are already accepted by most data analysis systems and have the additional
benefit of having comparatively small file sizes. For this reason, the parquet
format is recommended to be the container for experimental results from CI
algorithms. Providing an open-source data file format allows for simplified
access to data without necessitating the use of specialized software tools as
part of the analysis process to produce a publication document. Efforts to
simplify the interoperability in creating and manipulating parquet files include
the Apache Arrow [4] project. The Apache Arrow project aims to provide
zero-copy reads, fast data access and interchange of data within parquet files
but without incurring large serialization overheads during the interchange. For
example, the data transfer process between the Spark [314] platform and R [274]
demonstrates a speed-up factor of 16 when using Apache Arrow as the memory
interchange format. The use of open-source should not only be restricted to
data file formats but also to any tool or software used to produce analysis
results of data for publication. Open-source software also allows for simpler
review and inspection of the logic used to produce a data set.

11.2.2 Stochastic Optimisation Algorithms
Algorithms within the fields of evolutionary computation (EC) and swarm
intelligence (SI) are all stochastic algorithms. Stochastic algorithms attempt
to provide solutions to an optimisation problem through the use of random
variables. For many, if not all, of the algorithms within EC and SI, the
algorithmic model is based on a metaphor of biological systems appearing in
nature. These algorithms are also known as “nature-inspired” algorithms.

Regardless of the internal mechanisms of an algorithm, the use of random-
ness during the optimisation process is required. Computation on a computer
system is, however, a deterministic process. Computer systems use the cur-
rent state of the computer memory and user inputs (among other information
sources) to generate entropy. Such a source of random information could be
sampled within an optimization algorithm to generate random variables. Un-
fortunately, such sources of entropy are not always reliable and the possibility
exists for the source to become exhausted.

To address the possible loss of entropy, computers instead make use of a
deterministic algorithm to generate a pseudo-random stream of information.
The pseudo-randomness is initialized using an initial seed value. The purpose

201



of the pseudo-random generator algorithm is to produce a stream of “random”
values such that no statistical test, within a class of statistical tests, can observe
any difference between the generator output and a uniform distribution. By us-
ing statistical tests, the pseudo-random number generator (PRNG) algorithms
may be ranked based on the perceived strength of the generator, the numerical
range and period of the generator, or even on the computational complexity of
the PRNG algorithm itself. From the PRNG ranking, an appropriate generator
may then be used within a computer program.

For the sake of convenience, most programming languages provide an in-
terface to the programmer to obtain random values. The choice of generator
selected for this task has previously been a contentious issue. For example,
the default generator available for use within the C programming language
(the rand function, which implements a variation of the linear congruential
generator (LCG) algorithm) has been shown to provide a lower level of statis-
tical randomness contained within the lower set of generated bit values. The
recommended usage is to only sample the upper set of bits for the produced
random value, or to alternatively simply use a different generator in order to
work around the problem.

The fundamental problem with implicitly provided PRNGs is that they are
seeded by either the operating system or the programming language runtime
and do not make the initial seed value known. The initial seed is often, but
not always, determined during the boot process of the operating system. As
a result, any data obtained through the use of an optimization algorithm is
not repeatable nor reproducible. Therefore, knowledge and/or control of the
PRNG seed value and the generator itself should be foundational to create
reproducible results. When sampling a value from a PRNG, not only is a
random value obtained, but the internal state of the PRNG is modified in-
place. The state modification is required to allow the PRNG to produce the
next value in the random stream on a subsequent invocation.

11.2.3 Reproducible Simulation Environments
Several attempts to allow for reproducible research have been pursued with
different degrees of success. The current trend is to control and manage the
development environment for the research using Docker [190, 205]. Docker is
a containerisation technology allowing for sandboxed runtime environments
which can be prevented from accessing the host system and possibly the network
and internet. Docker usage produces different problems during execution,
although it is relatively successful at allowing for a standardised starting point.

Once the docker container is running, it is possible for the user to mutate
the underlying system within the container. These mutations seem harmless
but may eventually become serious impediments. The “layers” that docker
provisions on the host system are not isolated and may be altered from outside
of the container image. Changes applied within the docker container also
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result in an altered set of data layers (specifically in the last layer). From
the base system image provided by docker, the user may require additional
tools or libraries to be included within a derived container. Such additions are
often managed through a package manager and are often retrieved from the
internet using a weak matching system such as SemVer [236]. SemVer does not
afford any guarantees about the quality and the state of the software that is
represented by the current SemVer version value. The premise with SemVer is
that valid SemVer values should be used and assigned by software maintainers
based on a set of agreed upon rules within the SemVer specification document.
The reliance on maintainers to select a representative and correct SemVer
value is based on trust. Unfortunately, the maintainers of projects are human
and mistakes are often made which completely invalidates the intention and
effectiveness of SemVer. If the version number assigned to a software release
were to be validated by an automatic process instead, more confidence could
be placed on the SemVer value.

The ideal scenario would be a system that affords the ability to define not
only the initial base runtime, but any additional required software as well. The
additional software may be external tools and/or libraries and should form part
of the definition for the runtime environment. Docker simply does not allow
for these guarantees. It is possible to obtain a different docker container from
the same set of inputs because the tooling used during the container creation
is itself not able to consistently produce the same output result.

A possible solution which prevents all the previously mentioned concerns
is the nix deployment system [69]. nix is primarily a tool to describe a
declarative, pure, functional language which provides the foundation for a
package manager. Using nix it is not only possible to define the base runtime
system, such as a complete Linux installation, but to also declare any included
libraries and tools to produce a fully reproducible deployment.

nix is a source-based package manager which considers the source code
for a package as the absolute truth to specify the package’s dependencies and
version. As previously mentioned nix is a pure, functional language and the
core abstraction is the mathematical function. Therefore, the inputs to a
package definition within the nix language are the project source code and
any additional inputs required to successfully build the given project. Within
nix, package declarations are simply called “expressions”, or more specifically
“nix expressions”. Consider the beginner C program that produces the console
output of Hello, World!. The hello-world program requires the main.c
file (containing the entry point of the program), together with a C compiler
and standard library. The aggregation of the required inputs to build the
hello-world program can uniquely define a cryptographic hash and this hash
serves as input to the nix language expression. The purity property afforded
by nix guarantees that any changes in the input to the expression will result
in a change to the output. Furthermore, these ordering guarantees for the
input allow for the caching or memoisation [193] of expression outputs. Given

203



a specific input hash, the corresponding output may be provided as an already
built artefact instead of rebuilding the package once again.

Although possibly slower to create an environment without any precached
nix expressions when compared to Docker, the environment produced by nix
is truly reproducible and does not take any underlying state into consideration.

11.3 Current Tools
Before investigating possible solutions to manage and control the PRNG usage
problem mentioned in the previous section, other available software tools for
EC and/or SI are first discussed. These tools have previously been used for
EC and SI research with the outputs being referenced within publications.
The list of currently available and popular software tools include the Python
programming language and its available ecosystem of libraries, Matlab, Waikato
Environment for Knowledge Analysis (WEKA), ECJ, jMetal, Computational
intelligence library (CIlib), ecr and Library for Evolutionary Algorithms in
Python (LEAP). Finally, currently available tools for deep learning neural
networks are discussed.

11.3.1 Python
The Python programming language has become popular within the research
area of data science due to the large number of available software libraries.
This popularity is largely due to the simple language syntax and the perceived
simplicity of the development experience. When using Python, the following
must be taken into account:

• The language is strongly and dynamically typed.

• Python is an interpreted language and imposes an evaluation tax on
program execution.

• When considering execution performance, libraries are often written in
lower-level, optimized languages when the performance of pure python
becomes problematic. The configuration and usage of the language for-
eign function interface (FFI) bindings to these optimized libraries may
become a source of errors which are troublesome to solve.

• Python may be regarded as a tool to glue other tools together.

• Python does not have mature package management solutions. Problems
may arise due to version conflicts between versions of libraries and the
programming language itself.
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Dynamically typed languages are often presented as extremely versatile
languages which bend to the will of the programmer. Unfortunately, the
versatility afforded by dynamic languages often produces problematic program
execution behaviour. Dynamic languages allow for the redefinition of functions,
methods, classes and variables at any stage during a program’s execution.
Although it is possible to work around any identified problem within a library
by using such redefinition, it does raise the question of whether any guarantees
for a reproducible program execution are possible. Tools to statically validate
Python programs before execution do exist [203], however the effectiveness
of these tools is often limited to the current project source code and does
not necessarily extend to the included project dependencies. As a result, it
is generally not possible to have the confidence that a Python program (in
totality) is actually reproducible.

The most popular libraries available for scientific computing in Python
include NumPy and SciPy, with Keras and PyTorch extending these libraries
to interface with deep neural network frameworks. Examples of libraries with
focus on evolutionary algorithms are LEAP and Nevergrad.

11.3.1.1 NumPy and SciPy

From inception Python did not have support for any form of comprehensive
numerical computation, except for the use of basic primitive mathematical oper-
ations. An extension library called Numeric [195] aimed to address these short-
comings but was eventually replaced by the more optimized Numarray [295] li-
brary. NumPy [75, 217] was eventually released as the successor of both Numeric
and Numarray which unified both libraries and added a series of improvements.
NumPy provides faster vector and matrix based operations, but is limited to
these data structures. These operations are represented by the ndarray data
structure which is almost entirely implemented in the C programming language
for the performance reasons previously mentioned. Scalar operations are not
part of NumPy, relying on Python to perform any scalar value operations. As
a result, any operation that may be represented as a vectorized operation can
be efficiently implemented using NumPy.

SciPy is not a library for scientific computation by itself, but is instead
an umbrella project with the goal of enabling scientific computing in Python.
Using NumPy as the base library, SciPy expands the set of available operations
by integrating several other software tools together using a standardised inter-
face. The extensions include modules for optimization, linear algebra, signal
and image processing as well as Fourier transformations and special functions.

11.3.1.2 Keras and PyTorch

Deep neural networks have become a popular area of research in recent years.
The Keras and PyTorch [228] libraries implement bindings for deep neural
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networks on top of the Tensorflow [185], CNTK [255] or Theano [276] toolkit
frameworks. Other toolkit frameworks are also available but are not as popular
nor as complete. Instead of being part of the SciPy project itself, these toolkit
frameworks are often used to complement the functionality afforded by SciPy.
As with the concerns raised about the reproducibility of computations in
Python, the extension frameworks like Tensorflow only serve to compound the
problem by offloading the training process of deep neural networks. Although
the central processing unit (CPU) can be used to train networks it is common
practice to offload the training to the graphics processing unit (GPU). A GPU
is a specialized piece of hardware that is purpose built to render graphics from
in-memory scenes onto a display (such as a computer monitor). Although
GPU processes do provide a significant reduction to the time required to train
a model they also impose several restrictions. The programming interfaces
to the GPU do not allow for the control of randomness sources which makes
reproducibility impossible and hardware dependent. Furthermore, due to the
cost of bandwidth and memory within a GPU the precision required within a
GPU is often less than that available on a general computer CPU. Depending
on the scenario, the reduction in precision may not be a problem. For scientific
computation the reduction in precision may result in unacceptable errors being
introduced during the process which may begin to snowball out of control, with
the final result potentially being unacceptable.

11.3.1.3 Library for Evolutionary Algorithms in Python

Library for Evolutionary Algorithms in Python (LEAP) [49] describes a soft-
ware library implementing multiple evolutionary optimisation algorithms. The
intention of LEAP was to make the use of algorithms within research contexts
simpler, whilst allowing for industry application and simpler study by students.
LEAP is primarily focused on EC algorithms.

LEAP describes the flow of an optimisation algorithm through the use
of a pipeline metaphor. As candidate solutions enter the pipeline, multiple
transformations are applied before the result replaces the original candidate
solution. LEAP is not immune to the problems of Python and additionally
uses the standard PRNG provided by the language. As a result, the resulting
algorithms are not reproducible.

11.3.1.4 Nevergrad

Nevergrad [240] is a Python library implementing different evolutionary opti-
misation algorithms using NumPy as a basis. The library is still immature and
is seen as a complementary project to PyTorch, Tensorflow, etc. Because the
library is an extension of NumPy, all the previously mentioned problems associ-
ated with it and generally with Python are also present within Nevergrad.
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11.3.2 Matlab
Matlab is software which provides a multi-paradigm numerical computing en-
vironment and programming language. The software is proprietary, developed
by MathWorks and requires the purchasing of a usage license. Matlab was
originally designed to operate on and manipulate matrices but has expanded
its focus over time. The current feature set of Matlab includes:

1. A general object-orientated programming language for use within the
toolkit

2. Matrix manipulations and operations

3. Ability to plot mathematical functions and data

4. Simulation and implementation of algorithms

5. Creation of user interfaces

6. Interfacing with other programs written in other programming languages

For scientific computing, Matlab provides a single environment within which
a user can perform a variety of operations and analyse data for inclusion within
a publication. The toolkit also has a flourishing extension ecosystem where
users may publish their packages for other users to use. Matlab does, however,
share the shortcomings of Python mentioned in the previous section and is also
not as scriptable as what Python is, hindering the usefulness of the platform.
Notably, version conflicts can occur frequently between the toolkit platform
itself as well as within user extension libraries. It is recommended that the
exact version of Matlab be cited within a publication to limit possible platform
incompatibilities. Matlab also implicitly provides the user with a seeded source
of randomness which is cumbersome to control. As a result, although the toolkit
framework is useful it does provide significant impediments for reproducible
research. Alternatives such as Julia [15] and Octave [80] may possibly address
the shortcomings of Matlab scripting and to bypass the expensive licensing
cost, whilst providing a similar user experience. Unfortunately, the Matlab
alternatives do not have enough extension libraries available or simply have a
small user base.

11.3.3 WEKA
The Waikato Environment for Knowledge Analysis (WEKA) [94, 110] project
provides a collection of visualization tools and algorithms for data analysis,
model prediction and data mining. The toolkit provides the user with a
graphical user interface (GUI) to allow access to the provided algorithms and
functions for data preprocessing, clustering, classification, and feature selection.
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WEKA additionally also provides an application programming interface
(API) for programmatic usage of the toolkit. Within the API, the user is
expected to provide a custom PRNG object where the appropriate initial seed
value has been set. Even though the API does make provision for a custom
instance of the PRNG to be provided, the interface for the generator is provided
by the standard library of the Java programming language. The initial seed
value for the PRNG is expected to be the concern of the toolkit user, with the
project documentation describing what the expected usage of the PRNG to
WEKA should be.

Due to the scope of WEKA being predominately focused on visualization
and data mining, the use of WEKA for EC and SI is not recommended.

11.3.4 ECJ
ECJ [173] is a toolkit for evolutionary computation written in Java. The
toolkit takes a component based approach to algorithm specification, allowing
different parts of a basic evolutionary algorithm to be exchanged in order to
produce different algorithm implementations.

The core of the library defines a series of inheritance hierarchies for each
component within the general EC algorithm. Although possible to use the
toolkit as a software library in a programmatic fashion, the preferred usage is
through a command line interface (CLI) Evolve application, which is part of
the toolkit release. The Evolve application defines a process which reads a set
of hierarchical configuration files (based on a key-value format) to define the
structure and configuration of an EC algorithm. Extra functionality such as
a GUI based application with plotting support is also available. Specialised
algorithm implementations are already defined and available, with extensions
for network communication and distribution.

In order to allow for the parameter file configurations, the components are
dynamically instantiated at runtime through the use of Java reflection and
introspection. As a result, this configuration process does not detect invalid
algorithm definitions but instead relies on the Evolve application to fail when
a configuration is invalid. It should be noted that there exists the possibility
to not have a configuration fail at runtime, yet be a logically invalid algorithm
definition. When results are obtained for an invalid algorithm configuration it
is hoped that the results are not published as valid.

The style of configuration employed by ECJ, together with all the additional
features not directly related to the algorithmics in EC, results in complicated
algorithm definition process. ECJ has a large learning curve as a result of the
toolkit complexity, necessitating user documentation to specify configurations
that are valid and to highlight usages that may be problematic. Although
the documentation is extensive, the documentation is not verified against the
project source code. Without ensuring that examples in the manual are valid
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and working, large portions of the manual may potentially be invalid which
will cause confusion amongst users with regards to toolkit usage.

11.3.5 jMetal
jMetal [78, 79] is a Java-based, object-orientated framework for multi-objective
optimization with meta-heuristics. Unlike the configuration file approach fol-
lowed within ECJ, jMetal provides the user with a set of predefined algorithm
templates. The algorithms may have different algorithm components replaced
as long as the replacement adheres to a defined interface provided within
the framework. Compared to ECJ, jMetal has a superior verification process
regarding algorithm definition whilst also presenting as a component based
framework. Algorithms are defined using Java source code and may be checked
by the compiler before execution, at the cost of a potentially longer algorithm
configuration time-period. With the enhanced verification of algorithms, it is
still possible to produce algorithm implementations that are logically invalid.
To detect and diagnose that implementations are logically invalid, knowledge
of how the internals of the jMetal framework operates may be necessary.

The framework provides a general algorithm runner abstraction with which
all the defined algorithms are compliant. The “runner” allows for a single
point of entry in order to use the framework. jMetal is a framework focused on
multi-objective optimization and whilst providing similar functionality to ECJ,
the focus of jMetal remains niche. Although documentation for the project
does exist, the documentation focuses on the object-level structuring of the
framework itself. From this object-level structure, automatic documentation
may be generated (known as Javadoc [220]) for the user to study in order to
familiarize themselves with the framework.

11.3.6 CIlib 1.x (Java version)
CIlib [42, 223, 229–231] is a Java based framework toolkit for population-based
optimization algorithms, including EC and SI algorithms. Developed indepen-
dently from ECJ, the toolkit developed a similar process to declare and execute
algorithms. The notable exception is that the configuration is not hierarchi-
cal. Instead, the configuration is based on an XML algorithm specification.
The XML-based specification defines the algorithm, the optimization prob-
lem, required measurements and data output together with the data output
file-format.

Similarly to both ECJ and jMetal, CIlib 1.x declared algorithms using a
component based approach. The problems highlighted with ECJ regarding algo-
rithm validation and runtime failure also exist in CIlib 1.x. The reflection-based
algorithm creation process took place whilst parsing of the XML algorithm
specification.
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The component hierarchies resulted in an inter-connectedness of program
logic and objects. Unfortunately, this inter-connectedness was the source of
many unexpected defects, as well as reinforcing the inability to correctly create
reproducible results. Furthermore, more user documentation was required to
explain the workings of the toolkit because the reflective algorithm process was
not obvious and error-prone.

It was eventually decided that the manner in which CIlib 1.x operated was
not conducive for research purposes. The learning curve required to use the
framework and the complexities in extending the toolkit framework were an
impediment to users. A new formulation of the CIlib library which deprecates
the CIlib 1.x implementation and addresses the identified problems within
current framework toolkits and libraries, is discussed in detail within chapter 12.

11.3.7 Evolutionary Computation in R
ecr [21] is a library for evolutionary computation within the R programming
language. R is specialised to statistical programming applications and encour-
ages the use of normal functions together with function composition. The
library specifies a predefined algorithm structure for EA algorithms with the
opportunity for the user to override individual algorithm steps within the algo-
rithm structure. Essentially, the library allows different user defined functions
to “plug into” the defined algorithm template.

Due to R having a dynamic type-system, functions and data values can
be altered at any point within a program’s execution. As a result, the same
concerns that were highlighted with Python (see section 11.3.1) are also ap-
plicable to R and to ecr by extension. Any functions that define an incorrect
set of parameters, access missing data or calculate invalid results due to dif-
ferent expected data types are only found at execution time, allowing for the
incorrect usage of the library. Furthermore, the usage of PRNG instances is
not well-defined, nor controlled within R. As a result, the resulting algorithm
definitions are able to provide reproducible results from their execution.

11.3.8 Paradiseo
The Paradiseo [137] framework has the aim of allowing the user to quickly as-
semble an evolutionary optimisation algorithm. The framework is designed in a
component-based manner, allowing the user to replace compatible components
to alter the behaviour of the resulting algorithm. The framework is imple-
mented using C++ and claims to be the fastest available execution framework
for evolutionary algorithms.

Paradiseo is broadly divided into four main components. The primary
component is known as the core module, upon which the remaining modules
depend. The remaining components extend the functionality of core by provid-
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ing more algorithm implementations for single and multi-objective algorithms
and lastly by providing concurrency and hybridisation.

Unlike other frameworks (such as ECJ and jMetal), Paradiseo provides no
runtime configuration of the algorithm and requires that the user specify the
algorithm implementation at compile-time. Although troublesome in terms
of program preparation, multiple programming errors can be prevented using
the assistance of the C++ compiler with its template generation capabilities.
A counter-point to this benefit would be that it is possibly more difficult to
detect and determine the source of possible errors because the framework
allows for the in-place mutation of data values by default. In-place mutation is
fast: the combination of the operating system and running program need not
concern themselves with the allocation and de-allocation of additional memory
by changing already existing allocated memory. This “speed” does, however,
come at the potential price of correctness.

The in-place memory adjustments made within Paradiseo impose a further
problem because the PRNG within the framework is not thread-safe. With-
out the guarantee that the access to the common, shared PRNG instance is
protected, the order of PRNG sampling cannot be enforced. Because of the in-
herent problems associated with concurrency, individual runtime processes are
instead preferred thereby limiting the exposure of the PRNG. Following this
design decision, the parallelism functionality provided by Paradiseo exploits
execution specifications such as OpenMP [53].

Overall, the framework provided by Paradiseo allows for the definition of
evolutionary algorithms. The produced algorithm may provide good execution
speeds (provided the user does not introduce a slowdown), but is still quite
primitive in regards to the complete functionality provided to the user. Output
data is not clearly defined nor the way to persist this information for later
analysis, shifting the problem to the user. This is contrary to the expected
functionality provided by a framework, whilst simultaneously preventing repro-
ducibility.

11.3.9 Deep Learning Tools
As previously mentioned in section 11.3.1, a number of tools are currently
available to allow the use of deep neural networks. Although these tools are
focused on deep neural networks, the caveats already mentioned about Python
are inherited by these tools. In addition to PyTorch and Keras, the following
are also available

• Caffe [129] is a deep learning neural network project that is particularly
focused on applications of computer vision. A large portion of the project
is implemented in C++ in order to improve the performance of the toolkit
and to allow for simpler binding to GPU processing.
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• Thinc is an attempt to provide a more type-safe API for a variety of
deep learning libraries and frameworks. Although Thinc does not directly
contribute to the available set of tools, it does provide a cleaner approach
for using the underlying tools. Unfortunately, providing a unified access
layer to different tools is, in of itself, a troublesome and complex task
because not all of the underlying tool concepts can be unified cleanly.
As a result it is possible to have “translation” errors when different
underlying tools are used.

• Turi Create is a development kit designed to make the use of deep
learning neural networks and other tools simpler. The focus of the
development kit are the macOS and iOS operating systems. Due to this
focus, the available tools within the toolkit are limited to the functionality
available within macOS and iOS devices.

The mentioned tools are relevant to provide an indication of the current
trend within the research community, even though deep learning neural net-
works are not a consideration for this thesis.

11.4 Conclusion
This chapter highlighted the need for reproducible research within CI. Specif-
ically, the environment within which research is performed, the data set file
format and then the software used to produce the data for the current study.
The use of open-source software and tools for the all aspects of the research
process should be encouraged so that changes to the research process itself
may be made with the intention to achieve reproducible research outputs.

With focus on current popular tools for EC and SI, the following consider-
ations were highlighted:

• Complex state interactions within software may result in unknown errors
and are difficult to locate.

• The use of reflection indicates unsound program behaviour and under-
mines the value provided by the type system with respects to program
validation.

• The use of mutable state within toolkit frameworks and libraries re-
quires extreme programmer discipline to ensure that no unexpected data
changes occur.

• Large amounts of user documentation are required to explain correct
software usage as well as extension procedures.
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• Java as a programming language does very little to discourage incor-
rect and unsafe programmer actions. Dynamic programming languages
discourage even less and allow for trivial runtime code modification.

From the problems listed in the preceding discussion, it is clear that the “status
quo” of current tools is insufficient to produce reproducible results. More
sophisticated software should instead be sought to address the highlighted
problems.
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Chapter 12

Monadic Algorithmic
Composition

A tension exists between expressive and analytical
power; expanding on one will necessarily contract the
other. Constraints liberate whilst liberties constrain.

Rúnar Bjarnason

The purpose of abstraction is not to be vague, but to
create a new semantic level in which one can be
absolutely precise.

Edsgar W. Dijkstra

The need for reproducible and repeatable experiments is well-founded within
the scientific method. The sub-field of CI does not have an unblemished
reputation in this regard, making the importance of reproducible research
highlighted in the preceding chapter even greater. This chapter introduces a
redesign of an existing software library for CI which addresses multiple concerns
within CI research.

This chapter begins by examining the foundational principles software
for CI should maintain within section 12.1. Section 12.2 discusses what a
compositional software library entails by delving into functional programming
and the associated data structures. From these functional data structures, a
new set of data structures are defined within section 12.3 which aim to provide
solutions and solve the question of reproducibility of experiments within CI.
Lastly, the chapter concludes in section 12.4.
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12.1 Foundational Principles
The work within this thesis fostered a new perspective and interpretation
for an open-source library for EC and SI. The resulting library is drastically
different from the currently available tools that are prevalent within industry
and the research community. The library focuses on four main principles
related to software for EC and SI algorithms including correctness, type-safety,
reproducibility and compositionality.

12.1.1 Correctness
The most important aspect of an algorithm implementation is its correctness.
Correctness does, however, need to be specified within the context of algorith-
mic implementation. The correct implementation of an algorithm defines that
the algorithm implementation is the generally accepted implementation (for
both industry and research purposes) of an algorithm. The acceptance of the
implementation is based on the description and interpretation of the algorithm
from the available literature. The open-source nature of the library encourages
both peer-review of implementations and the submission of corrections to any
mistakes. Correctness should also take priority above any software alterations
which may question the correctness of algorithm implementation.

Any performance improvements to the running cost of an algorithm (such
as CPU usage, time etc.) should only be addressed once the correctness of an
algorithm is verified and then reproducibly validated. Algorithm validation
should be an automated process and should be randomized using generative
testing [39, 126].

As an addition to the correctness of an algorithm implementation, only the
use of immutable data is tolerated. Immutable data defines data that cannot
change once created. The notion of a variable within a programming language,
which implicitly allows for changes to the variable, is instead replaced with
the notion of a value which cannot change once created. Although the use of
immutable data may seem strange and cumbersome, the advantages afforded
by immutability far outweigh any potential disadvantage. For example, given a
concurrent computer program with many threads, immutable data completely
removes the need for data locks between the threads within the program. The
different threads may freely use an immutable value without the concern that
the value may have changed since the last time it was accessed. Immutable
data has also been proven to be performant [215, 216] and is the preferred data
model for functional programming languages.

12.1.2 Type Safety
The implementation of CIlib 1.x had an execution structure that relied heavily
on the use of reflection and type casting. The simulator program necessitated
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the reflection usage within the CIlib framework, whilst type casting allowed
deep object inheritance hierarchies to correctly expose required functionality.
Deep object inheritance hierarchies ultimately produce abstract classes and
interfaces (located towards the top of the hierarchy) which are too general.
This generality within top level hierarchy members certainly does allow for
structures to be treated the same but at the same time, results in a loss of type
information for classes in the lower levels of the hierarchy. Common examples
of such generality, where the type information loss creates impediments for a
program may be found within the standard libraries of both Java [169] and
Scala [214]. Consider the Java standard library where data structures are
encouraged to implement the Collection interface. Collection defines a set
of operations for all data structures that represent a sequence of elements. In
the case of Java, implementations of sequence-like data structures include the
implementations for linked lists, sets, maps and queues. Such data structures
do not necessarily have similar behaviours. A linked list allows for the retrieval
of elements by index, albeit in O(n) time, but a set does not. By forcing the
Collection abstraction, the index-based retrieval function of the linked list is
unreachable without first type casting the Collection to a more specific type.
Programs making use of reflection and type casting can be classified as fragile
because the reflection API is based on accesses using strings, which are not
checked by a compiler and allow for mistakes that become more difficult for the
reader to spot as the strings grow longer. This fragility allows the compilation
of a program into a “working program” which will fail when executed because
any potential code changes are not observed by the compiler when reflection
and casting is used.

The type system available to the programming language should instead be
exploited as much as possible. Of course, this consideration is only applicable
to programming languages with static type systems. Programming languages
with dynamic type systems defer the type verification process to execution
time and do not have a compilation process.

Using the type system, truly generic code may be written where only
the information necessary for the current operation is considered. The type
system can also ensure that invalid program states are not possible to construct.
Consider a function which selects an element from a list of elements; the result
of the function should be an element within the list. When the list is empty,
what should the return value be? It could be that the program terminates with
an error condition by throwing an exception or returning the sentinel value of
null. The problem with this function is that the function simply does not know
enough information, nor does the compiler by extension. The solution would
be to ensure that the list provided to the function is a NonEmptyList, allowing
the function to always be able to return a valid result. The NonEmptyList
data structure is a list structure that is always guaranteed to contain at least
one value. Preventing invalid states ensures that errors, such as the mentioned
empty list example, are not possible by construction and should rather result
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in a compilation failure by the compiler instead of a runtime failure.
Furthermore, using the type system effectively ensures that the need for

an intermediate representation (such as the XML based specification of the
simulator program) is unnecessary.

12.1.3 Reproducibility
Within the research community publications advertise the effectiveness of an
approach to solve a given problem. Unfortunately, due to the use of stochastic
values within optimization algorithms, the reproduction of results within a
publication is generally impossible. The inability to reproduce the presented
results impedes the scientific method and prevents the agreement or debunking
of the presented publication.

In order to reproduce results, the original program used to produce the
published results should be used. It is often the case that a publication provides
a description of an algorithm but it is likely that the description is not detailed
enough. Due to the enforced length restrictions of journals and conferences the
publication authors often opt to forego implementation details in order to allow
for the necessary discussion of result analysis. If possible, the publication should
provide a reference to an online source for the reader to visit with more detailed
algorithm implementation details or the original algorithm implementation
itself.

Open-source software built with reproducibility in mind and at the core
of the design is highly sought after. Allowing the type system of the imple-
mentation language to manage and control the use of stochastic values within
the algorithm would provide complete control over the algorithm execution.
Through the tracking of stochastic values by the type system, reproducing
the results of a publication would require knowledge of both the PRNG ini-
tialization seed value and the algorithm definition. The observed execution
of the algorithm, when using managed stochastic values, would transform the
non-deterministic algorithm execution into an execution that is fully determin-
istic. Deterministic algorithm execution has the added benefit of allowing for
the explicit testing of algorithms without needing to verify the results using
“golden” datasets and predefined tolerances to determine equivalent statistical
performance.

12.1.4 Composition
Composition is the process of combining existing data structures and functions
in order to produce new functions that cater for more specific tasks. The
type-safety afforded by the programming language will also ensure that the
output value of an operation may be used as the input of the next. Composition
facilitates the flow of data by describing the series of transformations to convert
a given input into the desired output. By following the transformations of data,
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possible errors may be located more easily and will be isolated by the compiler’s
type-checking process.

Composition also allows for the naming of the resulting transformation.
Once a series of transformations are composed into a new transformation, the
transformation may be named allowing for reuse at a later time (either by
library or user).

Based on the discovery of the above points and the realisation of the
deficiencies within the Java version of CIlib, a new implementation began to
address these deficiencies and embrace the above fundamental principles.

12.2 A Compositional Library
With focus on the identified requirements described in section 12.1, it was
clear that functions would be an important feature of the new implementation
of CIlib. Functions implicitly allow for composition when the mathematical
notion of a function was considered. Mathematical functions are also pure.
Pure functions only operate on the provided parameters values in order to
produce an output and the same output is produced for the same set of input
values. Additionally, pure functions allow for referential transparency which
defines that a function evaluation may be replaced with its output value for
a given set of function input values. The value replacement afforded by ref-
erential transparency results in an identical execution of a program, with the
only exception being a slightly more efficient program execution because the
replacement values have already been calculated.

By considering the benefits of the mathematical function, a programming
language viewing functions in the same perspective would be preferred. Func-
tional programming (FP) provides these benefits. Programming languages
which support functional programming were therefore considered. Additional
knowledge was required because functional programming does not operate in
the same manner as object-oriented programming (OOP).

The sections that follow describe the relevance of FP in section 12.2.1 (par-
ticularly to stochastic algorithmics), and describe foundational data-structures
in section 12.2.2.

12.2.1 Functional Programming
As mentioned in the previous section, FP is a style of programming where
computation is modelled as an evaluation of mathematical functions. Functions
are pure and only operate on the provided function arguments, whilst at the
same time eschewing global program state and mutable data. As a result,
immutable data is the only consideration when using mathematical functions
as the basis of computation.
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FP originates from the lambda calculus, a formal system of computation
developed by Church [38] to investigate computability, function definition and
application, as well as recursion. Later, Church refined the lambda calculus
to formalise the simply typed lambda calculus [37] in order to prevent para-
doxical uses of the untyped lambda calculus. Over time, additional typed
lambda calculi were produced based on the original work of Church. System F
expanded the typed lambda calculus by allowing universal quantification over
types, being independently discovered by logician Girard [99] and computer sci-
entist Reynolds [241]. Universal type quantification allows for the creation of a
prepositional function which may be satisfied by every member of a given type.
The Curry-style (which associates types with untyped lambda terms) variant
of System F was proven to have the problem of undecidable type inference by
Wells [301].

A restricted view of System F that allows for type inference was first de-
scribed by Hindley [118] and later rediscovered by Milner [196]. The type
system was later given a close formal analysis and formal proof by Damas [54]
and Damas and Milner [55]. The Hindley-Milner type system, together with its
type inference, became the foundational type system for many statically typed
FP languages, including Haskell [183] and OCaml [157]. Modern programming
languages such as Haskell have, however, since moved onto more expressive
logic systems for their type systems.

As a result of programming languages employing logic systems in the form
of type systems, an interesting correspondence, known as the Curry–Howard
correspondence. The correspondence was discovered by mathematician Haskell
Curry and logician William Alvin Howard, whom was the first to make the cor-
respondence explicit [52]. The Curry-Howard correspondence describes a direct
relationship between computer programs and mathematical proofs. Exploiting
the Curry-Howard correspondence has allowed for computer languages such
as Coq [275], in which proofs are seen as programs which can be formalised,
checked and executed.

As an example of the relevance of the Curry-Howard correspondence within
the research area of EC and SI, Yu and Clack [313] described a software
implementation within which the correspondence was proposed as a way to
describe search space partition in GP. The method associates indexed sets of
genotypes within the GP by their Curry-Howard isomorphic proof (the species).

12.2.2 Functional Structures
Abstraction is a fundamental concept in computer science and mathematics.
Abstraction allows for the description of specific events or actions in more gen-
eral terms. The complexities of writing a computer program are almost never
directly visible, yet they exist nonetheless. Abstractions provide a mechanism
to broadly discuss ideas and provide a common nomenclature. Furthermore,
abstractions also imply a predefined corpus of knowledge is already understood.
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For example, discussing a linked-list data structure implies that participants
understand the mechanics of the data structure, together with the intricacies
of computer memory usage and management.

FP is no different and practitioners should understand the established
concepts and nomenclature. In contrast with the programming style of OOP,
FP derives much of its terminology from the field of mathematics, particularly
the sub-fields of category theory and topology.

Category theory formalises mathematical structure and concepts through
the use of a set of objects (a category) and the allowable operations between
categories. These operations, known as arrows or morphisms, formalise tran-
sitions between the objects of a category, or objects to another category. A
category has two basic properties:

1. arrows compose associatively, and

2. each object within a category has an identity arrow (which transitions
an object back onto itself).

Category theory has practical applications within programming language
theory. The types of data within a programming language (e.g.: integers,
floating point numbers and user defined structures) form the category of types
and the transitions to other types use functions, which are the arrows of the
programming language.

The subsequent sections provide a general discussion on general computa-
tional contexts, as well as a discussion on the use of optics within FP. The
sections thereafter, describe the most fundamental FP abstractions including
functors, applicative functors, and monads.

12.2.2.1 Computational Contexts

Each category represents a collection of objects. In turn, these collections of ob-
jects may have a specific associated behaviour. Within the subset of categories
that are applicable to computation, different behaviours may be present that
determine how an object within a category is evaluated. How the evaluation is
performed defines the computational context. Consider operations that accept
a simple recursive cons-list structure. These operations may evaluate the value
by de-structuring the cons-list. A trivial example of such an operation is the
length function. The length function traverses the list from head to tail and
counts the number of cons-cells within the list. The length function may also
operate on the provided structure without concerning itself with the kinds
of data items contained within the list. Only the structure and shape of the
cons-list is important and not the content of the cons cells.

A non-exhaustive but common set of examples of contexts within which
values may be calculated include:
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• Maybe - a context defining the presence or absence of a value. An alter-
native name for this context is Option.

• Either - a context maintaining a value or a named error when value is
absent

• List - a context defining zero or more values

• NonEmptyList - a context of one or more values

• Future - a value that may be available at a later time

• Promise - a value that is guaranteed to exist at a later time

Importantly all contexts can be reasoned about in the same way. That is to
say that the definition of a calculation which yields a potentially absent value,
or a calculation that will complete at a later time are treated the same. The
context for the computation defines how the calculation actually takes occurs.

12.2.2.2 Functor

The functor abstraction represents the mathematical functor, i.e., the mapping
between categories in the context of category theory. The mapping process is
defined by a structure preserving morphism. This morphism maps an object
in one category to an object another category. Within the context of computer
programming, such morphisms are functions that map one type to another type.
For a functor to be sound and to operate as expected, the functor must adhere
to a set of laws which ensure predictable behaviour. Furthermore, these laws
also result in a semantic algebra which allows for the independent reasoning
of functor behaviour. The laws required for valid functors are:

• Identity: the composition of a functor and the identity function, id,
must produce the original functor

fmap id = id

• Composition of morphisms: if two sequential transitions are per-
formed one after the other using the functions 𝑓 and 𝑔, the result must
be the same as a single transition of the composed function of 𝑓 and 𝑔:

fmap (f . g) = fmap f . fmap g

the operator . is the function composition operator and is pronounced
as after. i.e., apply function f after applying function g to the input.

Figure 12.1 illustrates the functor laws graphically.
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A B C

𝑓 𝑔

𝑓 ∘ 𝑔

𝑖𝑑

𝑥 𝑓(𝑥) 𝑔(𝑓(𝑥))

Figure 12.1: Functor morphisms between the categories A, B, and C

12.2.2.3 Applicative Functor

Functors transform a single object in a category to an object in another category.
Consider the case where a morphism of more than a single argument is provided
to the functor 𝐹. An example would be the category of integers and morphisms
back onto the category of integers. Self referential functor morphisms are known
as endomorphisms of the category. If the integer addition function (+) were
to be used as the morphism to the category, and applied to an object, the
result would no longer be an object within the category of integers, but instead
an object within the category of functions on integers. This translation of
categories occurs because + is a binary function, requiring two inputs, and not
a unary function. Furthermore, such usage would be problematic: there is no
longer any mechanism to move from the category of integer functions back to
the category of integers because all objects within the category are themselves
functions on integers.

Applicative functors [187] are a context aware generalization of functor,
which are functors themselves. Applicative functors allow for the context
aware representation of functions that accept more than a single input param-
eter, whereas functions applied to functors require a single input parameter.
Importantly, functions within the applicative context are curried [187] func-
tions. Composing multiple applicative contexts together allows the applicative
functor to ultimately produce a single object within a category as the result
of the computation.

The applicative functor extends the functionality of a functor with two
additional operations:

• pure: an operation to lift a value into the context of the applicative
functor. An alternative name for pure is point.

• apply: an operation combining an applicative context containing a cur-
ried function with other applicative contexts. The combination of con-
texts requires that the contained objects are suitable for the curried
function and are applied in order within the applicative context to pro-
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duce the final result. Alternative names for the apply operation include
ap and the infix operator <*>.

As with functors, applicative functors require that laws hold in order for
the behaviour of the applicative functor to be predictable and well-behaved.
The applicative laws extend the laws for functor with:

• Identity laws: The identity function within an applicative context, when
applied to an applicative 𝑣, must produce 𝑣 as the result:

– Left identity:

ap(pure(id), v) = v

– Right identity:

ap(v, pure(id)) = v

• Associativity of morphisms f, g and h:

ap(ap(f, g), h) = ap(f, ap(g, h))

Figure 12.2 provides an illustration to the process of an applicative functor.
The arbitrary applicative context is denoted by the circle shape. A binary
function + and the integer values 5 and 3 are within the applicative functor.
The result, after the apply step composes the applicative contexts, is the
value 8 still within the same applicative context. Unlike the functor typeclass,
applicative functors allow for the sequencing of computations based on the
context of the applicative functor itself. If a given applicative context allows
for the parallel computation of results, the parallel nature of the computation
itself is not directly observable when executing apply. Any execution level
effects on the computation runtime are only observed when the final value
is evaluated from the applicative functor composition. Using the previous
example, the + function within the applicative context may apply either of the
parameters in any order because + is an associative function. The application
of applicative values also includes partially applying (or binding) a single
parameter value. The result of partially applying an applicative functor results
in a new applicative functor where the remaining values are expected to produce
the final computation value.

12.2.2.4 Monad

In contrast to applicative functors which contain a function within a context, a
monad describes a computational context that produces new values within the
same context, based on the value of a previous result. The implication is that a
monad is able to sequence the order of operations which is the major difference
when compared to applicative functors. Moggi [197] published the insight
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Figure 12.2: Applicative functor application to a binary addition function within
the same context

that linked the categorical structure of the same name with computation and
functional programming.

Monads allow for the explicit ordering of computation actions and are
therefore a more powerful abstraction when compared to applicative functors.
Similarly to how all applicative functors are functor instances, all monads are
applicative functors as well. The converse, however, does not always hold and
the monad laws may be tested to prove the validity of a monad instance.

Monad offers an additional operation to the already available operations
of both the applicative functor and functor. The additional operation is pro-
nounced bind but as with the preceding structures alternative names have also
been used to describe the monadic operation. Examples of other naming for
the bind operation include flatMap and the infix symbol >>=. Although other
names have also been used in different programming languages, these names
are not considered because the implementation of monad instances within these
languages are invalid; an example of an invalid implementation is the chain
operation available within JavaScript. Monad literature has also used the
names return or unit for the pure operation defined on applicative functors,
with unit matching the name used in the categorical definition.

Monad instances must observe specific laws in order for the monad instance
to be predictable and valid. The first is the identify law for sequencing, whereby
an action sequenced with the identity action should produce the original action.
The same identity property should hold with the ordering reversed. The
remaining law describes the associativity property for monad sequencing.

• Identity laws:

– Left identity:
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Table 12.1: Scala type definitions of three foundational functional structures from
category theory

Typeclass Signature

Functor F[A] => (A => B) => F[B]
Applicative F[A] => F[A => B] => F[B]
Monad F[A] => (A => F[B]) => F[B]

pure a >>= f = f a

– Right identity:

m >>= pure = m

• Associativity:

(m >>= pure) >>= g = m >>= (\x -> f x >>= g)

The sequencing property of monads allows for the description of a compu-
tation that may also include side-effects. A side-effect is an additional change
to the system executing the computation. Examples of side-effects include
the access to the system console to output text, the modification of a file on
the filesystem, communication over the network or accessing a database sys-
tem. Side-effects are only observed when the execution environment executes
monadic values. Monadic values need not produce a useful value but may
instead exist purely to describe a desired side-effect. Table 12.1 describes the
similarities between functor, applicative functor and monad by listing the type
signatures of the structures ordered from the least to the most powerful, using
Scala [214] syntax.

12.2.2.5 Higher Kinded Types

Programming languages which are able to generically express the functor, ap-
plicative and monad types require a type system that is capable of representing
higher-kinded types (HKTs). A type system unable to represent HKTs does
not preclude the use of all functional programming abstractions, but limits
the available options to concrete implementations. For example, for the List
data structure it is possible to define instances of Functor, Applicative and
Monad but to use these instances the List structure should always be explicitly
referenced. More generic functions and interfaces cannot be expressed using
such type systems. The Typeclassopedia [312] provides a reference for all the
established functional structures, together with the relationships between the
structures.
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With reference to the previously discussed functor, applicative and monad
structures, the following relationships exist between the structures but only
when the defined laws hold:

• Functor is the most basic of the three structures.

• All applicative functors are all functors as well, but not all functors are
valid applicative functors.

• Monads are all applicative functors as well as functors, but not all ap-
plicative functors are monads.

As the functional structures become more specialised (from functor down to
monad) more derived operations can be defined based on the primitive opera-
tions that the abstractions defines. Conversely, as the structures become more
specialised the compositionality of the structures becomes more restricted to
the subset of types that can implement these functional structures.

Examples of programming languages which are able to generically express
these structures and the associated relationships include Haskell and Scala.
The type inference within the Scala language compiler, when using these struc-
tures, is limited and often results in compile time type mismatches. The Scala
compiler struggles with inference because it considers only local type infor-
mation for inference. Addressing the type mismatches requires the help of
the programmer to manually ascribe types in order to aid the compiler’s type
checking. Haskell, in contrast, provides better type inference but errors may
still occur which require the programmer to ascribe types, albeit far less than
what is required when using Scala.

12.2.2.6 Functional References

Values within a deep and nested immutable data structure may be of interest in
different usage scenarios. An example may be a specific node within a deep tree
data structure. References allow unambiguous pointers into a data structure
allowing for the retrieval of the value and possibly the ability to modify the
referenced value. The “functional” part of a functional reference refers to the
ability of the reference to allow for flexibility and composability expected from
pure mathematical functions.

It is already known that immutable values cannot be modified. So, how
would a nested value within an immutable value then be updated into a new
value? Modification of an immutable value is achieved by copying and updating
specific references within the data structure. Creating a copy of an immutable
value may at first glance seem an expensive operation which necessitates larger
amounts of memory because of data duplication. Creating complete copies
of immutable data is wasteful but immutable data can instead make use of a
technique known as “structural sharing”. Structural sharing reuses as much of
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Figure 12.3: Structural sharing of an immutable linked-list

the source data structure from which the copy or update operation is based.
The most trivial example of structural sharing is to prepend a new value to the
front of an existing immutable linked list. Figure 12.3 illustrates the structural
sharing of two linked lists. The list pointed to by the name binding A is a three
element linked list. B is a pointer to a four element linked list, but B reuses the
data of the linked list pointed to by A. Structural sharing affords efficiency of
immutable structures by reusing as much of the original data as possible whilst
reducing the amount of memory needed to represent the data modification, as
also known as “persistent data structures” [216].

Although persistent data structures address the concerns of efficiency, the
modification of a nested value may require multiple modifications to interme-
diate structures within the overall data structure itself. Every level of nesting
will require a modification to ensure that the referenced value is updated within
the resulting updated persistent structure. These repeated modifications result
in a “bubbling up” process until the outer most layer of the data structure is
updated.

Functional references have been the research focus of several programming
language theory researchers. It was the work by Foster et al. [93] on bidi-
rectional programming languages which established the name of “lens” for
functional references. A lens is a data structure which exposes two operations:
get and set. These operations are parametrized on a given type, allowing a
value to be extracted and to be modified which updates the containing struc-
ture. A lens is a first-class value which can be passed around within a program
but also allows for a series of specific compositions. Importantly, the composi-
tional nature of the lens allows for “zooming” into more specific values within
a data structure. Whilst allowing for this zooming effect the converse action
is also considered, whereby modification of a zoomed value will result in all
intermediate layers also being updated.

Whilst the lens is the most basic functional reference, other references exist
for specific usages and these functional references are collectively referred to as
“optics”. Optics also allow for functional references to operate on data which
may be absent. Even though additional functional references do exist, the
discussion of these optics is not necessary in order to establish the functionality
which optics provide when working with immutable data structures.

The utility provided by the lens and the optics abstractions when working
with immutable structures is preferred when working with nested immutable
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data. Optics allowing for a uniform abstraction whilst removing any potential
user errors with updating the intermediate layers of nested immutable data.

12.2.2.7 The Classy-optics Pattern

The previous section introduced functional references which allow for the nar-
rowing of data values within a data structure. The classy-optics pattern allows
for a constraint definition on a function. The added constraints to a func-
tion require that the programming language compiler is able to locate a valid
instance of an optic to satisfy the declared function constraint. Convention
dictates that classy-optics are prefixed with the word “Has”, as if a question is
asked about the instances that fulfil the class. An example would be the class
HasVelocity which requires than an optic instance exists which can retrieve
some kind of “velocity” value from a data structure. The requested value type
and the data structure itself are type parameters on the classy-optics classes.

If an instance is not available, the result is a compiler error which prevents
any invalid usages of the function with the constraint. A function with the
HasVelocity constraint will not allow values to be used which do not have a
velocity data value defined. Such usage is useful to prevent the wrong data
structure being passed to the function, only to have the evaluation result
in a runtime program error. An example of such usage is the PSO velocity
update equation. An initial velocity value is needed in order to obtain the
current particle’s updated velocity within the update equation. Using an
individual from a GA with the velocity update equation would result in a
programming error because the constraint ensuring the presence of a velocity
value for an individual would not be available, nor defined. Consequently, the
explicit definition of classy-optic instances serves to both allow for operations
to succeed but also to intentionally disallow others based on the data types
passed to these constrained functions.

12.3 Evolutionary Computation Structures
Through the application of the structures introduced in section 12.2.2, it is
possible to define well-behaved and law abiding structures for stochastic opti-
mization algorithms. The following sections address the specific aspects of a
stochastic optimization algorithm:

• the managed use of randomness as an explicit algorithmic effect,

• composable algorithmic actions,

• algorithm participants (including candidate solution representation and
polymorphic candidate solution state), and

• algorithm iteration and execution.
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The definitions also allow for the description of an optimization algorithm
in a declarative manner, allowing algorithmic pseudo-code that closely mirrors
the actual algorithm implementation.

12.3.1 RVar
Within an unmanaged and side-effectful stochastic algorithm, the use of stochas-
tic values within the algorithm are the primary reason for non-reproducible
results. The RVar data-structure provides the bedrock foundation upon which
stochasticity is managed and tracked throughout the definition and execution
of an algorithm. Named as the contraction of the term random variable, the
purpose of the structure is the management of the PRNG state and application
of the sampled random values.

Most execution platforms provide a default global PRNG during program
execution but it can be argued that this practice is fraught with errors as
previously discussed. It is common to find that the default generators often
fail statistical randomness tests, including test suites such as the TestU01 [153]
(also known as “Crush”) tests and the DieHard [184] tests. The test suites
attempt to determine if the PRNG algorithms produce values that do not
appear to be statistically random. If a pattern is observed within the sampled
data, the generator fails the set of tests. The system wide platform random
number generator may not provide random samples that are of a sufficient
quality for scientific work. Furthermore, the global system generator cannot
be controlled by a program and can only be sampled which results in a global
system mutation. The CIlib library, therefore, provides a PRNG implemen-
tation that is efficient, high quality and sufficient for scientific computation
known as the complementary multiply with carry (CMWC) [50] generator.

Converting the sampling process of a PRNG into a pure function results in
a function with the shape:

PRNG → (PRNG, A) (12.1)

where PRNG is the state of the random number generator and 𝐴 is the sam-
pled value from the generator. A sampling function therefore uses a PRNG
and produces a tuple result consisting of a PRNG and a generated value rep-
resented by the type A. The PRNG value within the tuple is a value which
contains the modified PRNG state after the completed sampling process. A
sampling method may, therefore, use the obtained PRNG value in a subse-
quent sampling function to obtain the next value within the stream of random
values represented by the PRNG. Using the same PRNG value in repeated
sampling function invocations will produce identical random values, together
with the same PRNG value for the PRNG within the resultant tuple. Consider
the following example which uses plain integers and a function, double which
doubles the integer input: double(2) = 4. No other input except for the inte-
ger 2 will result in the output of 4. However, chaining the doubling function
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twice will always result in the expected value of 16, through the evaluation
of double(double(2)). The exact same process applies to the sampling of a
random value because the PRNG is an ordinary value within a program –
analogous to using the PRNG as an integer. The exception is that the new
PRNG value is not a single value but instead part of a result tuple or pair
value.

It is therefore important to carefully consider how subsequent values of
the PRNG are used within the subsequent calls to random value sampling
functions. The passing of the updated PRNG value into subsequent calls (or
the “threading” of the PRNG value) may be a source of errors, especially if the
wrong PRNG value is used. The threading should, as a result, be managed by a
data structure and not the programmer as the threading process is cumbersome
but crucial to ensure correctness.

The State monad [293, 294] is a data structure which implements the pre-
viously mentioned notion of threading a value though a computation on behalf
of the programmer. The resulting monad computation becomes a specialised
computation as the state value of the monad becomes fixed. In essence, this
is the exact definition of RVar: a computational context which uses PRNG
values to produce random values whilst managing the complexity of threading
updated PRNG values into subsequent RVar computations.

All the available monadic operators that may be derived for the monad
are implicitly available and valid for use with RVar computations. These
operations allow for a compositional and declarative use of the PRNG value,
whilst guaranteeing the correct threading behaviour of the PRNG.

CIlib provides a collection of functions to produce RVar values, which may
be composed together in order to produce the values required for a computa-
tion. Examples of these combinators include the creation of several random
values contained within a List structure, the random shuffling of a container
of values and the generation of an unending stream of random values. Sta-
tistical distributions, such as the Gaussian and Cauchy distributions, may be
derived from the combinators available to RVar, allowing for computations
which require a specific distribution of randomness.

In order to demonstrate the utility afforded by the RVar structure, the
example that follows should be considered. A triangular distribution function
is defined by applying the triangular distribution’s cumulative distribution
function (CDF) to sampled uniform random variates and is demonstrated
within the Scala read-evaluate-proint loop (REPL) within REPL session 12.1.
Furthermore, note how the application of the same PRNG value produces
identical output values, with the same updated PRNG state at different memory
addresses, which is a consequence of the runtime platform.
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1 def triangular(a: Double, c: Double, b: Double): RVar[Double] = {
2 assert(a <= c)
3 assert(c <= b)
4
5 def cdf(x: Double) =
6 if (x < a) 0.0
7 else if (a <= x && x <= c) ((x-a)*(x-a))/((b-a)*(c-a))
8 else if (c < x && x < b) 1.0 - ((b-x)*(b-x))/((b-a)*(b-c))
9 else 1.0

10
11 Dist.stdUniform.map(x => {
12 val U = cdf(x)
13 val F = (c-a)/(b-a)
14
15 if (0 < U && U < F) a + math.sqrt(U*(b-a)*(c-a))
16 else b - math.sqrt((1-U)*(b-a)*(b-c))
17 })
18 }
19
20 val rng = RNG.init(123456789L)
21 // rng: RNG = cilib.CMWC@57b9389f
22 val triangularRVar = triangular(1.0, 2.0, 4.0)
23 // triangularRVar: RVar[Double] = cilib.RVar$$anon$2@113dcaf8
24 triangularRVar.run(rng)
25 // res0: (RNG, Double) = (cilib.CMWC@1201769d, 1.5505102572168221)
26 triangularRVar.run(rng)
27 // res1: (RNG, Double) = (cilib.CMWC@5abf6a99, 1.5505102572168221)

Scala REPL Session 12.1: Reproducible triangular distribution sampling

12.3.2 Step
Most operators within a stochastic nature-inspired optimization algorithms
make use of the following components:

1. The source of random numbers.

2. A function to quantify the quality of a candidate solution.

3. The strategy for the optimization (minimization or maximization) of
the problem objective function which serves to guide the optimization
algorithm to obtain better quality candidate solutions.

The Step data structure builds upon the foundation of RVar by consid-
ering the additional required properties for an operation within optimization
algorithms. A Step enriches the RVar computational context by supplying
an “environment” to the resulting computation. The environment maintains
a set of values which enclose the entire Step computation. The environment
provided to the Step contains the optimization problem evaluation function
as well as the optimization scheme to follow. Importantly, the enclosing envi-
ronment represents a shared value and this value is available to all composed
Step computations. A Step can, therefore, be regarded as a function from an
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environment to a value which may have randomness applied:

(Eval, Opt) → RVar[A] (12.2)

where RVar[A] is an alias to the function defined in equation (12.1).
The environment monad [132] (also termed the reader monad) allows for

the composition of functions with a common shared environment to produce a
value. Evaluating a reader monad computation produces in a plain value as the
result of the computation, whereas equation (12.2) produces a RVar[A]. Recall
that RVar[A] is a state monad specialised to PRNG state values. Therefore,
the evaluation of a Step computation is a monadic structure which produces
another monadic structure.

Unfortunately, it is not possible to define the generic composition of two
arbitrary monads [35, 168, 213]. Moggi [197] alluded to the possibility of
implementing monad transformers and was later implemented by Espinosa
[87], Steele [264], and Wadler [293] before being formally proposed by Liang
et al. [168] within a strongly typed language. A monad transformer applies a
specific effect (such as the management of state) on top of another arbitrary
monad. By defining Step as a monad transformer, the shared environment may
be made available to RVar[A] computations. Furthermore, the composition
problem of arbitrary monads is no longer a concern because the transformer
monad allows for the definition of the bind operation using the fact that the
transformer itself behaves in a particular manner. Monad transformers are not,
however, a perfect solution to the observed monad stacking problem [168, 213].
The application order of monad transformers can produce structures which have
different behaviour and/or evaluation characteristics. For example, consider
the reverse order of the Step structure, whereby the shared environment is
provided to the computation only after the effect of randomness has been
applied. Not only is the resulting program conceptually confusing because all
randomness operations necessarily need to have been already evaluated in order
to apply the environment, but the optimization scheme would need to direct
the algorithm search after the fact. Thankfully, the stacking order for Step
naturally came about, but transformer ordering should be carefully considered
when stacking several monad transformers.

Practically, the Step abstraction allows for the definition of algorithmic
steps that have clearly defined inputs and output values. Consider the velocity
update equation for PSO given in equation (3.1):

𝑣𝑖𝑗(𝑡 + 1) = 𝜔𝑣𝑖𝑗(𝑡) + 𝑐1𝑟1𝑖𝑗(𝑦𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) + 𝑐2𝑟2𝑖𝑗( ̂𝑦𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡))

The velocity equation creates a new velocity vector for the next iteration of the
PSO by computing a linear combination of three different vectors. Implement-
ing the velocity update equation as a Step is done in listing 12.1 and closely
resembles the original equation.
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1 def stdVelocity[S](
2 entity: Particle[S, Double],
3 social: Position[Double],
4 cognitive: Position[Double],
5 w: Double,
6 c1: Double,
7 c2: Double
8 )(implicit V: HasVelocity[S, Double]): Step[Double, Position[Double]] =
9 Step.pointR(for {

10 cog <- (cognitive - entity.pos).traverse(x => Dist.stdUniform.map(_ * x))
11 soc <- (social - entity.pos).traverse(x => Dist.stdUniform.map(_ * x))
12 } yield (w *: V._velocity.get(entity.state)) + (c1 *: cog) + (c2 *: soc))

Listing 12.1: Step implementation of canonical PSO velocity update equation

12.3.3 Step with State
The Step abstraction allows for the definition of algorithmic operations as pure
computations. Unfortunately, not all optimization algorithms can be defined as
functions from inputs to outputs. Such algorithms compute intermediate values
that are used in subsequent iterations of the algorithm itself. The guaranteed
convergence particle swarm optimizer (GCPSO) [12] is an example of such
an algorithm. A bounding box is maintained around the current global best
particle which aids in the refinement of the current best solution. The bounding
box either reduces or increases in size based on the current performance of the
GCPSO. The bounding box is not valid as an input nor as an output of the
GCPSO, but is merely needed for the algorithm to operate correctly.

Runtime algorithm parameters may be included into an algorithm defini-
tion by stacking another monad transformer on the Step data structure. The
StateT monad transformer on top of the Step structure allows for a predefined
algorithm runtime state which is available to the optimization algorithm with-
out altering the behaviour of neither Step nor RVar. The values within the
algorithmic runtime state may be updated as required using the combinators
provided by the StateT structure.

The GCPSO implementation demonstrating the use of the StepS structure,
together with the interaction with Step, is provided in listing 12.2. The
algorithm runtime state is given by the GCParams type, with the parameter
update process defined on lines 22 to 35.

12.3.4 Position
Locations within the search space of a multi-dimensional optimization problem
are referred to as candidate solutions. Candidate solutions for an optimization
problem may represent one of the following possible cases:

1. Point: A candidate solution located within the optimization problem
search space, but the quality of the represented solution has not yet been
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1 def gcpso[S](w: Double, c1: Double, c2: Double, cognitive: Guide[S, Double])(
2 implicit M: HasMemory[S, Double],
3 V: HasVelocity[S, Double],
4 S: MonadState[StepS[Double, GCParams, ?], GCParams])
5 : NonEmptyList[Particle[S, Double]] => Particle[S, Double] =>
6 StepS[Double, GCParams, Particle[S, Double]] =
7 collection =>
8 x => {
9 val g = Guide.gbest[S]

10 for {
11 gbest <- StepS.pointS(g(collection, x))
12 cog <- StepS.pointS(cognitive(collection, x))
13 isBest <- StepS.pointS(Step.pure[Double, Boolean](x.pos eq gbest))
14 s <- S.get
15 v <- StepS.pointS(
16 if (isBest) gcVelocity(x, gbest, w, s)
17 else stdVelocity(x, gbest, cog, w, c1, c2))
18 p <- StepS.pointS(stdPosition(x, v))
19 p2 <- StepS.pointS(evalParticle(p))
20 p3 <- StepS.pointS(updateVelocity(p2, v))
21 updated <- StepS.pointS(updatePBest(p3))
22 failure <- StepS.pointS(
23 Step.withCompare[Double, Boolean](
24 Comparison.compare(x.pos, updated.pos).andThen(_ eq x.pos)))
25 _ <- S.modify(params =>
26 if (isBest) {
27 params.copy(
28 p =
29 if (params.successes > params.e_s) 2.0 * params.p
30 else if (params.failures > params.e_f) 0.5 * params.p
31 else params.p,
32 failures = if (failure) params.failures + 1 else 0,
33 successes = if (!failure) params.successes + 1 else 0
34 )
35 } else params)
36 } yield updated
37 }

Listing 12.2: Complete GCPSO algorithm definition

determined.

2. Solution: Candidate solutions within the search space of the optimiza-
tion problem that have evaluated to determine the quality of the repre-
sented solution.

The Position type is an algebraic data type (ADT). ADTs define a closed
set of finite values that inhabit a given type and may define a closed-algebra
of operations or functions to operate on ADT values. When considering the
Position type, re-evaluating a Solution value will simply return the provided
value because the re-evaluation will not change the result. Similarly, the
resultant Position from a calculation of other Position values will always
produce a Point value because there is no guarantee that the quality of the
resulting Position is known. Position values will therefore alternate between
Points and Solutions during the operation of the optimization algorithm.

234



Importantly, due to the well defined set of possible operations, the Position
will always represent a valid state for a given candidate solution within the
search space of the optimization problem. Position values allow for vector
operations including addition, multiplication and subtraction, amongst others.
Additionally, Position values maintain the search space boundary information
and represent candidate solutions that are within the defined problem search
space bounds. An example of Position usage and the defined algebra is
provided in REPL session 12.2.

12.3.5 Entity
Nature-inspired population based algorithms develop new candidate solutions
during the iteration process of the algorithm. Within the literature, each
nature-inspired algorithm uses a different metaphor to describe how candidate
solutions are transformed to produce new candidate solutions. PSOs use the
term particle for candidate solutions, whereas GAs refer to candidate solutions
as individuals. Naturally, other names for candidate solutions also exist, based
on the chosen metaphor.

Regardless of the metaphor, a candidate solution for an optimization al-
gorithm consists of more than just a Position value. Additional information
may be attached to a candidate solution which is required by the optimization
algorithm. A generic solution for these different kinds of candidate solution
representations allows for a common Position value to be combined with an
unspecified “state” value. The resulting structure is known as the Entity
type. Entity is a simple product-type [281] that combines a Position to-
gether with a parametrized state. The definition for Entity is given within
REPL session 12.3. The value type for the state of the Entity, represented by
the S type parameter, is not defined until the Entity is instantiated within a
program.

12.3.6 Iteration Scheme
The general structure and shape of an algorithm within EC and SI adheres to
the same pattern [221]. Population-based optimization algorithms all traverse
a provided collection of Entity values to ultimately produce a replacement
collection of Entity values, which are used as the input for the next algorithm
iteration. An algorithm is therefore an iterated function from collection of
Entity to collection of Entity. During the execution of the algorithms, each
Entity is considered separately in order to produce a new Entity, which will
replace the current Entity within the new Entity collection. Describing the
algorithm structure as a function yields the following signature:

NonEmptyList[Entity[S,A]] => Entity[S,A] => Step[A,Entity[S,A]]

An algorithm may be iterated in one of two ways:
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1 // Basic definition of the spherical benchmark problem
2 val spherical =
3 Eval.unconstrained[NonEmptyList,Double](_.map(x => x * x).suml).eval
4
5 // The Position is the core data structure to define search space
6 // locations.
7 val domain = Interval(-100.0, 100.0) ^ 3
8
9 val p1 = Position(NonEmptyList(1.0,2.0,3.0), domain)

10 val p2 = Position(NonEmptyList(6.0,7.0,8.0), domain)
11
12 // Evaluating the quality of a solution promotes the representation to
13 // a Solution. An RNG is required to cater for potential usage of
14 // randomness
15 val p1Solution = Position.eval(spherical, p1).eval(rng)
16
17 // Point + Solution = Point
18 p1 + p1Solution
19 // res0: Position[Double] = Point(
20 // NonEmpty[2.0,4.0,6.0],
21 // NonEmpty[[-100.0, 100.0],[-100.0, 100.0],[-100.0, 100.0]]
22 // )
23
24 // Scalar * Solution = Point
25 3 *: p1Solution
26 // res1: Position[Double] = Point(
27 // NonEmpty[3.0,6.0,9.0],
28 // NonEmpty[[-100.0, 100.0],[-100.0, 100.0],[-100.0, 100.0]]
29 // )
30
31 // Solution - Point = Point
32 p1Solution - p1
33 // res2: Position[Double] = Point(
34 // NonEmpty[0.0,0.0,0.0],
35 // NonEmpty[[-100.0, 100.0],[-100.0, 100.0],[-100.0, 100.0]]
36 // )
37
38 // Solution + Solution = Point
39 p1Solution + p1Solution
40 // res3: Position[Double] = Point(
41 // NonEmpty[2.0,4.0,6.0],
42 // NonEmpty[[-100.0, 100.0],[-100.0, 100.0],[-100.0, 100.0]]
43 // )
44
45 // Negate Solution = Point
46 -p1Solution
47 // res4: Position[Double] = Point(
48 // NonEmpty[-1.0,-2.0,-3.0],
49 // NonEmpty[[-100.0, 100.0],[-100.0, 100.0],[-100.0, 100.0]]
50 // )

Scala REPL Session 12.2: Example of Position usage and algebra

1. Synchronous iteration, or

2. Asynchronous iteration

The synchronous algorithm iteration scheme is also known as the genera-
tional iteration scheme. Synchronous iteration produces new Entity values by
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1 final case class Entity[S,A](state: S, position: Position[A])
2
3 // Create a type alias to Individual, which is an Entity with a "Unit" state.
4 // `Unit` is a type with a single valid value: ()
5 type Individual[A] = Entity[Unit, A]
6
7 // Create a type alias to Particle, which contains a memory that maintains
8 // the best previous position and the current velocity of the particle.
9 // The memory items are defined within the `Mem` type

10 final case class Mem[A](best: Position[A], velocity: Position[A])
11 type Particle[A] = Entity[Mem[A], A]
12
13 // Examples of creating `Entity`s
14 val pointInSearchSpace = NonEmptyList(0.0, 1.0, 2.0)
15 // pointInSearchSpace: NonEmptyList[Double] = NonEmpty[0.0,1.0,2.0]
16 val searchSpaceDomain = Interval(0.0, 3.0) ^ 3
17 // searchSpaceDomain: NonEmptyList[Interval[Double]] = NonEmpty[[0.0, 3.0],[0.0,

3.0],[0.0, 3.0]]↪
18 val position = Position(pointInSearchSpace, searchSpaceDomain)
19 // position: Position[Double] = Point(
20 // NonEmpty[0.0,1.0,2.0],
21 // NonEmpty[[0.0, 3.0],[0.0, 3.0],[0.0, 3.0]]
22 // )
23
24 val anIndividual: Individual[Double] = Entity((), position)
25 // anIndividual: Individual[Double] = Entity(
26 // (),
27 // Point(NonEmpty[0.0,1.0,2.0], NonEmpty[[0.0, 3.0],[0.0, 3.0],[0.0, 3.0]])
28 // )
29 val aParticle: Particle[Double] = Entity(Mem(position, position.zeroed), position)
30 // aParticle: Particle[Double] = Entity(
31 // Mem(
32 // Point(NonEmpty[0.0,1.0,2.0], NonEmpty[[0.0, 3.0],[0.0, 3.0],[0.0, 3.0]]),
33 // Point(NonEmpty[0.0,0.0,0.0], NonEmpty[[0.0, 3.0],[0.0, 3.0],[0.0, 3.0]])
34 // ),
35 // Point(NonEmpty[0.0,1.0,2.0], NonEmpty[[0.0, 3.0],[0.0, 3.0],[0.0, 3.0]])
36 // )

Scala REPL Session 12.3: Generic Entity definition and usage

only considering the current collection of Entity values. The next collection of
Entity values is produced by applying the algorithm function with the current
Entity collection to every Entity within the current collection. The result
of this process is a subsequent Entity collection, which replaces the current
Entity collection in the following algorithm iteration. Alternatively, an al-
gorithm may iterate using an asynchronous or steady-state iteration scheme.
With the asynchronous iteration scheme, the Entity collection input to the
algorithm function consists of the current Entity collection, together with the
partially formed next Entity collection. The asynchronous Entity collection
is constructed by substituting replacement Entity values with those that have
already been constructed for the new collection. This results in an Entity
collection that contains zero replacement Entity values (requiring that replace-
ments for all Entity values are still to be produced) to the last scenario, where
all but one replacement Entity value (for the last Entity) is required. An
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example of Entity replacement during the asynchronous iteration scheme is
provided in table 12.2.

Table 12.2: Creation of Entity collection during asynchronous iteration. The ⊕
operator combines the current and next Entity collections to create a collection of
𝑛 Entity values.

Entity Current collection Next collection Result

𝑒1 {𝑒1, 𝑒2, … , 𝑒𝑛} ⊕ {} → 𝑒+
1

𝑒2 {𝑒2, 𝑒3, … , 𝑒𝑛} ⊕ {𝑒+
1 } → 𝑒+

2
𝑒3 {𝑒3, 𝑒4, … , 𝑒𝑛} ⊕ {𝑒+

1 , 𝑒+
2 } → 𝑒+

3
𝑒4 {𝑒4, 𝑒5, … , 𝑒𝑛} ⊕ {𝑒+

1 , 𝑒+
2 , 𝑒+

3 } → 𝑒+
4

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑒𝑛−1 {𝑒𝑛−1, 𝑒𝑛} ⊕ {𝑒+

1 , 𝑒+
2 , … , 𝑒+

𝑛−2} → 𝑒+
𝑛−1

𝑒𝑛 {𝑒𝑛} ⊕ {𝑒+
1 , 𝑒+

2 , … , 𝑒+
𝑛−1} → 𝑒+

𝑛

From the description of the iteration schemes for an algorithm, it should
be noted that only the synchronous strategy is able to benefit from parallel
execution. The asynchronous strategy requires a Entity collection which is
formed by the merger of the current and next Entity collections. A race
condition would exist when using the asynchronous strategy together with
parallelism. The race condition results in a question as to which Entity
collection is the correctly updated Entity collection which should be considered
for the current Entity within the algorithm function defined in the previous
section. Iteration scheme functions are able to transform the algorithm function
shape into functions that produce a new Entity collection from the provided
Entity collection. REPL session 12.4 demonstrates the creation of both the
synchronous and the asynchronous GBest PSO algorithms.

12.3.7 Runner
Once the algorithm, iteration scheme, Entity collection and evaluation en-
vironment are defined, a single iteration of the algorithm may be completed.
The result of the algorithm iteration is a new Entity collection, which may
be fed into a following algorithm iteration as the input Entity collection. The
iterated algorithm function evaluation continues until some stopping condition
is reached.

The Runner abstraction defines an execution process which allows for the
repeated evaluation of an algorithm by chaining the output Entity collection
back as input to the algorithm once again. Mathematically, when considering
the declarative behaviour CIlib provides, the Runner abstraction evaluates an
iterated function, which may or may not be a fixed-point evaluation, until the
defined stopping condition. A fixed point evaluation is only possible when
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1 val bounds = Interval(-5.12, 5.12) ^ 5
2 val spherical =
3 (xs: NonEmptyList[Double]) => xs.foldLeft(0.0)((a,c) => a + c * c)
4
5 val env =
6 Environment(
7 cmp = Comparison.dominance(Min),
8 eval = Eval.unconstrained(spherical).eval
9 )

10
11 /** Define a normal GBest PSO */
12 val cognitive = Guide.pbest[Mem[Double], Double]
13 val social = Guide.gbest[Mem[Double]]
14 val gbestPSO = gbest(0.729844, 1.496180, 1.496180, cognitive, social)
15
16 /** Create the synchronous iteration version of the gbestPSO algorithm */
17 val syncGBestPSO = Iteration.sync(gbestPSO)
18 // syncGBestPSO: Kleisli[Step[Double, �$0$], NonEmptyList[Particle[Mem[Double],

Double]], NonEmptyList[Particle[Mem[Double], Double]]] = Kleisli(↪
19 // cilib.Iteration$$$Lambda$1585/897478931@64d1f549
20 // )
21
22 val asyncGBestPSO = Iteration.async(gbestPSO)
23 // asyncGBestPSO: Kleisli[Step[Double, �$2$], NonEmptyList[Particle[Mem[Double],

Double]], NonEmptyList[Particle[Mem[Double], Double]]] = Kleisli(↪
24 // cilib.Iteration$$$Lambda$1586/1721002441@6addfa22
25 // )

Scala REPL Session 12.4: Synchronous and asynchrouns iteration of the same
PSO algorithm

the combination of the optimization algorithm, initial Entity collection and
PRNG seed value result in convergence for a given optimization problem.

Runner provides the user with a simplified execution entry point within
CIlib. However, if a more complex or customised execution process is required,
it may freely be defined using the base abstractions within CIlib. REPL
session 12.5 demonstrates a sample Runner usage by defining and executing a
GBest PSO.

12.4 Conclusion
This chapter proposed an alternative to the popular use of OOP for CI software.
The importance and urgency to provide CI software that maintains correctness
and reproducibility is fundamental to ensuring improvements, especially as
optimisation problems and algorithms become more complex. This chapter
postulated that the complexity of more advanced algorithms and problems
could be controlled through the use of functional programming. Functional
programming allows the user to cleanly define the data flows and transforma-
tions which constitute a program. Such transformations have been abstracted
to form foundational data types which improve the understanding of programs
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1 // Bounds of the problem search space
2 val bounds = Interval(-5.12, 5.12) ^ 10
3
4 // Execution environment definition
5 val env =
6 Environment(
7 cmp = Comparison.dominance(Min),
8 eval =
9 Eval.unconstrained((p: NonEmptyList[Double]) =>

10 p.map(x => x * x).suml
11 ).eval
12 )
13
14 // Define a "normal" GBest PSO
15 val cognitive = Guide.pbest[Mem[Double], Double]
16 val social = Guide.gbest[Mem[Double]]
17 val gbestPSO = gbest(0.729844, 1.496180, 1.496180, cognitive, social)
18
19 // Initial particle swarm - 20 particles within defined bounds
20 val swarm =
21 Position.createCollection(
22 PSO.createParticle(x => Entity(Mem(x, x.zeroed), x)))(bounds, 20)
23
24 // Synchronous PSO
25 val iter = Iteration.sync(gbestPSO)
26
27 // Static problem landscape (1000 repeated identical landscapes)
28 val problemStream =
29 Runner.staticProblem("spherical", env.eval, RNG.init(123L)).take(1000)
30
31 val t = Runner.foldStep(
32 env,
33 RNG.fromTime,
34 swarm,
35 Algorithm("gbestPSO", iter),
36 problemStream,
37 (x: NonEmptyList[Particle[Mem[Double], Double]]) => RVar.point(x))
38
39 val executionResult = t.runLast.unsafePerformSync
40
41 executionResult match {
42 case None => "Execution failed"
43 case Some(progress) =>
44 progress.value.head.pos.toString
45 }
46 // res0: String = "Solution(NonEmpty[-2.785530299488214E-25,9.517101498797723E-

24,4.9048075983454653E-23,-8.941157286234897E-23,6.648206772130386E-23,-
1.3727734757414276E-22,4.388028132394903E-23,-2.679882777120357E-
23,2.0377550274698825E-23,-2.5814879300891756E-23],NonEmpty[[-5.12,
5.12],[-5.12, 5.12],[-5.12, 5.12],[-5.12, 5.12],[-5.12, 5.12],[-5.12,
5.12],[-5.12, 5.12],[-5.12, 5.12],[-5.12, 5.12],[-5.12,
5.12]],Single(Feasible(3.748104022511585E-44),List()))"

↪
↪
↪
↪
↪
↪

Scala REPL Session 12.5: GBest PSO definition executed by the defined Runner
abstraction
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by enforcing type constraints through typeclasses. Through the use of these
foundational data types within functional programming it is feasible to specify
pure computations that may be composed and passed around to other compu-
tations as simple values. From the description of pure functional programming,
a set of data structures were defined that not only addressed the raised con-
cerns for CI software, but provided the benefits afforded through functional
programming to CI.

The result of this chapter was a re-imagining of the CIlib software library
as a monadic, composable software library. CIlib allows the complexities intro-
duced and considered in previous chapters of this thesis to be defined, managed
and allows for perfectly reproducible algorithmic experiments. Through the
use of CIlib and the development of the library, the experimental work within
this thesis would not have been possible nor explainable. Finally, the version
of the software used within this thesis may possibly no longer match what is
available within the project repository online. Even so, the fundamental design
discussed within this chapter will largely remain the same.
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Chapter 13

Conclusion

This chapter begins with a summary of the findings and contributions of the
thesis in section 13.1, followed by a discussion of potential future work in
section 13.2.

13.1 Summary of Conclusions
The primary objectives of this thesis were to analyse the influence of optimisa-
tion problem complexity on the performance of optimisation algorithms, whilst
considering the four different categories of DCOPs, namely SOSC, SODC,
DOSC and DODC.

The first objective of this thesis was to provide a summary of the over-
all optimisation process as it pertains to optimisation problems of increasing
complexity. Chapter 2 began the discussion on the optimisation process by
focusing on the different optimisation problem types. Due to the established
inter-dependency between the optimisation problem and problem search space
constraints, an extensive overview of constraint handling approaches was also
discussed. The inter-dependency between the optimisation problem and the
problem constraints cannot simply be separated because the underlying op-
timisation problem is transformed by the problem constraints. Furthermore,
the presence of optimisation problem constraints has a direct influence on the
operation and execution of the optimisation algorithm tasked to find solutions
within such problem search spaces. Following on from the discussion of optimi-
sation problems, a subset of EC and SI optimisation algorithms were discussed
within chapter 3. The different classes of optimisation algorithms were enumer-
ated, building on the complexity of algorithms and ended with the inclusion
of constraint handling approaches which direct the algorithmic search away
from infeasible search space regions. As a result, the inherit complexity of the
optimisation process was established and provided a foundation for the main
work within this thesis.

The second objective within this thesis was to investigate the complexity of
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optimisation problems that include dynamic and constrained problem search
spaces. Chapter 5 investigated the complexity associated with the optimisation
problem by describing the problem landscape using a comprehensive classifi-
cation system. Based on the findings about current optimisation problems,
with emphasis on DOPs, several existing benchmark problem instances and
problem generators were investigated to understand how much of the possible
problem complexity they expose to the optimisation algorithm. Building on
the investigation, optimisation problems that include constraints were exam-
ined and found to be rather simplistic and limited, being unable to express
the demanding complexity of convoluted DODC problems. As a result, a new
benchmark function generator was developed and is proposed for research into
DCOPs. Even though the resulting benchmark instances are complex, they are
built from well-understood component landscapes which compose to produce
the final problem instance. The strengths of the generated problem landscapes
was then tested using FLA which showed that the resulting benchmark func-
tion generator can produce highly dynamic and constrained problem instances.
The results of the landscape analysis indicated the proposed benchmark gen-
erator could produce the most complex of problem landscapes, at any level of
dimensionality.

The third objective was to determine how to effectively measure the per-
formance of algorithms operating on DCOP. Chapter 6 proposed a new per-
formance benchmark which is not based on scalar values but is rather vector
based, defining the performance profile of the optimisation algorithm which
may be compared to a target (or estimate) performance. From the currently
available performance measures, it was concluded that the existing measures
are only able to provide a partial understanding of algorithm performance with
the necessary problems raised and highlighted. The proposed performance
measure, 𝑃RED, provides an unbiased view of the algorithm performance based
on the distance to the target solution over a number of algorithm iterations.
𝑃RED was found to be flexible enough to also describe the performance of
optimisation algorithms within SOPs and to also consider performances of
algorithms influenced by problem constraints, such as DCOPs.

Building on the work established within chapters 5 and 6, a comprehensive
set of DCOP benchmark problems were evaluated to investigate the complexity
of the optimisation problem within the optimisation process. The empirical
work within chapter 10 evaluated a set of optimisation algorithms on the com-
prehensive set of benchmark problem instances to address the fourth objective
of this thesis. The objective considered if current optimisation algorithms were
able to solve DCOPs and how different constraint handling approaches would
impact algorithm performance. Within this chapter, the empirical results were
evaluated from both the perspectives of the objective and constraint spaces
of the optimisation problem. These perspectives were considered during the
maintenance and introduction of diversity, algorithm solution accuracy and
the recovery of algorithms once the problem landscape experiences a change.
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It was found that the data suggested that the choice of constraint handling
approach for the algorithm has a significant influence in the overall algorithm
performance, and that algorithms could manage to provide solutions to the
comprehensive set of benchmark problems. Furthermore, it was found that
current algorithms are not effective in all usages, particularly when contrasting
SOP and DOP problem spaces. Once constraints are added to the problem
definition, more algorithms start to become ineffective with both the algorithm
and constraint handling approach becoming equally important considerations.
This finding was only possible due to a by-product of this thesis; namely a CI
software library that could control and maintain the randomness within the
algorithm executions, thereby providing for fair analysis and perfect experi-
ment reproduction. Moreover, DCOP problem landscapes had better solutions
provided by algorithms that provided self-adaption characteristics.

The fifth and final objective of the thesis resulted in a consistent approach
to CI algorithm implementations that allows for the perfect replication of
experimental results. Chapter 11 investigated the need for reproducible re-
search, highlighting the preference for open-source software to allow for com-
plete transparency between researchers. Furthermore, this chapter proposed
and substantiated the requirements for data formats, experimentation environ-
ments and how reproducible results provide a benefit to research in general.
Lastly, chapter 12 described the implementation of a software library, built with
the findings of chapter 11 in mind. The new software library was compared to
multiple existing alternatives and the problems with each was identified. The
final result was a software library that is truly compositional, using functional
programming, in order to aid researchers in managing the increasing complex-
ity of problem, algorithm and constraint handling implementations. This same
software library, CIlib, was the vehicle within which the empirical work for this
thesis was conducted.

13.2 Future Work
A number of avenues for future research are possible based off of the observa-
tions and conclusions from this thesis.

With the development of the CMPB benchmark problem generator it may
be fruitful to consider how the benchmark problem generator adjusts when
different types of peaks are used for either the objective or the constraint
spaces. The addition or adjustment of the peak shape will further alter the
composed problem landscapes and may expose alternative considerations for
the algorithm. Additionally, another possible avenue for research is to use the
perceived landscape characteristics of the generated benchmark problem to aid
the optimisation algorithm to adapt in order to guide the search through the
landscape.

Vector based performance measures have shown a clear benefit from this
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thesis. The diversity measurements, whilst informative, provide a scalar value
that is difficult to consider without context. It is unclear if the observed
diversity value is desired and the choice of algorithm complicates the meaning
further. For example, larger diversity values may be relevant for algorithm A
but the same diversity value for algorithm B may be completely insufficient or
simply not required. As a result, a meaningful vector based diversity measure
may provide more value than the currently available diversity measures.

From the observations about the performance of algorithms on the provided
benchmark problems, new algorithms might be developed that consider the
dynamism of DCOP benchmarks a primary focus. Static optimisation algo-
rithms are merely a special case of this form of algorithm. Good results might
be obtained from an algorithm designed explicitly for DCOPs, being simplified
for both unconstrained dynamic and static problem landscapes.

Possibly the most important finding is the evidence of a relationship exist-
ing between the optimisation algorithm and the constraint handling approach
that is far more relevant and important to consider within DCOPs. It is
hypothesised that the relationship will become increasingly important as the
dimensionality of the optimisation problem increases. As a result, the combi-
nation of both optimisation algorithm and constraint handling approach will
have a remarked impact on the ability of the optimisation algorithm to provide
feasible solutions to a DCOP problem landscape.

Further research into the use of reproducible experimentation to avoid
and correct the errors present within CI results should be considered. If the
production of results were to be standardised to a procedure that was fully
transparent and allowed for almost effortless result reproduction, a number of
unanswered questions might be addressed when they arise from publication
reviewers and readers. The ultimate benefit of this approach to research queries
will ensure a high standard and will allow for simpler refutations of claims,
especially as the current research trend is to focus on positive results only.
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Appendix A

Algorithm Rankings Across
Problem Benchmark Instances

Table A.1: Algorithm wins and losses for each CMPB benchmark problem instance
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1 A1C A1C 5 -8 9 -8 7 11 1 3 -8 -1 -3 -8 10
2 A1C A1L 3 -8 11 -8 7 9 1 5 -8 -1 -3 -8 10
3 A1C A1R 3 -8 11 -8 7 9 1 5 -8 -1 -3 -8 10
4 A1C A2C 3 -8 11 -8 9 7 1 5 -8 -1 -3 -8 10
5 A1C A2L 5 -8 11 -8 7 9 1 3 -8 -1 -3 -8 10
6 A1C A2R 5 -8 9 -8 7 11 1 3 -8 -1 -3 -8 10
7 A1C A3C 5 -8 9 -8 7 11 1 3 -8 -1 -3 -8 10
8 A1C A3L 3 -8 11 -8 7 9 -1 5 -8 1 -3 -8 10
9 A1C A3R 5 -8 9 -8 7 11 1 3 -8 -1 -3 -8 10
10 A1C C1C 5 -9 9 -9 7 11 -1 3 -9 -3 -5 1 40
11 A1C C1L 3 -8 11 -8 7 9 1 5 -8 -3 -1 -8 40
12 A1C C1R 3 -10 11 -7 7 9 -1 5 -10 -5 -3 1 40
13 A1C C2C 3 -9 11 -9 7 9 1 5 -9 -3 -1 -5 40
14 A1C C2L 3 -9 11 -9 7 9 -1 5 -9 -5 -3 1 40
15 A1C C2R 3 -9 9 -9 7 11 -1 5 -9 -5 -3 1 40
16 A1C C3C 5 -9 9 -9 7 11 1 3 -9 -3 -1 -5 40
17 A1C C3L 3 -8 11 -8 7 9 1 5 -8 -3 -1 -8 40
18 A1C C3R 3 -9 9 -9 7 11 1 5 -9 -3 -1 -5 40
19 A1C P1C 5 -10 9 1 7 11 -3 3 -10 -7 -5 -1 50
20 A1C P1L 3 -10 9 1 11 7 -3 5 -10 -7 -5 -1 50
21 A1C P1R 3 -10 9 -1 11 7 -5 5 -10 -7 -3 1 50
22 A1C P2C 5 -10 11 -1 9 7 -3 3 -10 -7 -5 1 50
23 A1C P2L 5 -10 11 -7 7 9 -1 3 -10 -5 -3 1 50
24 A1C P2R 5 -10 11 -1 7 9 -5 3 -10 -7 -3 1 50
25 A1C P3C 3 -10 7 1 11 9 -3 5 -10 -7 -5 -1 50
26 A1C P3L 3 -10 9 1 11 7 -3 5 -10 -7 -5 -1 50
27 A1C P3R 3 -10 9 -1 11 7 -3 5 -10 -7 -5 1 50
28 A1C STA 3 -8 11 -8 7 9 1 5 -8 -1 -3 -8 10
29 A1L A1C 5 1 9 -11 -7 11 3 7 -1 -3 -5 -9 10
30 A1L A1L 5 -1 9 -11 -7 11 3 7 1 -5 -3 -9 10
31 A1L A1R 5 -1 9 -11 -7 11 3 7 1 -3 -5 -9 10
32 A1L A2C 5 1 9 -11 -7 11 3 7 -1 -3 -5 -9 10
33 A1L A2L 5 1 9 -11 -7 11 3 7 -1 -3 -5 -9 10
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Table A.1: Algorithm wins and losses (continued)
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34 A1L A2R 5 1 9 -11 -7 11 3 7 -1 -3 -5 -9 10
35 A1L A3C 5 1 9 -11 -7 11 3 7 -1 -3 -5 -9 10
36 A1L A3L 5 -1 9 -11 -7 11 3 7 1 -3 -5 -9 10
37 A1L A3R 5 1 9 -11 -7 11 3 7 -1 -3 -5 -9 10
38 A1L C1C 5 3 9 -11 -1 11 -3 7 1 -5 -9 -7 40
39 A1L C1L 5 1 9 -11 -1 11 -3 7 3 -5 -9 -7 40
40 A1L C1R 5 1 9 -11 -1 11 -3 7 3 -5 -9 -7 40
41 A1L C2C 5 1 9 -9 -1 11 -3 7 3 -5 -11 -7 40
42 A1L C2L 5 3 9 -11 -1 11 -3 7 1 -5 -9 -7 40
43 A1L C2R 5 3 9 -11 -1 11 -3 7 1 -5 -9 -7 40
44 A1L C3C 5 3 9 -9 -1 11 -3 7 1 -5 -11 -7 40
45 A1L C3L 5 1 9 -11 -1 11 -3 7 3 -5 -9 -7 40
46 A1L C3R 5 3 9 -11 -1 11 -3 7 1 -5 -7 -9 40
47 A1L P1C 5 3 9 -7 -1 11 -3 7 1 -9 -11 -5 50
48 A1L P1L 5 3 9 -5 -1 11 -3 7 1 -9 -11 -7 50
49 A1L P1R 5 3 9 -5 -1 11 -3 7 1 -11 -9 -7 50
50 A1L P2C 5 3 9 -7 -1 11 -3 7 1 -9 -11 -5 50
51 A1L P2L 5 3 9 -7 -1 11 -3 7 1 -9 -11 -5 50
52 A1L P2R 5 3 9 -5 -1 11 -3 7 1 -9 -11 -7 50
53 A1L P3C 5 3 9 -5 -1 11 -3 7 1 -11 -9 -7 50
54 A1L P3L 5 3 9 -5 -1 11 -3 7 1 -9 -11 -7 50
55 A1L P3R 7 3 9 -5 -1 11 -3 5 1 -11 -9 -7 50
56 A1L STA 5 1 9 -11 -7 11 3 7 -1 -3 -5 -9 10
57 A1R A1C 7 1 9 -11 -7 11 -1 5 3 -3 -5 -9 10
58 A1R A1L 7 -1 9 -9 -7 11 1 5 3 -3 -5 -11 10
59 A1R A1R 7 -1 9 -11 -7 11 1 5 3 -3 -5 -9 10
60 A1R A2C 7 -1 9 -11 -7 11 1 5 3 -3 -5 -9 10
61 A1R A2L 5 1 9 -11 -7 11 -1 7 3 -5 -3 -9 10
62 A1R A2R 7 1 9 -11 -7 11 -1 5 3 -5 -3 -9 10
63 A1R A3C 7 1 9 -11 -7 11 -1 5 3 -3 -5 -9 10
64 A1R A3L 7 -1 9 -11 -7 11 1 5 3 -3 -5 -9 10
65 A1R A3R 7 3 9 -11 -7 11 -1 5 1 -3 -5 -9 10
66 A1R C1C 7 1 9 -11 -1 11 -3 5 3 -5 -7 -9 40
67 A1R C1L 7 1 9 -11 -1 11 -3 5 3 -5 -7 -9 40
68 A1R C1R 7 1 9 -11 -1 11 -3 5 3 -5 -7 -9 40
69 A1R C2C 5 1 9 -11 -1 11 -3 7 3 -5 -7 -9 40
70 A1R C2L 5 1 9 -11 -1 11 -3 7 3 -5 -7 -9 40
71 A1R C2R 7 1 9 -11 -1 11 -3 5 3 -5 -7 -9 40
72 A1R C3C 7 1 9 -11 -1 11 -3 5 3 -5 -7 -9 40
73 A1R C3L 7 1 9 -11 -1 11 -3 5 3 -5 -7 -9 40
74 A1R C3R 7 3 9 -11 -1 11 -3 5 1 -5 -7 -9 40
75 A1R P1C 7 1 9 -11 -1 11 -3 5 3 -5 -7 -9 50
76 A1R P1L 7 1 9 -11 -1 11 -3 5 3 -5 -9 -7 50
77 A1R P1R 7 1 9 -11 -1 11 -3 5 3 -7 -9 -5 50
78 A1R P2C 7 1 9 -9 -1 11 -3 5 3 -5 -7 -11 50
79 A1R P2L 7 1 9 -11 -1 11 -3 5 3 -7 -9 -5 50
80 A1R P2R 7 1 9 -11 -1 11 -3 5 3 -5 -7 -9 50
81 A1R P3C 7 1 9 -11 -1 11 -3 5 3 -7 -9 -5 50
82 A1R P3L 7 1 9 -11 -1 11 -3 5 3 -7 -9 -5 50
83 A1R P3R 7 1 9 -11 -1 11 -3 5 3 -7 -9 -5 50
84 A1R STA 7 -1 9 -11 -7 11 1 5 3 -3 -5 -9 10
85 A2C A1C 1 -3 9 -1 7 11 -7 3 -5 -11 -9 5 10
86 A2C A1L 3 -3 9 -1 7 11 -5 5 -7 -9 -11 1 10
87 A2C A1R 1 -3 9 -1 7 11 -5 5 -7 -11 -9 3 10
88 A2C A2C 1 -5 9 -1 7 11 -7 5 -3 -11 -9 3 10
89 A2C A2L 1 -7 9 -1 7 11 -5 5 -3 -11 -9 3 10
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Table A.1: Algorithm wins and losses (continued)
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90 A2C A2R 1 -5 9 -1 7 11 -7 5 -3 -11 -9 3 10
91 A2C A3C 1 -3 9 -1 7 11 -7 3 -5 -11 -9 5 10
92 A2C A3L 3 -5 9 -1 7 11 -3 5 -7 -9 -11 1 10
93 A2C A3R 1 -5 9 -1 7 11 -3 3 -7 -11 -9 5 10
94 A2C C1C 1 -3 9 -1 7 11 -7 3 -5 -11 -9 5 40
95 A2C C1L -1 -3 9 1 7 11 -7 5 -5 -11 -9 3 40
96 A2C C1R 1 -3 9 -1 7 11 -7 5 -5 -11 -9 3 40
97 A2C C2C 3 -5 9 -1 7 11 -7 5 -3 -11 -9 1 40
98 A2C C2L 1 -5 9 -1 7 11 -7 3 -3 -9 -11 5 40
99 A2C C2R 3 -5 9 -1 7 11 -7 5 -3 -11 -9 1 40
100 A2C C3C 1 -3 9 -1 7 11 -7 3 -5 -11 -9 5 40
101 A2C C3L -1 -3 9 1 7 11 -7 5 -5 -11 -9 3 40
102 A2C C3R 1 -3 9 -1 7 11 -7 5 -5 -11 -9 3 40
103 A2C P1C 1 -3 9 -1 7 11 -7 3 -5 -11 -9 5 50
104 A2C P1L 1 -3 9 -1 7 11 -7 5 -5 -9 -11 3 50
105 A2C P1R 1 -3 9 -1 7 11 -7 5 -5 -9 -11 3 50
106 A2C P2C -1 -3 9 1 7 11 -7 5 -5 -11 -9 3 50
107 A2C P2L -1 -3 9 1 7 11 -7 5 -5 -11 -9 3 50
108 A2C P2R -1 -3 9 3 7 11 -7 1 -5 -11 -9 5 50
109 A2C P3C 1 -3 9 -1 7 11 -7 5 -5 -9 -11 3 50
110 A2C P3L 1 -3 9 -1 7 11 -7 3 -5 -9 -11 5 50
111 A2C P3R 1 -3 9 -1 7 11 -7 5 -5 -11 -9 3 50
112 A2C STA 1 -3 9 -1 7 11 -5 5 -7 -11 -9 3 10
113 A2L A1C 1 -5 5 -1 9 7 -3 3 -7 -11 -9 11 10
114 A2L A1L 3 -7 7 -1 5 9 -3 1 -5 -9 -11 11 10
115 A2L A1R 3 -7 5 -1 9 7 -5 1 -3 -9 -11 11 10
116 A2L A2C 3 -5 5 -1 7 9 -3 1 -7 -9 -11 11 10
117 A2L A2L 1 -7 7 -1 5 11 -3 3 -5 -9 -11 9 10
118 A2L A2R 3 -5 5 -1 7 9 -3 1 -7 -11 -9 11 10
119 A2L A3C 1 -5 5 -1 9 7 -3 3 -7 -11 -9 11 10
120 A2L A3L 3 -7 5 -1 9 7 -3 1 -5 -9 -11 11 10
121 A2L A3R 1 -7 5 -1 9 7 -5 3 -3 -9 -11 11 10
122 A2L C1C 1 -3 5 -1 9 7 -7 3 -5 -11 -9 11 40
123 A2L C1L 1 -5 7 -1 5 9 -7 3 -3 -11 -9 11 40
124 A2L C1R 3 -5 5 -1 7 9 -7 1 -3 -11 -9 11 40
125 A2L C2C 3 -3 5 -1 7 9 -7 1 -5 -11 -9 11 40
126 A2L C2L 1 -5 9 -1 5 11 -7 3 -3 -9 -11 7 40
127 A2L C2R 1 -3 5 -1 7 9 -7 3 -5 -9 -11 11 40
128 A2L C3C 1 -3 5 -1 9 7 -7 3 -5 -11 -9 11 40
129 A2L C3L 1 -5 7 -1 5 9 -7 3 -3 -11 -9 11 40
130 A2L C3R 1 -5 7 -1 5 9 -7 3 -3 -11 -9 11 40
131 A2L P1C 1 -3 5 -1 9 7 -7 3 -5 -9 -11 11 50
132 A2L P1L 1 -5 5 -1 7 9 -7 3 -3 -9 -11 11 50
133 A2L P1R 1 -5 5 -1 7 9 -7 3 -3 -9 -11 11 50
134 A2L P2C 1 -3 5 -1 9 7 -7 3 -5 -9 -11 11 50
135 A2L P2L 1 -5 5 -1 9 7 -7 3 -3 -9 -11 11 50
136 A2L P2R 1 -3 5 -1 9 7 -7 3 -5 -9 -11 11 50
137 A2L P3C 3 -5 7 1 5 9 -7 -1 -3 -9 -11 11 50
138 A2L P3L 1 -5 5 -1 7 9 -7 3 -3 -9 -11 11 50
139 A2L P3R 3 -5 5 1 9 7 -7 -1 -3 -9 -11 11 50
140 A2L STA 3 -7 5 -1 9 7 -3 1 -5 -9 -11 11 10
141 A2R A1C 3 -3 11 -1 7 9 -5 5 -7 -9 -11 1 10
142 A2R A1L 3 -5 11 -1 7 9 -3 5 -7 -11 -9 1 10
143 A2R A1R 3 -5 11 -1 7 9 -3 5 -7 -9 -11 1 10
144 A2R A2C 3 -7 11 -1 7 9 -3 5 -5 -9 -11 1 10
145 A2R A2L 3 -11 11 -1 7 9 -3 5 -5 -7 -9 1 10
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146 A2R A2R 3 -7 11 -1 7 9 -3 5 -5 -11 -9 1 10
147 A2R A3C 3 -3 11 -1 7 9 -5 5 -7 -9 -11 1 10
148 A2R A3L 3 -7 11 -1 7 9 -3 5 -5 -11 -9 1 10
149 A2R A3R 3 -7 9 -1 7 11 -3 5 -5 -9 -11 1 10
150 A2R C1C 3 -3 11 -1 7 9 -7 5 -5 -9 -11 1 40
151 A2R C1L 3 -3 11 -1 5 9 -7 7 -5 -9 -11 1 40
152 A2R C1R 3 -3 9 -1 7 11 -7 5 -5 -11 -9 1 40
153 A2R C2C 1 -5 11 -1 7 9 -7 5 -3 -11 -9 3 40
154 A2R C2L 3 -5 11 -1 7 9 -7 5 -3 -9 -11 1 40
155 A2R C2R 3 -5 11 -1 7 9 -7 5 -3 -11 -9 1 40
156 A2R C3C 3 -3 11 -1 7 9 -7 5 -5 -9 -11 1 40
157 A2R C3L 3 -5 11 -1 7 9 -7 5 -3 -9 -11 1 40
158 A2R C3R 3 -5 9 -1 7 11 -7 5 -3 -9 -11 1 40
159 A2R P1C 1 -3 11 -1 7 9 -7 3 -5 -9 -11 5 50
160 A2R P1L 3 -3 11 -1 7 9 -7 5 -5 -11 -9 1 50
161 A2R P1R 3 -3 11 -1 7 9 -7 5 -5 -11 -9 1 50
162 A2R P2C 5 -3 11 -1 7 9 -7 1 -5 -9 -11 3 50
163 A2R P2L 1 -3 11 -1 7 9 -7 3 -5 -9 -11 5 50
164 A2R P2R 5 -3 11 -1 7 9 -7 1 -5 -9 -11 3 50
165 A2R P3C 3 -3 11 -1 7 9 -7 5 -5 -9 -11 1 50
166 A2R P3L 3 -3 11 -1 7 9 -7 5 -5 -9 -11 1 50
167 A2R P3R 3 -3 11 -1 7 9 -7 5 -5 -9 -11 1 50
168 A2R STA 3 -3 11 -1 7 9 -5 5 -7 -9 -11 1 10
169 A3C A1C 5 -8 9 -8 7 11 1 3 -8 -3 -1 -8 10
170 A3C A1L 3 -8 9 -8 7 11 1 5 -8 -3 -1 -8 10
171 A3C A1R 5 -8 9 -8 7 11 1 3 -8 -1 -3 -8 10
172 A3C A2C 5 -8 9 -8 7 11 1 3 -8 -3 -1 -8 10
173 A3C A2L 3 -8 9 -8 7 11 1 5 -8 -1 -3 -8 10
174 A3C A2R 5 -8 9 -8 7 11 1 3 -8 -3 -1 -8 10
175 A3C A3C 5 -8 9 -8 7 11 1 3 -8 -3 -1 -8 10
176 A3C A3L 3 -8 9 -8 7 11 1 5 -8 -3 -1 -8 10
177 A3C A3R 5 -8 9 -8 7 11 1 3 -8 -3 -1 -8 10
178 A3C C1C 5 -10 9 1 7 11 -3 3 -10 -7 -5 -1 40
179 A3C C1L 3 -9 9 -9 7 11 1 5 -9 -5 -3 -1 40
180 A3C C1R 3 -10 9 -1 7 11 -3 5 -10 -7 -5 1 40
181 A3C C2C 5 -9 9 -9 7 11 -1 3 -9 -5 -3 1 40
182 A3C C2L 3 -9 9 -9 7 11 -1 5 -9 -5 -3 1 40
183 A3C C2R 5 -9 9 -9 7 11 -1 3 -9 -5 -3 1 40
184 A3C C3C 3 -9 9 -9 7 11 -1 5 -9 -5 -3 1 40
185 A3C C3L 3 -9 9 -5 7 11 1 5 -9 -3 -1 -9 40
186 A3C C3R 5 -9 9 -9 7 11 -1 3 -9 -5 -3 1 40
187 A3C P1C 5 -10 9 1 7 11 -3 3 -10 -5 -7 -1 50
188 A3C P1L 5 -10 9 1 7 11 -1 3 -10 -5 -7 -3 50
189 A3C P1R 5 -10 9 1 7 11 -3 3 -10 -5 -7 -1 50
190 A3C P2C 5 -10 9 1 7 11 -3 3 -10 -5 -7 -1 50
191 A3C P2L 5 -10 9 -3 7 11 -1 3 -10 -7 -5 1 50
192 A3C P2R 5 -10 9 1 7 11 -3 3 -10 -5 -7 -1 50
193 A3C P3C 5 -10 9 1 7 11 -3 3 -10 -5 -7 -1 50
194 A3C P3L 5 -10 9 1 7 11 -1 3 -10 -3 -5 -7 50
195 A3C P3R 5 -10 9 1 7 11 -3 3 -10 -5 -7 -1 50
196 A3C STA 5 -8 9 -8 7 11 1 3 -8 -3 -1 -8 10
197 A3L A1C 7 3 9 -11 -7 11 -1 5 1 -3 -5 -9 10
198 A3L A1L 7 1 9 -11 -7 11 -1 5 3 -5 -3 -9 10
199 A3L A1R 7 1 9 -11 -7 11 -1 5 3 -5 -3 -9 10
200 A3L A2C 7 1 9 -11 -7 11 -1 5 3 -3 -5 -9 10
201 A3L A2L 5 3 9 -11 -7 11 -1 7 1 -5 -3 -9 10
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202 A3L A2R 5 3 9 -11 -7 11 -1 7 1 -3 -5 -9 10
203 A3L A3C 7 3 9 -11 -7 11 -1 5 1 -3 -5 -9 10
204 A3L A3L 7 3 9 -11 -7 11 -1 5 1 -3 -5 -9 10
205 A3L A3R 7 1 9 -11 -7 11 -1 5 3 -5 -3 -9 10
206 A3L C1C 7 3 9 -11 -1 11 -3 5 1 -5 -7 -9 40
207 A3L C1L 5 1 9 -11 -1 11 -3 7 3 -7 -5 -9 40
208 A3L C1R 5 1 9 -11 -1 11 -3 7 3 -5 -7 -9 40
209 A3L C2C 7 3 9 -9 -1 11 -3 5 1 -5 -7 -11 40
210 A3L C2L 5 3 9 -11 -1 11 -3 7 1 -5 -7 -9 40
211 A3L C2R 7 3 9 -11 -1 11 -3 5 1 -5 -7 -9 40
212 A3L C3C 7 3 9 -11 -1 11 -3 5 1 -5 -7 -9 40
213 A3L C3L 5 3 9 -11 -1 11 -3 7 1 -5 -7 -9 40
214 A3L C3R 5 1 9 -11 -1 11 -3 7 3 -5 -7 -9 40
215 A3L P1C 7 3 9 -11 -1 11 -3 5 1 -7 -9 -5 50
216 A3L P1L 7 3 9 -5 -1 11 -3 5 1 -9 -11 -7 50
217 A3L P1R 7 3 9 -5 -1 11 -3 5 1 -9 -11 -7 50
218 A3L P2C 7 3 9 -9 -1 11 -3 5 1 -7 -11 -5 50
219 A3L P2L 7 1 9 -9 -1 11 -3 5 3 -7 -11 -5 50
220 A3L P2R 7 1 9 -7 -1 11 -3 5 3 -9 -11 -5 50
221 A3L P3C 7 3 9 -7 -1 11 -3 5 1 -9 -11 -5 50
222 A3L P3L 7 3 9 -7 -1 11 -3 5 1 -9 -11 -5 50
223 A3L P3R 7 3 9 -5 -1 11 -3 5 1 -9 -11 -7 50
224 A3L STA 7 3 9 -11 -7 11 -1 5 1 -5 -3 -9 10
225 A3R A1C 7 1 9 -11 -7 11 -1 5 3 -5 -3 -9 10
226 A3R A1L 7 1 9 -11 -7 11 -1 5 3 -5 -3 -9 10
227 A3R A1R 7 1 9 -11 -7 11 -1 5 3 -3 -5 -9 10
228 A3R A2C 7 1 9 -11 -7 11 -1 5 3 -3 -5 -9 10
229 A3R A2L 7 1 11 -11 -7 9 -1 5 3 -3 -5 -9 10
230 A3R A2R 7 1 9 -11 -7 11 -1 5 3 -3 -5 -9 10
231 A3R A3C 7 1 9 -11 -7 11 -1 5 3 -3 -5 -9 10
232 A3R A3L 7 1 9 -11 -7 11 -1 5 3 -3 -5 -9 10
233 A3R A3R 7 1 9 -11 -7 11 -1 5 3 -5 -3 -9 10
234 A3R C1C 7 1 9 -11 -3 11 -1 5 3 -7 -5 -9 40
235 A3R C1L 5 1 9 -11 -1 11 -3 7 3 -7 -5 -9 40
236 A3R C1R 7 1 9 -11 -3 11 -1 5 3 -7 -5 -9 40
237 A3R C2C 5 1 9 -11 -3 11 -1 7 3 -5 -7 -9 40
238 A3R C2L 5 1 9 -11 -3 11 -1 7 3 -5 -7 -9 40
239 A3R C2R 7 1 9 -11 -3 11 -1 5 3 -5 -7 -9 40
240 A3R C3C 7 1 9 -11 -3 11 -1 5 3 -7 -5 -9 40
241 A3R C3L 7 1 9 -11 -1 11 -3 5 3 -7 -5 -9 40
242 A3R C3R 7 1 9 -11 -3 11 -1 5 3 -5 -7 -9 40
243 A3R P1C 7 1 9 -11 -1 11 -3 5 3 -7 -9 -5 50
244 A3R P1L 7 1 9 -11 -1 11 -3 5 3 -7 -9 -5 50
245 A3R P1R 7 1 9 -11 -1 11 -3 5 3 -9 -7 -5 50
246 A3R P2C 7 1 9 -9 -1 11 -3 5 3 -5 -7 -11 50
247 A3R P2L 7 1 9 -11 -1 11 -3 5 3 -5 -7 -9 50
248 A3R P2R 7 1 9 -11 -1 11 -3 5 3 -5 -7 -9 50
249 A3R P3C 7 1 9 -11 -1 11 -3 5 3 -7 -9 -5 50
250 A3R P3L 7 1 9 -11 -1 11 -3 5 3 -5 -7 -9 50
251 A3R P3R 7 1 9 -9 -1 11 -3 5 3 -5 -7 -11 50
252 A3R STA 7 1 9 -11 -7 11 -1 5 3 -3 -5 -9 10
253 C1C A1C 7 -9 9 -9 3 11 1 5 -9 -3 -1 -5 50
254 C1C A1L 7 -10 11 -7 5 9 -3 3 -10 -5 -1 1 50
255 C1C A1R 7 -10 11 1 3 9 -5 5 -10 -7 -3 -1 50
256 C1C A2C 5 -9 11 -9 3 9 1 7 -9 -3 -1 -5 50
257 C1C A2L 5 -9 11 -9 3 9 -3 7 -9 -5 -1 1 50
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Table A.1: Algorithm wins and losses (continued)
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258 C1C A2R 5 -9 9 -9 3 11 -3 7 -9 -5 -1 1 50
259 C1C A3C 7 -10 9 1 3 11 -1 5 -10 -5 -3 -7 50
260 C1C A3L 5 -10 11 -7 3 9 -1 7 -10 -3 1 -5 50
261 C1C A3R 7 -9 11 -9 3 9 -3 5 -9 -5 -1 1 50
262 C1C C1C 7 -10 9 3 -7 11 -1 5 -10 -5 -3 1 67
263 C1C C1L 5 -8 11 -8 3 9 1 7 -8 -3 -1 -8 67
264 C1C C1R 7 -10 11 3 -7 9 -1 5 -10 -5 -3 1 67
265 C1C C2C 5 -10 9 1 3 11 -1 7 -10 -5 -3 -7 67
266 C1C C2L 5 -10 11 -7 3 9 -1 7 -10 -3 -5 1 67
267 C1C C2R 5 -10 9 1 3 11 -3 7 -10 -7 -5 -1 67
268 C1C C3C 7 -10 9 3 -7 11 -1 5 -10 -5 -3 1 67
269 C1C C3L 5 -7 11 -7 -7 9 3 7 -7 1 -1 -7 67
270 C1C C3R 7 -10 11 -1 3 9 -3 5 -10 -7 -5 1 67
271 C1C P1C 7 -8 9 -8 3 11 1 5 -8 -3 -1 -8 50
272 C1C P1L 3 -10 11 1 7 9 -3 5 -10 -5 -1 -7 50
273 C1C P1R 5 -10 11 1 3 9 -3 7 -10 -5 -1 -7 50
274 C1C P2C 7 -10 9 -7 5 11 -3 3 -10 -5 -1 1 50
275 C1C P2L 7 -9 9 -9 3 11 -3 5 -9 -5 -1 1 50
276 C1C P2R 3 -10 9 -1 5 11 -3 7 -10 -7 -5 1 50
277 C1C P3C 5 -10 11 1 3 9 -5 7 -10 -7 -3 -1 50
278 C1C P3L 5 -9 11 -5 3 9 -1 7 -9 -3 1 -9 50
279 C1C P3R 5 -10 11 -5 3 9 -1 7 -10 -3 1 -7 50
280 C1C STA 5 -8 11 -8 3 9 -1 7 -8 -3 1 -8 50
281 C1L A1C 5 1 9 -11 -7 11 -1 7 3 -5 -3 -9 50
282 C1L A1L 5 1 11 -9 -7 9 -1 7 3 -3 -5 -11 50
283 C1L A1R 5 1 9 -11 -7 11 -1 7 3 -3 -5 -9 50
284 C1L A2C 5 1 11 -11 -7 9 -1 7 3 -5 -3 -9 50
285 C1L A2L 5 1 9 -9 -7 11 -1 7 3 -3 -5 -11 50
286 C1L A2R 5 1 11 -11 -7 9 -1 7 3 -5 -3 -9 50
287 C1L A3C 7 1 9 -11 -7 11 -1 5 3 -5 -3 -9 50
288 C1L A3L 7 1 9 -11 -7 11 -1 5 3 -3 -5 -9 50
289 C1L A3R 5 1 9 -11 -7 11 -1 7 3 -5 -3 -9 50
290 C1L C1C 5 1 9 -9 -7 11 -1 7 3 -5 -3 -11 67
291 C1L C1L 5 1 11 -9 -5 9 -1 7 3 -7 -3 -11 67
292 C1L C1R 5 1 9 -9 -5 11 -1 7 3 -7 -3 -11 67
293 C1L C2C 5 1 9 -9 -7 11 -1 7 3 -5 -3 -11 67
294 C1L C2L 5 1 9 -9 -7 11 -1 7 3 -3 -5 -11 67
295 C1L C2R 5 1 9 -9 -7 11 -1 7 3 -3 -5 -11 67
296 C1L C3C 7 1 9 -9 -7 11 -1 5 3 -5 -3 -11 67
297 C1L C3L 5 1 9 -11 -7 11 -1 7 3 -5 -3 -9 67
298 C1L C3R 5 1 9 -9 -7 11 -1 7 3 -5 -3 -11 67
299 C1L P1C 5 1 9 -11 -7 11 -1 7 3 -5 -3 -9 50
300 C1L P1L 5 1 9 -9 -7 11 -1 7 3 -5 -3 -11 50
301 C1L P1R 5 1 9 -11 -7 11 -1 7 3 -5 -3 -9 50
302 C1L P2C 5 1 9 -11 -7 11 -1 7 3 -3 -5 -9 50
303 C1L P2L 5 1 9 -11 -7 11 -1 7 3 -5 -3 -9 50
304 C1L P2R 5 1 9 -11 -7 11 -1 7 3 -5 -3 -9 50
305 C1L P3C 5 1 9 -9 -7 11 -1 7 3 -5 -3 -11 50
306 C1L P3L 5 1 9 -9 -7 11 -1 7 3 -5 -3 -11 50
307 C1L P3R 3 1 9 -11 -7 11 -1 7 5 -5 -3 -9 50
308 C1L STA 5 1 9 -11 -7 11 -1 7 3 -3 -5 -9 50
309 C1R A1C 5 3 9 -11 -5 11 -1 1 7 -3 -7 -9 50
310 C1R A1L 5 3 9 -11 -7 11 -1 1 7 -3 -5 -9 50
311 C1R A1R 5 3 9 -11 -7 11 -1 1 7 -3 -5 -9 50
312 C1R A2C 5 1 9 -11 -7 11 -1 3 7 -3 -5 -9 50
313 C1R A2L 3 5 9 -11 -3 11 -1 1 7 -7 -5 -9 50
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Table A.1: Algorithm wins and losses (continued)
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314 C1R A2R 5 1 9 -11 -5 11 -1 3 7 -3 -7 -9 50
315 C1R A3C 5 3 9 -11 -7 11 -1 1 7 -3 -5 -9 50
316 C1R A3L 5 3 9 -11 -7 11 -1 1 7 -3 -5 -9 50
317 C1R A3R 5 3 9 -9 -5 11 -1 1 7 -3 -7 -11 50
318 C1R C1C 5 3 9 -9 -3 11 -1 1 7 -7 -5 -11 67
319 C1R C1L 5 3 9 -9 -3 11 -1 1 7 -7 -5 -11 67
320 C1R C1R 5 3 9 -11 -3 11 -1 1 7 -5 -7 -9 67
321 C1R C2C 5 1 9 -9 -3 11 -1 3 7 -7 -5 -11 67
322 C1R C2L 3 5 9 -11 -3 11 -1 1 7 -7 -5 -9 67
323 C1R C2R 5 1 9 -9 -3 11 -1 3 7 -7 -5 -11 67
324 C1R C3C 5 3 9 -9 -3 11 -1 1 7 -7 -5 -11 67
325 C1R C3L 5 1 9 -9 -7 11 -1 3 7 -5 -3 -11 67
326 C1R C3R 5 3 9 -11 -3 11 -1 1 7 -5 -7 -9 67
327 C1R P1C 5 3 9 -11 -3 11 -1 1 7 -5 -7 -9 50
328 C1R P1L 5 3 9 -11 -7 11 -1 1 7 -3 -5 -9 50
329 C1R P1R 5 3 9 -11 -7 11 -1 1 7 -3 -5 -9 50
330 C1R P2C 5 1 9 -9 -3 11 -1 3 7 -7 -5 -11 50
331 C1R P2L 5 1 9 -11 -3 11 -1 3 7 -5 -7 -9 50
332 C1R P2R 5 1 9 -11 -3 11 -1 3 7 -7 -5 -9 50
333 C1R P3C 5 3 9 -11 -7 11 -1 1 7 -3 -5 -9 50
334 C1R P3L 5 3 9 -11 -7 11 -1 1 7 -3 -5 -9 50
335 C1R P3R 5 3 9 -11 -7 11 -1 1 7 -3 -5 -9 50
336 C1R STA 5 3 9 -11 -7 11 -1 1 7 -3 -5 -9 50
337 C2C A1C -1 -3 9 3 7 11 -7 1 -5 -11 -9 5 50
338 C2C A1L -1 -3 9 3 7 11 -7 1 -5 -9 -11 5 50
339 C2C A1R -1 -5 9 3 7 11 -7 1 -3 -9 -11 5 50
340 C2C A2C -1 -5 9 3 7 11 -7 1 -3 -11 -9 5 50
341 C2C A2L -1 -5 9 3 7 11 -7 1 -3 -9 -11 5 50
342 C2C A2R -1 -5 9 3 7 11 -7 1 -3 -11 -9 5 50
343 C2C A3C -1 -5 9 3 7 11 -7 1 -3 -11 -9 5 50
344 C2C A3L -1 -5 9 3 7 11 -7 1 -3 -9 -11 5 50
345 C2C A3R -1 -5 9 3 7 11 -7 1 -3 -9 -11 5 50
346 C2C C1C -1 -3 9 3 7 11 -7 1 -5 -9 -11 5 67
347 C2C C1L -1 -3 9 3 7 11 -7 1 -5 -9 -11 5 67
348 C2C C1R -1 -5 9 3 7 11 -7 1 -3 -11 -9 5 67
349 C2C C2C -1 -5 9 3 7 11 -7 1 -3 -9 -11 5 67
350 C2C C2L -1 -5 9 3 7 11 -7 1 -3 -9 -11 5 67
351 C2C C2R -1 -5 9 3 7 11 -7 1 -3 -9 -11 5 67
352 C2C C3C -1 -5 9 3 7 11 -7 1 -3 -9 -11 5 67
353 C2C C3L -1 -3 9 3 7 11 -7 1 -5 -9 -11 5 67
354 C2C C3R -1 -5 9 3 7 11 -7 1 -3 -11 -9 5 67
355 C2C P1C -1 -3 9 3 7 11 -7 1 -5 -11 -9 5 50
356 C2C P1L -1 -3 9 3 7 11 -7 1 -5 -9 -11 5 50
357 C2C P1R -1 -3 9 3 7 11 -7 1 -5 -9 -11 5 50
358 C2C P2C -1 -3 9 3 7 11 -7 1 -5 -9 -11 5 50
359 C2C P2L -1 -3 9 3 7 11 -7 1 -5 -11 -9 5 50
360 C2C P2R -1 -3 9 3 7 11 -7 1 -5 -11 -9 5 50
361 C2C P3C -1 -3 9 3 7 11 -7 1 -5 -9 -11 5 50
362 C2C P3L -1 -3 9 3 7 11 -7 1 -5 -9 -11 5 50
363 C2C P3R -1 -3 9 3 7 11 -7 1 -5 -9 -11 5 50
364 C2C STA -1 -3 9 3 7 11 -7 1 -5 -9 -11 5 50
365 C2L A1C 5 -5 -1 1 7 9 -7 3 -3 -9 -11 11 50
366 C2L A1L 5 -5 1 3 7 9 -7 -1 -3 -9 -11 11 50
367 C2L A1R -1 -5 5 1 7 9 -7 3 -3 -9 -11 11 50
368 C2L A2C -1 -5 1 5 7 9 -7 3 -3 -9 -11 11 50
369 C2L A2L -1 -3 3 5 7 9 -7 1 -5 -9 -11 11 50
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370 C2L A2R -1 -5 1 5 7 9 -7 3 -3 -9 -11 11 50
371 C2L A3C 5 -5 -1 3 7 9 -7 1 -3 -9 -11 11 50
372 C2L A3L -1 -5 3 5 7 9 -7 1 -3 -9 -11 11 50
373 C2L A3R 5 -5 1 3 7 9 -7 -1 -3 -9 -11 11 50
374 C2L C1C 5 -5 -1 3 7 9 -7 1 -3 -11 -9 11 67
375 C2L C1L -1 -5 1 5 7 9 -7 3 -3 -11 -9 11 67
376 C2L C1R -1 -5 5 3 7 9 -7 1 -3 -9 -11 11 67
377 C2L C2C -1 -5 3 5 7 9 -7 1 -3 -11 -9 11 67
378 C2L C2L -1 -3 7 5 1 9 -7 3 -5 -11 -9 11 67
379 C2L C2R -1 -5 3 5 7 9 -7 1 -3 -11 -9 11 67
380 C2L C3C 1 -5 -1 5 7 9 -7 3 -3 -9 -11 11 67
381 C2L C3L -1 -5 1 3 7 9 -7 5 -3 -9 -11 11 67
382 C2L C3R -1 -5 5 3 7 9 -7 1 -3 -11 -9 11 67
383 C2L P1C 5 -5 -1 1 7 9 -7 3 -3 -9 -11 11 50
384 C2L P1L 1 -5 -1 5 7 9 -7 3 -3 -9 -11 11 50
385 C2L P1R 1 -5 -1 5 7 9 -7 3 -3 -9 -11 11 50
386 C2L P2C -1 -3 1 5 7 9 -7 3 -5 -9 -11 11 50
387 C2L P2L -1 -5 3 5 7 9 -7 1 -3 -9 -11 11 50
388 C2L P2R -1 -3 1 5 7 9 -7 3 -5 -9 -11 11 50
389 C2L P3C 1 -5 -1 5 7 9 -7 3 -3 -9 -11 11 50
390 C2L P3L 1 -5 -1 5 7 9 -7 3 -3 -9 -11 11 50
391 C2L P3R 1 -5 -1 5 7 9 -7 3 -3 -9 -11 11 50
392 C2L STA -1 -5 1 5 7 9 -7 3 -3 -9 -11 11 50
393 C2R A1C -1 -3 9 3 7 11 -7 1 -5 -11 -9 5 50
394 C2R A1L -1 -3 9 1 7 11 -7 3 -5 -11 -9 5 50
395 C2R A1R -1 -5 9 1 7 11 -7 3 -3 -11 -9 5 50
396 C2R A2C -1 -5 9 3 7 11 -7 1 -3 -11 -9 5 50
397 C2R A2L -1 -5 9 3 7 11 -7 1 -3 -11 -9 5 50
398 C2R A2R -1 -5 9 3 7 11 -7 1 -3 -11 -9 5 50
399 C2R A3C -1 -3 9 3 7 11 -7 1 -5 -11 -9 5 50
400 C2R A3L -1 -5 9 3 7 11 -7 1 -3 -11 -9 5 50
401 C2R A3R -1 -5 9 1 7 11 -7 5 -3 -9 -11 3 50
402 C2R C1C -1 -3 9 5 7 11 -7 1 -5 -9 -11 3 67
403 C2R C1L -1 -3 9 3 7 11 -7 1 -5 -9 -11 5 67
404 C2R C1R -1 -5 9 1 7 11 -7 5 -3 -9 -11 3 67
405 C2R C2C -1 -5 9 3 7 11 -7 1 -3 -9 -11 5 67
406 C2R C2L -1 -5 9 5 7 11 -7 1 -3 -9 -11 3 67
407 C2R C2R -1 -5 9 5 7 11 -7 3 -3 -9 -11 1 67
408 C2R C3C -1 -3 9 5 7 11 -7 1 -5 -9 -11 3 67
409 C2R C3L -1 -5 9 3 7 11 -7 1 -3 -9 -11 5 67
410 C2R C3R -1 -5 9 1 7 11 -7 5 -3 -9 -11 3 67
411 C2R P1C -1 -3 9 3 7 11 -7 1 -5 -11 -9 5 50
412 C2R P1L -1 -3 9 3 7 11 -7 5 -5 -11 -9 1 50
413 C2R P1R -1 -3 9 3 7 11 -7 5 -5 -11 -9 1 50
414 C2R P2C -1 -3 9 3 7 11 -7 5 -5 -11 -9 1 50
415 C2R P2L -1 -3 9 1 7 11 -7 5 -5 -11 -9 3 50
416 C2R P2R -1 -3 9 3 7 11 -7 5 -5 -11 -9 1 50
417 C2R P3C -1 -5 9 3 7 11 -7 5 -3 -11 -9 1 50
418 C2R P3L -1 -3 9 3 7 11 -7 5 -5 -11 -9 1 50
419 C2R P3R -1 -3 9 3 7 11 -7 5 -5 -11 -9 1 50
420 C2R STA -1 -5 9 3 7 11 -7 5 -3 -11 -9 1 50
421 C3C A1C 5 -10 9 -1 7 11 -3 3 -10 -7 -5 1 50
422 C3C A1L 5 -10 9 1 7 11 -3 3 -10 -5 -7 -1 50
423 C3C A1R 5 -10 9 1 7 11 -1 3 -10 -3 -5 -7 50
424 C3C A2C 3 -10 9 -1 7 11 -3 5 -10 -5 -7 1 50
425 C3C A2L 3 -10 9 1 7 11 -3 5 -10 -7 -5 -1 50
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426 C3C A2R 5 -10 9 -1 7 11 -3 3 -10 -7 -5 1 50
427 C3C A3C 5 -10 9 -1 7 11 -3 3 -10 -7 -5 1 50
428 C3C A3L 5 -10 9 -1 7 11 -3 3 -10 -5 -7 1 50
429 C3C A3R 5 -10 9 -1 7 11 -3 3 -10 -5 -7 1 50
430 C3C C1C 7 -10 9 1 3 11 -3 5 -10 -7 -5 -1 67
431 C3C C1L 3 -9 9 -5 7 11 1 5 -9 -3 -1 -9 67
432 C3C C1R 3 -10 9 -1 5 11 -3 7 -10 -7 -5 1 67
433 C3C C2C 7 -10 9 1 3 11 -3 5 -10 -7 -5 -1 67
434 C3C C2L 3 -10 9 1 5 11 -1 7 -10 -5 -3 -7 67
435 C3C C2R 7 -10 9 1 3 11 -3 5 -10 -7 -5 -1 67
436 C3C C3C 3 -10 9 -1 7 11 -3 5 -10 -5 -7 1 67
437 C3C C3L 5 -10 9 1 3 11 -1 7 -10 -5 -3 -7 67
438 C3C C3R 5 -10 9 -1 7 11 -3 3 -10 -7 -5 1 67
439 C3C P1C 5 -10 9 -1 7 11 -3 3 -10 -7 -5 1 50
440 C3C P1L 3 -10 9 -1 7 11 -3 5 -10 -5 -7 1 50
441 C3C P1R 3 -10 9 -1 7 11 -3 5 -10 -5 -7 1 50
442 C3C P2C 3 -10 9 -3 7 11 -1 5 -10 -7 -5 1 50
443 C3C P2L 3 -10 9 -1 7 11 -3 5 -10 -7 -5 1 50
444 C3C P2R 5 -10 9 -1 7 11 -3 3 -10 -7 -5 1 50
445 C3C P3C 3 -10 9 -1 7 11 -3 5 -10 -7 -5 1 50
446 C3C P3L 3 -10 9 -1 7 11 -3 5 -10 -5 -7 1 50
447 C3C P3R 3 -10 9 -1 7 11 -3 5 -10 -7 -5 1 50
448 C3C STA 3 -10 9 -1 7 11 -3 5 -10 -5 -7 1 50
449 C3L A1C 3 7 9 -9 -7 11 -1 1 5 -5 -3 -11 50
450 C3L A1L 1 7 9 -9 -7 11 -1 3 5 -3 -5 -11 50
451 C3L A1R 1 7 9 -9 -7 11 -1 3 5 -3 -5 -11 50
452 C3L A2C 1 7 9 -9 -7 11 -1 3 5 -3 -5 -11 50
453 C3L A2L 1 7 9 -9 -7 11 -1 3 5 -3 -5 -11 50
454 C3L A2R 1 7 9 -11 -7 11 -1 3 5 -3 -5 -9 50
455 C3L A3C 3 7 9 -9 -7 11 -1 1 5 -5 -3 -11 50
456 C3L A3L 1 7 9 -9 -7 11 -1 3 5 -3 -5 -11 50
457 C3L A3R 1 7 9 -9 -7 11 -1 3 5 -3 -5 -11 50
458 C3L C1C 3 7 9 -9 -7 11 -1 1 5 -3 -5 -11 67
459 C3L C1L 1 5 9 -11 -7 11 -1 3 7 -3 -5 -9 67
460 C3L C1R 1 7 9 -9 -7 11 -1 3 5 -3 -5 -11 67
461 C3L C2C 1 7 9 -9 -7 11 -1 3 5 -3 -5 -11 67
462 C3L C2L 1 7 9 -9 -7 11 -1 3 5 -3 -5 -11 67
463 C3L C2R 1 7 9 -11 -7 11 -1 3 5 -3 -5 -9 67
464 C3L C3C 3 7 9 -9 -7 11 -1 1 5 -3 -5 -11 67
465 C3L C3L 3 7 9 -11 -7 11 -1 1 5 -5 -3 -9 67
466 C3L C3R 1 7 9 -9 -7 11 -1 3 5 -3 -5 -11 67
467 C3L P1C 3 7 9 -9 -7 11 -1 1 5 -5 -3 -11 50
468 C3L P1L 1 7 9 -9 -7 11 -1 3 5 -5 -3 -11 50
469 C3L P1R 1 7 9 -9 -7 11 -1 3 5 -5 -3 -11 50
470 C3L P2C 1 7 9 -9 -7 11 -1 3 5 -3 -5 -11 50
471 C3L P2L 1 7 9 -9 -7 11 -1 3 5 -3 -5 -11 50
472 C3L P2R 1 7 9 -9 -7 11 -1 3 5 -3 -5 -11 50
473 C3L P3C 1 7 9 -9 -7 11 -1 3 5 -3 -5 -11 50
474 C3L P3L 1 7 9 -9 -7 11 -1 3 5 -3 -5 -11 50
475 C3L P3R 1 7 9 -9 -7 11 -1 3 5 -3 -5 -11 50
476 C3L STA 1 7 9 -9 -7 11 -1 3 5 -3 -5 -11 50
477 C3R A1C 3 7 9 -11 -5 11 -1 1 5 -7 -3 -9 50
478 C3R A1L 3 5 9 -11 -5 11 -1 1 7 -7 -3 -9 50
479 C3R A1R 3 5 9 -11 -5 11 -1 1 7 -7 -3 -9 50
480 C3R A2C 3 7 9 -11 -3 11 -1 1 5 -7 -5 -9 50
481 C3R A2L 3 7 9 -11 -5 11 -1 1 5 -7 -3 -9 50
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Table A.1: Algorithm wins and losses (continued)
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482 C3R A2R 3 5 9 -11 -5 11 -1 1 7 -7 -3 -9 50
483 C3R A3C 3 7 9 -11 -3 11 -1 1 5 -7 -5 -9 50
484 C3R A3L 3 5 9 -11 -3 11 -1 1 7 -7 -5 -9 50
485 C3R A3R 3 5 9 -11 -5 11 -1 1 7 -7 -3 -9 50
486 C3R C1C 3 7 9 -11 -3 11 -1 1 5 -7 -5 -9 67
487 C3R C1L 3 5 9 -11 -3 11 -1 1 7 -7 -5 -9 67
488 C3R C1R 3 5 9 -11 -3 11 -1 1 7 -7 -5 -9 67
489 C3R C2C 3 7 9 -9 -3 11 -1 1 5 -7 -5 -11 67
490 C3R C2L 3 7 9 -9 -3 11 -1 1 5 -7 -5 -11 67
491 C3R C2R 3 5 9 -11 -3 11 -1 1 7 -7 -5 -9 67
492 C3R C3C 3 7 9 -11 -3 11 -1 1 5 -7 -5 -9 67
493 C3R C3L 3 5 9 -11 -3 11 -1 1 7 -7 -5 -9 67
494 C3R C3R 1 5 9 -11 -3 11 -1 3 7 -7 -5 -9 67
495 C3R P1C 3 7 9 -11 -5 11 -1 1 5 -7 -3 -9 50
496 C3R P1L 3 5 9 -11 -5 11 -1 1 7 -7 -3 -9 50
497 C3R P1R 3 5 9 -11 -5 11 -1 1 7 -7 -3 -9 50
498 C3R P2C 3 5 9 -11 -3 11 -1 1 7 -7 -5 -9 50
499 C3R P2L 1 7 9 -11 -3 11 -1 3 5 -7 -5 -9 50
500 C3R P2R 3 5 9 -11 -5 11 -1 1 7 -7 -3 -9 50
501 C3R P3C 1 7 9 -11 -5 11 -1 3 5 -7 -3 -9 50
502 C3R P3L 1 5 9 -11 -7 11 -1 3 7 -5 -3 -9 50
503 C3R P3R 3 7 9 -11 -5 11 -1 1 5 -7 -3 -9 50
504 C3R STA 3 7 9 -11 -5 11 -1 1 5 -7 -3 -9 50
505 P1C A1C 5 -10 7 -1 9 11 -3 3 -10 -7 -5 1 50
506 P1C A1L 3 -10 7 -1 9 11 -3 5 -10 -7 -5 1 50
507 P1C A1R 5 -10 9 1 11 7 -5 3 -10 -7 -3 -1 50
508 P1C A2C 3 -10 7 1 9 11 -3 5 -10 -7 -5 -1 50
509 P1C A2L 5 -9 9 -9 7 11 -3 3 -9 -5 -1 1 50
510 P1C A2R 5 -10 9 1 7 11 -5 3 -10 -7 -3 -1 50
511 P1C A3C 5 -10 7 1 11 9 -5 3 -10 -7 -3 -1 50
512 P1C A3L 3 -9 11 1 7 9 -3 5 -9 -5 -1 -9 50
513 P1C A3R 3 -10 9 -1 7 11 -3 5 -10 -7 -5 1 50
514 P1C C1C 5 -10 9 1 7 11 -3 3 -10 -7 -5 -1 67
515 P1C C1L 1 -10 9 -1 7 11 -3 5 -10 -5 -7 3 67
516 P1C C1R 7 -10 9 3 -7 11 -1 5 -10 -3 -5 1 67
517 P1C C2C 5 -10 9 1 7 11 -3 3 -10 -7 -5 -1 67
518 P1C C2L 3 -10 9 1 7 11 -3 5 -10 -5 -7 -1 67
519 P1C C2R 3 -10 7 -1 9 11 -3 5 -10 -7 -5 1 67
520 P1C C3C 5 -9 9 3 -9 11 -3 7 -9 -5 1 -1 67
521 P1C C3L 3 -10 11 1 -7 9 -1 7 -10 -5 -3 5 67
522 P1C C3R 3 -10 9 -1 7 11 -3 5 -10 -7 -5 1 67
523 P1C P1C 5 -10 7 1 9 11 -3 3 -10 -7 -5 -1 50
524 P1C P1L 3 -10 7 1 11 9 -5 5 -10 -7 -3 -1 50
525 P1C P1R 3 -10 7 -1 11 9 -5 5 -10 -7 -3 1 50
526 P1C P2C 5 -10 7 -1 9 11 -5 3 -10 -7 -3 1 50
527 P1C P2L 5 -10 9 -7 7 11 -1 3 -10 -5 -3 1 50
528 P1C P2R 5 -10 7 -1 11 9 -5 3 -10 -7 -3 1 50
529 P1C P3C 3 -10 7 1 11 9 -5 5 -10 -7 -3 -1 50
530 P1C P3L 3 -10 7 1 11 9 -5 5 -10 -7 -3 -1 50
531 P1C P3R 3 -10 7 -1 11 9 -5 5 -10 -7 -3 1 50
532 P1C STA 3 -10 7 1 11 9 -1 5 -10 -5 -3 -7 50
533 P1L A1C 9 -3 3 -1 11 7 -7 5 -5 -11 -9 1 50
534 P1L A1L 9 -3 5 1 11 7 -7 3 -5 -11 -9 -1 50
535 P1L A1R 3 -3 5 1 11 9 -7 7 -5 -11 -9 -1 50
536 P1L A2C 7 -3 5 1 11 9 -7 3 -5 -11 -9 -1 50
537 P1L A2L 3 -3 7 1 11 5 -7 9 -5 -11 -9 -1 50
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Table A.1: Algorithm wins and losses (continued)
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538 P1L A2R 7 -3 5 1 11 9 -7 3 -5 -11 -9 -1 50
539 P1L A3C 7 -3 3 -1 11 9 -7 5 -5 -11 -9 1 50
540 P1L A3L 9 -3 5 1 11 7 -7 3 -5 -11 -9 -1 50
541 P1L A3R 7 -3 5 1 11 9 -7 3 -5 -11 -9 -1 50
542 P1L C1C 9 -3 3 1 11 7 -7 5 -5 -9 -11 -1 67
543 P1L C1L 5 -3 7 3 11 9 -7 1 -5 -9 -11 -1 67
544 P1L C1R 3 -3 7 1 11 9 -7 5 -5 -9 -11 -1 67
545 P1L C2C 7 -3 3 5 11 9 -7 1 -5 -9 -11 -1 67
546 P1L C2L 1 -3 9 3 7 11 -7 5 -5 -9 -11 -1 67
547 P1L C2R 7 -3 5 1 11 9 -7 3 -5 -9 -11 -1 67
548 P1L C3C 7 -3 3 1 11 9 -7 5 -5 -9 -11 -1 67
549 P1L C3L 5 -3 7 3 11 9 -7 1 -5 -9 -11 -1 67
550 P1L C3R 1 -3 5 3 11 9 -7 7 -5 -9 -11 -1 67
551 P1L P1C 9 -3 3 -1 11 7 -7 5 -5 -11 -9 1 50
552 P1L P1L 7 -3 5 -1 11 9 -7 3 -5 -11 -9 1 50
553 P1L P1R 9 -3 5 -1 11 7 -7 3 -5 -11 -9 1 50
554 P1L P2C 9 -3 3 -1 11 7 -7 5 -5 -11 -9 1 50
555 P1L P2L 9 -3 5 -1 11 7 -7 3 -5 -11 -9 1 50
556 P1L P2R 7 -3 3 -1 11 9 -7 5 -5 -11 -9 1 50
557 P1L P3C 9 -3 5 1 11 7 -7 3 -5 -11 -9 -1 50
558 P1L P3L 9 -3 5 1 11 7 -7 3 -5 -11 -9 -1 50
559 P1L P3R 9 -3 5 1 11 7 -7 3 -5 -11 -9 -1 50
560 P1L STA 9 -3 5 1 11 7 -7 3 -5 -11 -9 -1 50
561 P1R A1C 7 -3 9 1 3 11 -7 5 -5 -11 -9 -1 50
562 P1R A1L 7 -5 9 1 5 11 -7 3 -3 -11 -9 -1 50
563 P1R A1R 7 -5 9 1 3 11 -7 5 -3 -11 -9 -1 50
564 P1R A2C 7 -5 9 1 3 11 -7 5 -3 -11 -9 -1 50
565 P1R A2L 5 -5 9 1 3 11 -7 7 -3 -11 -9 -1 50
566 P1R A2R 7 -5 9 1 3 11 -7 5 -3 -11 -9 -1 50
567 P1R A3C 7 -3 9 1 3 11 -7 5 -5 -11 -9 -1 50
568 P1R A3L 7 -5 9 1 3 11 -7 5 -3 -11 -9 -1 50
569 P1R A3R 5 -5 9 1 3 11 -7 7 -3 -11 -9 -1 50
570 P1R C1C 7 -3 9 1 3 11 -7 5 -5 -9 -11 -1 67
571 P1R C1L 7 -5 9 1 3 11 -7 5 -3 -9 -11 -1 67
572 P1R C1R 5 -5 9 1 3 11 -7 7 -3 -9 -11 -1 67
573 P1R C2C 7 -5 9 1 3 11 -7 5 -3 -9 -11 -1 67
574 P1R C2L 5 -5 9 1 3 11 -7 7 -3 -9 -11 -1 67
575 P1R C2R 7 -5 9 1 3 11 -7 5 -3 -9 -11 -1 67
576 P1R C3C 7 -3 9 1 3 11 -7 5 -5 -9 -11 -1 67
577 P1R C3L 7 -5 9 1 3 11 -7 5 -3 -9 -11 -1 67
578 P1R C3R 5 -5 9 1 3 11 -7 7 -3 -9 -11 -1 67
579 P1R P1C 7 -3 9 1 3 11 -7 5 -5 -11 -9 -1 50
580 P1R P1L 7 -5 9 -1 3 11 -7 5 -3 -11 -9 1 50
581 P1R P1R 7 -5 9 -1 3 11 -7 5 -3 -11 -9 1 50
582 P1R P2C 7 -3 9 1 3 11 -7 5 -5 -9 -11 -1 50
583 P1R P2L 7 -3 9 1 3 11 -7 5 -5 -11 -9 -1 50
584 P1R P2R 5 -3 9 1 3 11 -7 7 -5 -9 -11 -1 50
585 P1R P3C 7 -5 9 1 3 11 -7 5 -3 -11 -9 -1 50
586 P1R P3L 7 -5 9 1 3 11 -7 5 -3 -11 -9 -1 50
587 P1R P3R 7 -5 9 1 5 11 -7 3 -3 -11 -9 -1 50
588 P1R STA 7 -5 9 1 5 11 -7 3 -3 -11 -9 -1 50
589 P2C A1C 3 -3 11 -1 7 9 -7 5 -5 -11 -9 1 50
590 P2C A1L 3 -5 9 -1 7 11 -7 5 -3 -11 -9 1 50
591 P2C A1R 1 -5 9 -1 7 11 -7 5 -3 -11 -9 3 50
592 P2C A2C 5 -5 11 -1 7 9 -7 3 -3 -11 -9 1 50
593 P2C A2L 1 -5 9 -1 7 11 -7 5 -3 -11 -9 3 50
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Table A.1: Algorithm wins and losses (continued)

O
bj

ec
ti

ve
Sp

ac
e

B
eh

av
io

ur

C
on

st
ra

in
t

Sp
ac

e
B

eh
av

io
ur

R
IG

A

H
yp

er
M

D
D

E
C

V

C
C

Sa
Q

P
SO

Sa
Q

P
SO

C
C

Sa
D

E

Sa
D

E

C
C

R
IG

A

C
C

H
yp

er
M

C
C

G
V

P
SO

G
V

P
SO

C
C

Sa
Q

G
V

P
SO

P
ro

bl
em

C
ha

ng
es

594 P2C A2R 3 -5 11 -1 7 9 -7 5 -3 -11 -9 1 50
595 P2C A3C 3 -3 9 -1 7 11 -7 5 -5 -11 -9 1 50
596 P2C A3L 3 -5 11 -1 7 9 -7 5 -3 -9 -11 1 50
597 P2C A3R -1 -3 9 1 7 11 -7 5 -5 -11 -9 3 50
598 P2C C1C 3 -3 11 -1 7 9 -7 5 -5 -11 -9 1 67
599 P2C C1L 1 -5 9 -1 7 11 -7 5 -3 -11 -9 3 67
600 P2C C1R 1 -5 9 -1 7 11 -7 5 -3 -11 -9 3 67
601 P2C C2C 1 -5 9 -1 7 11 -7 5 -3 -11 -9 3 67
602 P2C C2L 1 -5 9 -1 7 11 -7 5 -3 -11 -9 3 67
603 P2C C2R 1 -5 9 -1 7 11 -7 5 -3 -11 -9 3 67
604 P2C C3C 3 -3 9 -1 7 11 -7 5 -5 -11 -9 1 67
605 P2C C3L 1 -5 9 -1 7 11 -7 5 -3 -11 -9 3 67
606 P2C C3R 1 -5 9 -1 7 11 -7 5 -3 -11 -9 3 67
607 P2C P1C 3 -3 11 -1 7 9 -7 5 -5 -11 -9 1 50
608 P2C P1L 3 -5 9 1 7 11 -7 5 -3 -11 -9 -1 50
609 P2C P1R 3 -5 9 1 7 11 -7 5 -3 -11 -9 -1 50
610 P2C P2C 1 -3 9 -1 7 11 -7 5 -5 -11 -9 3 50
611 P2C P2L 1 -5 9 -1 7 11 -7 5 -3 -11 -9 3 50
612 P2C P2R 3 -3 9 -1 7 11 -7 5 -5 -11 -9 1 50
613 P2C P3C 3 -5 9 -1 7 11 -7 5 -3 -11 -9 1 50
614 P2C P3L 3 -5 9 1 7 11 -7 5 -3 -11 -9 -1 50
615 P2C P3R 3 -3 9 1 7 11 -7 5 -5 -11 -9 -1 50
616 P2C STA -1 -3 9 1 7 11 -7 5 -5 -11 -9 3 50
617 P2L A1C 1 -5 3 -1 9 5 -7 7 -3 -9 -11 11 50
618 P2L A1L 1 -5 7 -1 11 5 -7 3 -3 -9 -11 9 50
619 P2L A1R 1 -5 7 -1 9 5 -7 3 -3 -9 -11 11 50
620 P2L A2C 1 -5 3 -1 9 5 -7 7 -3 -9 -11 11 50
621 P2L A2L -1 -5 3 1 9 5 -7 7 -3 -9 -11 11 50
622 P2L A2R 1 -5 3 -1 9 5 -7 7 -3 -9 -11 11 50
623 P2L A3C 1 -5 5 -1 9 3 -7 7 -3 -9 -11 11 50
624 P2L A3L -1 -5 3 1 11 5 -7 7 -3 -9 -11 9 50
625 P2L A3R 1 -5 3 -1 9 5 -7 7 -3 -9 -11 11 50
626 P2L C1C 1 -5 3 -1 9 5 -7 7 -3 -11 -9 11 67
627 P2L C1L 1 -5 5 -1 9 3 -7 7 -3 -11 -9 11 67
628 P2L C1R -1 -5 5 1 9 3 -7 7 -3 -11 -9 11 67
629 P2L C2C -1 -5 3 1 9 7 -7 5 -3 -11 -9 11 67
630 P2L C2L -1 -5 3 1 7 5 -7 9 -3 -9 -11 11 67
631 P2L C2R -1 -5 3 1 9 7 -7 5 -3 -11 -9 11 67
632 P2L C3C 1 -5 5 -1 9 3 -7 7 -3 -11 -9 11 67
633 P2L C3L -1 -5 5 1 9 3 -7 7 -3 -11 -9 11 67
634 P2L C3R -1 -5 3 1 7 5 -7 9 -3 -11 -9 11 67
635 P2L P1C 1 -5 3 -1 9 5 -7 7 -3 -9 -11 11 50
636 P2L P1L 3 -5 7 -1 11 9 -7 1 -3 -9 -11 5 50
637 P2L P1R 1 -5 5 -1 11 9 -7 3 -3 -9 -11 7 50
638 P2L P2C 1 -3 3 -1 11 7 -7 5 -5 -9 -11 9 50
639 P2L P2L 1 -5 3 -1 9 7 -7 5 -3 -9 -11 11 50
640 P2L P2R -1 -3 3 1 11 7 -7 5 -5 -9 -11 9 50
641 P2L P3C 1 -5 5 -1 11 9 -7 3 -3 -9 -11 7 50
642 P2L P3L 3 -5 5 -1 11 9 -7 1 -3 -9 -11 7 50
643 P2L P3R 3 -5 5 -1 11 9 -7 1 -3 -9 -11 7 50
644 P2L STA 1 -5 3 -1 11 5 -7 9 -3 -9 -11 7 50
645 P2R A1C 1 -5 5 -1 11 7 -7 3 -3 -11 -9 9 50
646 P2R A1L 1 -5 9 -1 11 5 -7 3 -3 -11 -9 7 50
647 P2R A1R 1 -5 7 -1 9 5 -7 3 -3 -11 -9 11 50
648 P2R A2C 1 -5 7 -1 11 5 -7 3 -3 -11 -9 9 50
649 P2R A2L -1 -5 7 1 9 5 -7 3 -3 -11 -9 11 50
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Table A.1: Algorithm wins and losses (continued)
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650 P2R A2R 1 -5 7 -1 11 3 -7 5 -3 -11 -9 9 50
651 P2R A3C 1 -5 7 -1 11 5 -7 3 -3 -11 -9 9 50
652 P2R A3L -1 -5 5 1 11 9 -7 3 -3 -11 -9 7 50
653 P2R A3R 1 -5 5 -1 11 7 -7 3 -3 -11 -9 9 50
654 P2R C1C 1 -5 5 -1 11 7 -7 3 -3 -11 -9 9 67
655 P2R C1L 1 -5 5 -1 9 7 -7 3 -3 -11 -9 11 67
656 P2R C1R 1 -5 7 -1 9 5 -7 3 -3 -11 -9 11 67
657 P2R C2C -1 -5 7 1 9 5 -7 3 -3 -11 -9 11 67
658 P2R C2L 1 -5 9 -1 3 7 -7 5 -3 -11 -9 11 67
659 P2R C2R -1 -5 7 1 9 3 -7 5 -3 -11 -9 11 67
660 P2R C3C 1 -5 7 -1 11 5 -7 3 -3 -11 -9 9 67
661 P2R C3L -1 -5 7 1 3 9 -7 5 -3 -11 -9 11 67
662 P2R C3R -1 -5 3 1 9 7 -7 5 -3 -11 -9 11 67
663 P2R P1C 1 -5 5 -1 11 7 -7 3 -3 -11 -9 9 50
664 P2R P1L 3 -5 7 -1 11 9 -7 1 -3 -9 -11 5 50
665 P2R P1R 3 -5 7 -1 11 9 -7 1 -3 -9 -11 5 50
666 P2R P2C 1 -3 7 -1 11 5 -7 3 -5 -11 -9 9 50
667 P2R P2L 1 -5 7 -1 11 5 -7 3 -3 -11 -9 9 50
668 P2R P2R 1 -3 9 -1 11 5 -7 3 -5 -11 -9 7 50
669 P2R P3C 3 -3 7 -1 11 9 -7 1 -5 -9 -11 5 50
670 P2R P3L 3 -3 7 -1 11 9 -7 1 -5 -9 -11 5 50
671 P2R P3R 3 -3 7 -1 11 9 -7 1 -5 -9 -11 5 50
672 P2R STA 3 -3 7 -1 11 9 -7 1 -5 -9 -11 5 50
673 P3C A1C 5 -3 7 1 11 9 -7 3 -5 -9 -11 -1 50
674 P3C A1L 5 -5 7 1 11 9 -7 3 -3 -11 -9 -1 50
675 P3C A1R 5 -5 7 3 11 9 -7 1 -3 -9 -11 -1 50
676 P3C A2C 5 -3 9 1 7 11 -7 3 -5 -9 -11 -1 50
677 P3C A2L 5 -3 9 3 7 11 -7 1 -5 -9 -11 -1 50
678 P3C A2R 5 -3 9 1 7 11 -7 3 -5 -9 -11 -1 50
679 P3C A3C 5 -3 7 1 11 9 -7 3 -5 -9 -11 -1 50
680 P3C A3L 5 -5 7 1 11 9 -7 3 -3 -9 -11 -1 50
681 P3C A3R 5 -5 7 3 9 11 -7 1 -3 -9 -11 -1 50
682 P3C C1C 5 -3 7 1 11 9 -7 3 -5 -9 -11 -1 67
683 P3C C1L 5 -5 7 3 9 11 -7 1 -3 -9 -11 -1 67
684 P3C C1R 5 -5 9 1 7 11 -7 3 -3 -9 -11 -1 67
685 P3C C2C 3 -3 7 5 9 11 -7 1 -5 -9 -11 -1 67
686 P3C C2L 3 -3 9 1 7 11 -7 5 -5 -9 -11 -1 67
687 P3C C2R 5 -3 7 1 9 11 -7 3 -5 -9 -11 -1 67
688 P3C C3C 5 -3 7 1 11 9 -7 3 -5 -9 -11 -1 67
689 P3C C3L 5 -5 9 1 7 11 -7 3 -3 -9 -11 -1 67
690 P3C C3R 5 -5 9 3 7 11 -7 1 -3 -9 -11 -1 67
691 P3C P1C 5 -3 7 1 11 9 -7 3 -5 -9 -11 -1 50
692 P3C P1L 5 -5 7 1 11 9 -7 3 -3 -9 -11 -1 50
693 P3C P1R 5 -5 7 1 11 9 -7 3 -3 -11 -9 -1 50
694 P3C P2C 5 -3 9 1 7 11 -7 3 -5 -9 -11 -1 50
695 P3C P2L 5 -3 7 1 9 11 -7 3 -5 -9 -11 -1 50
696 P3C P2R 5 -5 9 1 7 11 -7 3 -3 -9 -11 -1 50
697 P3C P3C 5 -5 7 1 11 9 -7 3 -3 -9 -11 -1 50
698 P3C P3L 5 -5 7 1 11 9 -7 3 -3 -9 -11 -1 50
699 P3C P3R 5 -5 7 1 11 9 -7 3 -3 -9 -11 -1 50
700 P3C STA 5 -5 9 1 11 7 -7 3 -3 -9 -11 -1 50
701 P3L A1C 3 -3 7 1 11 9 -7 5 -5 -9 -11 -1 50
702 P3L A1L 5 -3 7 1 11 9 -7 3 -5 -9 -11 -1 50
703 P3L A1R 3 -3 7 1 11 9 -7 5 -5 -9 -11 -1 50
704 P3L A2C 5 -3 9 1 7 11 -7 3 -5 -9 -11 -1 50
705 P3L A2L 1 -3 9 3 7 11 -7 5 -5 -9 -11 -1 50
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Table A.1: Algorithm wins and losses (continued)
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706 P3L A2R 5 -3 9 1 7 11 -7 3 -5 -9 -11 -1 50
707 P3L A3C 3 -3 7 1 11 9 -7 5 -5 -9 -11 -1 50
708 P3L A3L 3 -3 7 1 11 9 -7 5 -5 -9 -11 -1 50
709 P3L A3R 3 -3 7 1 9 11 -7 5 -5 -9 -11 -1 50
710 P3L C1C 3 -3 7 1 11 9 -7 5 -5 -9 -11 -1 67
711 P3L C1L 5 -3 7 1 11 9 -7 3 -5 -9 -11 -1 67
712 P3L C1R 3 -3 9 1 7 11 -7 5 -5 -9 -11 -1 67
713 P3L C2C 5 -3 7 1 9 11 -7 3 -5 -9 -11 -1 67
714 P3L C2L 1 -3 9 3 7 11 -7 5 -5 -9 -11 -1 67
715 P3L C2R 1 -3 7 3 9 11 -7 5 -5 -9 -11 -1 67
716 P3L C3C 3 -3 7 1 11 9 -7 5 -5 -9 -11 -1 67
717 P3L C3L 3 -3 9 1 7 11 -7 5 -5 -9 -11 -1 67
718 P3L C3R 3 -3 9 1 7 11 -7 5 -5 -9 -11 -1 67
719 P3L P1C 3 -3 7 1 11 9 -7 5 -5 -9 -11 -1 50
720 P3L P1L 5 -3 7 1 11 9 -7 3 -5 -11 -9 -1 50
721 P3L P1R 5 -3 7 1 11 9 -7 3 -5 -11 -9 -1 50
722 P3L P2C 3 -3 9 1 7 11 -7 5 -5 -9 -11 -1 50
723 P3L P2L 3 -3 7 1 9 11 -7 5 -5 -9 -11 -1 50
724 P3L P2R 5 -3 7 1 9 11 -7 3 -5 -9 -11 -1 50
725 P3L P3C 5 -3 7 1 11 9 -7 3 -5 -9 -11 -1 50
726 P3L P3L 5 -3 7 1 11 9 -7 3 -5 -9 -11 -1 50
727 P3L P3R 3 -3 7 1 11 9 -7 5 -5 -11 -9 -1 50
728 P3L STA 5 -3 7 1 11 9 -7 3 -5 -11 -9 -1 50
729 P3R A1C 7 -5 9 1 5 11 -7 3 -3 -11 -9 -1 50
730 P3R A1L 5 -5 9 1 7 11 -7 3 -3 -11 -9 -1 50
731 P3R A1R 5 -5 9 1 7 11 -7 3 -3 -9 -11 -1 50
732 P3R A2C 3 -5 9 1 5 11 -7 7 -3 -11 -9 -1 50
733 P3R A2L 5 -3 9 1 3 11 -7 7 -5 -11 -9 -1 50
734 P3R A2R 5 -5 9 1 3 11 -7 7 -3 -9 -11 -1 50
735 P3R A3C 5 -5 9 1 7 11 -7 3 -3 -11 -9 -1 50
736 P3R A3L 5 -5 9 1 7 11 -7 3 -3 -11 -9 -1 50
737 P3R A3R 5 -5 9 1 7 11 -7 3 -3 -9 -11 -1 50
738 P3R C1C 5 -5 9 1 7 11 -7 3 -3 -11 -9 -1 67
739 P3R C1L 5 -5 9 1 7 11 -7 3 -3 -11 -9 -1 67
740 P3R C1R 7 -5 9 1 5 11 -7 3 -3 -9 -11 -1 67
741 P3R C2C 3 -5 9 1 7 11 -7 5 -3 -11 -9 -1 67
742 P3R C2L 5 -3 9 1 3 11 -7 7 -5 -11 -9 -1 67
743 P3R C2R 3 -5 9 1 5 11 -7 7 -3 -11 -9 -1 67
744 P3R C3C 5 -5 9 1 7 11 -7 3 -3 -11 -9 -1 67
745 P3R C3L 5 -5 9 1 7 11 -7 3 -3 -11 -9 -1 67
746 P3R C3R 7 -5 9 1 5 11 -7 3 -3 -11 -9 -1 67
747 P3R P1C 7 -5 9 1 5 11 -7 3 -3 -11 -9 -1 50
748 P3R P1L 7 -5 9 1 5 11 -7 3 -3 -11 -9 -1 50
749 P3R P1R 7 -5 9 1 5 11 -7 3 -3 -11 -9 -1 50
750 P3R P2C 3 -3 9 1 5 11 -7 7 -5 -9 -11 -1 50
751 P3R P2L 7 -3 9 1 3 11 -7 5 -5 -11 -9 -1 50
752 P3R P2R 5 -5 9 1 3 11 -7 7 -3 -11 -9 -1 50
753 P3R P3C 7 -5 9 1 5 11 -7 3 -3 -11 -9 -1 50
754 P3R P3L 5 -5 9 1 7 11 -7 3 -3 -11 -9 -1 50
755 P3R P3R 5 -5 9 1 7 11 -7 3 -3 -11 -9 -1 50
756 P3R STA 5 -5 9 1 7 11 -7 3 -3 -11 -9 -1 50
757 STA A1C 7 -5 5 -1 11 9 -3 3 -9 -7 -11 1 10
758 STA A1L 9 -5 5 -1 11 7 -3 3 -9 -7 -11 1 10
759 STA A1R 7 -5 5 -1 11 9 -3 3 -9 -7 -11 1 10
760 STA A2C 7 -9 5 -1 11 9 -3 3 -5 -7 -11 1 10
761 STA A2L 3 -7 7 -1 11 9 -3 5 -5 -9 -11 1 10
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Table A.1: Algorithm wins and losses (continued)
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762 STA A2R 7 -5 5 -1 9 11 -3 3 -7 -9 -11 1 10
763 STA A3C 7 -5 5 -1 11 9 -3 3 -9 -7 -11 1 10
764 STA A3L 9 -5 5 -1 11 7 -3 3 -9 -7 -11 1 10
765 STA A3R 7 -5 5 -1 11 9 -3 3 -7 -9 -11 1 10
766 STA C1C 7 -3 5 -1 11 9 -7 3 -5 -9 -11 1 33
767 STA C1L 9 -3 5 1 11 7 -7 3 -5 -9 -11 -1 33
768 STA C1R 7 -3 3 1 9 11 -7 5 -5 -9 -11 -1 33
769 STA C2C 5 -5 7 -1 11 9 -7 3 -3 -9 -11 1 33
770 STA C2L 3 -5 9 -1 7 11 -7 5 -3 -9 -11 1 33
771 STA C2R 3 -5 7 -1 9 11 -7 5 -3 -9 -11 1 33
772 STA C3C 7 -3 5 -1 11 9 -7 3 -5 -9 -11 1 33
773 STA C3L 5 -3 7 -1 11 9 -7 3 -5 -9 -11 1 33
774 STA C3R 7 -3 5 -1 11 9 -7 3 -5 -9 -11 1 33
775 STA P1C 7 -3 5 1 11 9 -7 3 -5 -9 -11 -1 50
776 STA P1L 9 -3 5 -1 11 7 -7 3 -5 -9 -11 1 50
777 STA P1R 9 -5 5 -1 11 7 -7 3 -3 -9 -11 1 50
778 STA P2C 3 -3 7 -1 11 9 -7 5 -5 -9 -11 1 50
779 STA P2L 7 -5 5 -1 11 9 -7 3 -3 -9 -11 1 50
780 STA P2R 3 -3 7 -1 11 9 -7 5 -5 -9 -11 1 50
781 STA P3C 7 -5 5 -1 11 9 -7 3 -3 -9 -11 1 50
782 STA P3L 7 -5 5 -1 11 9 -7 3 -3 -9 -11 1 50
783 STA P3R 7 -5 5 -1 11 9 -7 3 -3 -9 -11 1 50
784 STA STA 5 -11 3 -7 11 7 9 1 -9 -1 -3 -5 1
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Appendix B

Acronyms

ABC artificial bee colony 47

ABEAC average best error after change 96, 97, 122, 123, 145, 184

ABEBC average best error before change 95–97, 122–124, 145, 184

ADT algebraic data type 234

API application programming interface 208, 212, 216

ARR absolute recovery rate 96, 97, 145, 184

BBPSO bare-bones particle swarm optimisation 38

BOG best of generation 90, 91, 93, 96

CCGVPSO cooperative co-evolutionary gaussian-valued particle swarm op-
timisation 134, 141, 142, 149, 150, 153, 157, 160, 175, 182, 185

CCHyperM cooperative co-evolutionary hyper mutation genetic algorithm
133, 141, 142, 149, 150, 155, 162, 163, 171, 175, 182, 185–187, 193

CCPSO cooperative co-evolutionary particle swarm optimisation x, 128–131,
134, 137

CCRIGA cooperative co-evolutionary random immigrant genetic algorithm
133, 141, 142, 149, 150, 155, 160, 190, 192, 193

CCSaDE cooperative co-evolutionary self-adaptive differential evolution 133,
134, 141, 142, 149, 150, 153, 155, 157, 160–164, 170–172, 175, 182, 185,
190, 192, 193

CCSaQGVPSO cooperative co-evolutionary self-adaptive quantum gaussian-
valued particle swarm optimisation 134, 141, 142, 155, 157, 160, 162, 182
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CCSaQPSO cooperative co-evolutionary self-adaptive quantum paritcle swarm
optimisation 134, 141, 142, 149, 150, 153, 155, 160, 162, 164

CDF cumulative distribution function 230

CE cultural evolution 46, 56

CEC Congress on Evolutionary Computation 70

CI computational intelligence 1, 5, 90, 101, 146, 196, 197, 201, 212, 214, 239,
241, 244, 245

CIlib computational intelligence library 204

CLI command line interface 208

CME collective mean error 91, 122–124

CMF collective mean fitness 91

CMPB constrained moving peaks benchmark xi, 3, 83, 84, 86, 88, 112, 132,
139, 140, 145, 163, 178, 244

CMWC complementary multiply with carry 229

CoEA co-evolutionary algorithm 47, 48

COP constrained optimisation problem 10, 21, 25

CPSO charged particle swarm optimisation 43, 47, 51

CPU central processing unit 206

CSV comma separated values 199

DCBG dynamic composition benchmark generator 68, 69

DCOP dynamic constrained optimisation problem xi, 2–5, 13, 14, 27, 28, 59,
60, 70–72, 79–81, 88, 102, 111, 113, 115, 127–133, 135–141, 144, 145, 148,
149, 155–161, 164, 171, 179, 185, 190, 192–194, 242–245

DDECV dynamic differential evolution with combined variants 50, 51, 141,
142, 149, 150, 153, 155, 157, 160–164, 170–172, 175, 182, 185, 190, 193

DE differential evolution 2, 30, 33–35, 39, 46, 48, 50, 51, 134, 186

DODC dynamic objective function with dynamic constraints 14, 27, 70, 88,
131, 139, 140, 155–157, 161, 192, 193, 242, 243
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DOP dynamic optimisation problem 2, 4, 10, 11, 13–16, 27, 50, 54, 55, 60, 61,
72, 79–81, 88–90, 92, 94, 97, 98, 102, 103, 107–109, 111–113, 115, 117,
118, 133, 134, 136, 141, 142, 145, 193, 243, 244

DOSC dynamic objective function with static constraints 14, 27, 88, 131, 139,
140, 155–157, 192, 242

DynDE dynamic differential evolution 46, 47

EA evolutionary algorithm 33, 210

EC evolutionary computation 201, 204, 206, 208, 209, 212, 215, 219, 235, 242

EP evolutionary programming 46

ES evolutionary strategy 26, 46

FCI fitness cloud index 77, 86, 87

FDC fitness distance correlation 78, 86, 87

FEM first entropic measure 77, 86, 87

FFI foreign function interface 204

FLA fitness landscape analysis 72, 80, 88, 105, 243

FP functional programming 218–220

FSR feasibility ratio 76, 86

GA genetic algorithm 2, 30, 31, 33, 39, 42, 47, 48, 133, 186, 228, 235

GCPSO guaranteed convergence particle swarm optimizer 233

GDBG generalized dynamic benchmark generator 66, 67

GP genetic programming 41, 219

GPU graphics processing unit 206, 211

GUI graphical user interface 207, 208

GVPSO gaussian-valued particle swarm optimisation 38, 39, 134, 141, 142,
149, 150, 153, 155, 157, 160, 175, 182

HBEBC highest best error before change 96

HKT higher-kinded type 225
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HyperM hyper-mutation genetic algorithm 48, 50, 133, 141, 142, 149, 150,
162, 163, 165, 168, 170, 171, 175, 182, 185–187, 193

JSON JavaScript Object Notation 199, 200

LBEBC lowest best error before change 96

LCG linear congruential generator 202

LEAP Library for Evolutionary Algorithms in Python 204, 206

MOE modified off-line error 92, 93

MOO multi-objective optimisation 20

MOP modified off-line performance 92

MPB moving peaks benchmark 18, 62–65, 67, 69, 79, 80, 82, 84, 86, 88, 112,
121, 140, 178

NFL no free lunch theorem 89

OOP object-oriented programming 218, 220, 239

OP on-line performance 91, 92

PCX parent centric crossover 32, 116

PRNG pseudo-random number generator 202, 204, 206, 208, 210, 211, 217,
229, 230, 232, 239

PSO particle swarm optimisation 2, 4, 26, 30, 35, 36, 38, 39, 41–45, 47, 51,
53, 55, 56, 77, 115, 121, 129–131, 134, 143, 186, 228, 232, 235, 238, 239

QPSO quantum particle swarm optimisation 5, 51, 53, 115–117, 120–124,
127, 186

RDBG rotation dynamic benchmark generator 67, 69

REPL read-evaluate-proint loop 230

RFBx ratio feasibility boundary crossings 76, 86, 87

RIGA random immigrants genetic algorithm 48, 50, 133, 138, 141, 142, 149,
150, 155, 160, 161, 190, 192, 193

SaDE self-adaptive differential evolution 35, 133, 134, 141, 142, 150, 153, 155,
157, 162, 163, 165, 168, 170, 175, 182, 185, 186, 192, 193
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SaQGVPSO self-adaptive quantum gaussian-valued particle swarm optimi-
sation 134

SaQPSO self-adaptive quantum particle swarm optimisation 4, 119–127, 134,
137, 141, 142, 149, 150, 153, 155, 157, 160–162, 164–166, 168, 170, 172,
182, 186, 192, 193

SI swarm intelligence 201, 204, 208, 209, 212, 215, 219, 235, 242

SODC static objective function with dynamic constraints 14, 27, 88, 131, 139,
140, 155, 156, 192, 242

SOP static optimisation problem 2, 9, 35, 39, 54, 89, 109, 134, 243, 244

SOSC static objective function with static constraints 13, 24, 26, 27, 88, 131,
132, 137, 139, 140, 155, 156, 192, 242

WEKA Waikato Environment for Knowledge Analysis 204, 207, 208
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Appendix C

Derived Publications

This section provides a list of all published and submitted conference and
journal articles derived from the content of this thesis.

The following is a list of published work:

• G. Pamparà and A. P. Engelbrecht. “Towards A Generic Computational
Intelligence Library: Preventing Insanity”. In: Proceedings of the IEEE
Symposium Series on Computational Intelligence. 2015 IEEE Symposium
Series on Computational Intelligence. Dec. 2015, pp. 1460–1467. doi:
10.1109/SSCI.2015.207

• G. Pamparà and A. P. Engelbrecht. “Self-adaptive Quantum Particle
Swarm Optimization for Dynamic Environments”. In: Proceedings of the
International Conference on Swarm Intelligence. Ed. by M. Dorigo et al.
2018, pp. 163–175. doi: 10.1007/978-3-030-00533-7_13

• G. Pamparà and A. P. Engelbrecht. “Evolutionary and Swarm Intelli-
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