
Ant-Inspired Strategies for Opportunistic Load

Balancing in the Distributed Computation of

Solutions to Embarrassingly Parallel Problems

by

Ronald Klazar

Submitted in partial fulfillment of the requirements for the degree

Magister Scientia

in the Faculty of Engineering, Built Environment and Information Technology

University of Pretoria, Pretoria

2016

Publication data:

Ronald Klazar. Ant-Inspired Strategies for Opportunistic Load Balancing in the Distributed Computation of Solutions

to Embarrassingly Parallel Problems. Master’s dissertation, University of Pretoria, Department of Computer Science,

Pretoria, South Africa, April 2016.

Electronic, hyperlinked versions of this dissertation are available online, as Adobe PDF files, at:

http://cirg.cs.up.ac.za/

http://upetd.up.ac.za/UPeTD.htm

http://cirg.cs.up.ac.za/
http://upetd.up.ac.za/UPeTD.htm

Ant-Inspired Strategies for Opportunistic Load Balancing in

the Distributed Computation of Solutions to Embarrassingly

Parallel Problems

by

Ronald Klazar

E-mail: rklazar@cs.up.ac.za

Abstract

Computational science is a practice that requires a large amount of computing time. One

means of providing the required computing time is to construct a distributed comput-

ing system that utilises the ordinary desktop computers found within an organisation.

However, when the constituent computers do not all perform computations at the same

speed, the overall completion time of a project involving the execution of tasks by all

of the computers in the system becomes dependent on the performance of the slowest

computer in the network. This study proposes two ant-inspired algorithms for dynamic

task allocation that aim to overcome the aforementioned dependency. A procedure for

tuning the free parameters of the algorithms is specified and the algorithms are evaluated

for their viability in terms of their effect on the overall completion time of tasks as well

as their usage of bandwidth in the network.

Keywords: ant algorithms, cemetary formation, division of labour, distributed systems,

distributed computing, opportunistic load balancing

Supervisor : Prof. A. P. Engelbrecht

Department : Department of Computer Science

Degree : Master of Science

mailto:rklazar@cs.up.ac.za

“The future has arrived – it’s just not evenly distributed yet.”

William Gibson

Acknowledgements

I would like to express my gratitude to the following people without whom I would not

have completed this thesis:

• Professor Andries Engelbrecht, for taking me on as a student, reviewing all of my

work tirelessly, and teaching me more about science than I could ever have hoped

to learn.

• My mother, for all her support and cooking, without which I would have written

much on an empty stomach.

• My colleagues and friends at the University of Pretoria and especially in the Com-

putational Intelligence Research Group, who sat through countless presentations

on hot afternoons and provided critical advice and words of encouragement.

Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 3

1.3 Objectives and Contributions . 4

1.4 Dissertation Outline . 4

2 Overview of Task Allocation in Distributed Computing Systems 6

2.1 Distributed Computing Systems . 6

2.1.1 Variations in Task Types . 7

2.1.2 Variations in Node Types . 8

2.1.3 Quality of Service . 9

2.2 Scheduling . 9

2.2.1 Static Task Allocation . 10

2.2.2 Dynamic Task Allocation . 10

2.2.3 Task Allocation Quality . 12

2.2.4 Remarks on Scheduling . 14

2.3 Summary . 14

3 Overview of Ant Algorithms 15

3.1 Cemetery Formation . 15

i

3.1.1 Simple Model . 16

3.1.2 Algorithm for Data Classification 18

3.1.3 Variations of The Lumer-Faieta Algorithm 19

3.1.4 A Minimal Model of Cemetery Formation 26

3.1.5 Applications of Cemetery Formation Algorithms 26

3.2 Division of Labour . 27

3.2.1 Caste Ratios and Division of Labour 28

3.2.2 The Fixed Threshold Model . 29

3.2.3 Variable Threshold Model . 30

3.2.4 Worker Specialization . 31

3.2.5 Applications of Division of Labour Algorithms 32

3.3 Summary . 32

4 Dynamic Load Balancing Based on Ant Algorithms 33

4.1 The Experimental Model . 34

4.1.1 Elements of the Problem Space 34

4.1.2 Component Architecture . 35

4.1.3 Component Behaviour and Collaboration 36

4.1.4 Parameters Defining Model Instances 37

4.1.5 Observable Effects . 38

4.1.6 Assumptions Made by The Model 39

4.2 The Baseline Task Allocation Strategy 40

4.2.1 The Task Allocation Mechanism 41

4.3 The Cemetery Formation Task Allocation Strategy 42

4.3.1 The Task Allocation Mechanism 43

4.3.2 Parameters of the Task Allocation Mechanism 50

4.4 The Division of Labour Task Allocation Strategy 51

4.4.1 The Task Allocation Mechanism 51

4.4.2 Summary . 53

4.4.3 Parameters . 54

4.5 Problem Domain . 54

4.6 Summary . 56

ii

5 The Parameter Optimization Procedure 57

5.1 Parameter Sensitivity Analysis . 58

5.1.1 Choice of Parameter Value Ranges 58

5.1.2 Choice of Problem Domains . 59

5.1.3 Choice of Problem Instances . 59

5.1.4 Analysis Procedure . 59

5.1.5 Results of Analysis . 60

5.1.6 Analysis Remarks . 67

5.2 The Parameter Optimization Problem 68

5.3 Procedures for Parameter Optimization 69

5.3.1 Brute Force Search . 70

5.3.2 Full Factorial Design . 70

5.3.3 F-Race . 71

5.4 A New F-Race Termination Condition 74

5.4.1 Overview of the Termination Heuristic 77

5.4.2 Empirical Analysis . 78

5.5 Summary . 84

6 Comparison of The Proposed Load Balancing Algorithms 85

6.1 Parameter Optimization . 85

6.1.1 Problem Instances . 86

6.1.2 Parameter Search Space . 86

6.1.3 F-Race Configuration . 87

6.1.4 Resulting Parameter Values . 87

6.2 Comparison Design . 88

6.3 Comparison Results . 90

6.4 Comparison Discussion . 91

6.4.1 Baseline Strategy . 93

6.4.2 Cemetery Formation Strategy . 93

6.4.3 Division of Labour Strategy . 94

6.5 Scalability Analysis Design . 95

6.6 Scalability Analysis Results . 96

iii

6.7 Scalability Analysis Remarks . 102

6.8 Summary . 103

7 Conclusions 104

7.1 Summary of Conclusions . 104

7.1.1 Parameter Sensitivity Analysis . 104

7.1.2 Optimization Procedure . 105

7.1.3 Statistical Significance Tests . 106

7.1.4 Scalability Analysis . 106

7.2 Future Work . 107

Bibliography 108

A Acronyms 115

B Symbols 117

B.1 Chapter 3: Overview of Ant Algorithms 117

B.2 Chapter 4: Dynamic Load Balancing Based on Ant Algorithms 119

B.3 Chapter 5: The Parameter Optimization Procedure 119

C Derived Publications 121

iv

List of Figures

4.1 Baseline Resource State Diagram . 42

4.2 Cemetery Formation Action Orientation Analysis 47

4.3 Cemetery Formation Action Orientation Analysis 47

4.4 Cemetery Formation Resource State Diagram 50

4.5 Division of Labour Resource State Diagram 55

5.1 Cemetery Formation - Turnaround Time vs. λ - Mean PCC 61

5.2 Cemetery Formation - Turnaround Time vs. α - Mean PCC 61

5.3 Cemetery Formation - Turnaround Time vs. θ - Mean PCC 62

5.4 Cemetery Formation - Turnaround Time vs. n - Mean PCC 62

5.5 Cemetery Formation - Message Count vs. λ - Mean PCC 62

5.6 Cemetery Formation - Message Count vs. α - Mean PCC 63

5.7 Cemetery Formation - Message Count vs. θ - Mean PCC 63

5.8 Cemetery Formation - Message Count vs. n - Mean PCC 63

5.9 Division of Labour - Turnaround Time vs. γ - Mean PCC 65

5.10 Division of Labour - Turnaround Time vs. α - Mean PCC 65

5.11 Division of Labour - Turnaround Time vs. θ - Mean PCC 65

5.12 Division of Labour - Turnaround Time vs. n - Mean PCC 66

5.13 Division of Labour - Message Count vs. γ - Mean PCC 66

5.14 Division of Labour - Message Count vs. α - Mean PCC 66

5.15 Division of Labour - Message Count vs. θ - Mean PCC 67

5.16 Division of Labour - Message Count vs. n - Mean PCC 67

5.17 p-value Test Results . 76

5.18 p-value Test Results . 77

v

5.19 F-Race Termination Heuristic Trial Results 82

6.1 Cemetery Formation - Turnaround Time vs. [Task Resource] Count - Case I 96

6.2 Cemetery Formation - Turnaround Time vs. [Task Resource] Count - Case

IV . 96

6.3 Cemetery Formation - Turnaround Time vs. [Task Resource] Count - Case V 97

6.4 Cemetery Formation - Message Count vs. [Task Resource] Count - Case I 98

6.5 Cemetery Formation - Message Count vs. [Task Resource] Count - Case IV 98

6.6 Cemetery Formation - Message Count vs. [Task Resource] Count - Case V 99

6.7 Division of Labour - Turnaround Time vs. [Task Resource] Count - Case I 100

6.8 Division of Labour - Turnaround Time vs. [Task Resource] Count - Case

IV . 100

6.9 Division of Labour - Turnaround Time vs. [Task Resource] Count - Case V101

6.10 Division of Labour - Message Count vs. [Task Resource] Count - Case I . 101

6.11 Division of Labour - Message Count vs. [Task Resource] Count - Case IV 102

6.12 Division of Labour - Message Count vs. [Task Resource] Count - Case V 102

vi

List of Tables

4.1 Resource performance values that define the five problem cases considered. 55

5.1 Values chosen for parameter sensitivity analysis of the cemetery formation

algorithm. 58

5.2 Values chosen for parameter sensitivity analysis of the division of labour

algorithm. 59

5.3 Pearson correlation coefficients for the cemetery formation algorithm. Turnaround

time and message count are abbreviated as T and M , respectively. 61

5.4 Pearson correlation coefficients for the division of labour algorithm. Turnaround

time and message count are abbreviated as T and M , respectively. 64

5.5 Visualization of candidate configurations, problem instances, and results

for m candidate configurations and k problem instances. 72

5.6 Initial set of candidate configurations chosen for the observation of p-value

generation. 75

5.7 Subsequent set of candidate configurations chosen for the observation of

p-value generation. 75

5.8 Initial set of candidate configurations chosen for the comparison of budgets. 80

5.9 Configuration evaluation results for budget multipliers 0.0, 0.5, 1.0, and

2.0, where the multiplier 1.0 refers to the reference budget. 81

6.1 Initial set of candidate configurations chosen for the cemetery formation

(CF) task allocation algorithm. 86

6.2 Initial set of candidate configurations chosen for the DL task allocation

algorithm. 87

vii

6.3 Chosen parameter values for the cemetery formation algorithm to favour

turnaround time. 88

6.4 Chosen parameter values for the cemetery formation algorithm to favour

message count. 88

6.5 Chosen parameter values for the division of labour algorithm to favour

turnaround time. 88

6.6 Chosen parameter values for the division of labour algorithm to favour

message count. 89

6.7 Comparison p-values of the algorithms under study for turnaround time. 90

6.8 Comparison p-values of the algorithms under study for message count. . . 91

6.9 Median turnaround time for each algorithm and each case. 91

6.10 Mean turnaround time for each algorithm and each case. 91

6.11 Standard deviation of the turnaround time for each algorithm and each

case. 92

6.12 Median message count for each algorithm and each case. 92

6.13 Mean message count for each algorithm and each case. 92

6.14 Standard deviation of the message count for each algorithm and each case. 92

viii

Chapter 1

Introduction

In their paper, entitled, ‘The “worm” programs - early experience with a distributed

computation’, Shoch and Hupp [51] briefly describe a program inspired by the science-

fiction film entitled, “The Blob” [60]. This program starts out on a single computer and

expands to other, connected computers that are not presently utilised by their owners,

making use of the added resources to speed up its computations. During the night,

presumably when office workers leave for home, the program expands to fill most, if not

all, of the computers in the organisation. In the morning, the office workers return to

their computers and begin using them once again. When the program detects an increase

in computing load, due to the actual owners of the computers using their workstations, it

pauses its computations, collects its partial results and retreats to the unused computers.

This behaviour is repeated until the computations are completed.

A distributed computing system that behaves according to the “Blob” protocol is

loosely coupled because the nodes that constitute the system are neither owned nor

controlled by a single entity. As such, the nodes are subject to change with respect to

individual performance as well as their actual connectedness to the system.

1.1 Motivation

Consider a scenario where a non-trivial amount of computing time is desired. Indi-

viduals or groups who would put large amounts of computing time to task in solving

1

Chapter 1. Introduction 2

computational problems have multiple options from which to choose their hardware in-

frastructure. Before looking to purchase additional infrastructure, one might consider

the existing computing resources available within the organisation. If employees of the

organisation have been assigned computer hardware for their work, then some or all of

these computers may not be engaged all of the time and often not at all after office

hours. That idle computing time could be utilised by a distributed computing system.

The concept of utilising the idle time of arbitrary computers has been explored

somewhat famously under the term of public resource computing in the form of the

SETI@home project [5]. The software underlying SETI@home was manifested in the

Berkeley Open Infrastructure for Network Computing (BOINC) framework [4] and sim-

ilar principles were implemented by Condor [40]. However, while BOINC and Condor

were intended for the construction of geographically large, distributed computing sys-

tems, this study considers a much smaller scale, limited by the confines of a single

administrative authority such as a single organisation or a department within an organ-

isation. Furthermore, the study imposes a quality of service criterion in the form of the

distributed computing system’s performance.

A distributed computing system that is composed of disparate nodes will not neces-

sarily be uniform with respect to the performance of the nodes. In other words, some of

the nodes in the system might be slower than their peers. It is apparent that if all of the

work tasks are similar in complexity, then the faster nodes in the distributed computing

system will complete their tasks before their slower peers do. Consequently, the time

required to complete all of the tasks will depend on the time taken by the slowest node

to complete its task.

Since it is not easy to determine the time it will take an arbitrary computer to

complete an arbitrary task, a task allocation algorithm that precomputes the alloca-

tion of tasks before the tasks are executed is not feasible. Furthermore, the envisioned

distributed computing system presents a dynamic, stochastic environment because the

owners and users of the individual nodes in the system are able to pre-empt tasks in

order to utilise the nodes for their own needs at any time. Therefore, a task allocation

strategy that operates during the execution of the work tasks and does not require a

global view of the distributed system is desirable.

Chapter 1. Introduction 3

An example of decentralised control in a dynamic and stochastic environment has

been observed in nature, where ant colonies exhibit seemingly intelligent behaviours

that are the products of the many independent individuals that make up those colonies.

This observation inspired the task allocation strategies proposed in this study.

1.2 Related Work

Montresor et al. [48] describes a dynamic load balancing algorithm that is based on

a variation of cemetery formation. The algorithm attempts to distribute independent

tasks within a computational grid in order to maximize the grid’s utilization. This is

achieved by altering the normal behaviour of a cemetery formation algorithm such that

an ant drops a task only once the ant has observed a low frequency of similar tasks over

a period of time.

Cao [19] describes a task allocation algorithm that is based on the random walk

performed by ants that form cemeteries. In the case of Cao’s algorithm, an ant wanders

from node to node at random and, after a predetermined number of nodes, identifies

the node with the highest workload. The ant then executes a second random walk of

equal length to that of the first walk and identifies the node with the lowest workload

amongst the visited nodes. At this point, the ant brokers a task transfer between the

two recorded nodes thus redistributing the workload.

Bertelle et al. [10] present a dynamic load balancing algorithm for distributed com-

puting systems that is based on the same principles as Ant Colony Optimization. The

targeted application takes into account tasks that exhibit dependencies amongst each

other and must communicate during their execution.

The task allocation algorithms proposed herein adobt a novel approach in that the

new algorithms do not employ an object manifestation of an ant that must wander the

computer network. Instead, the nodes themselves poll each other directly thus reducing

the bandwidth required to determine a node’s workload and reducing the latency between

finding an imbalance in workload between two nodes.

Chapter 1. Introduction 4

1.3 Objectives and Contributions

The aim of this study is to facilitate the construction of a loosely coupled distributed

computing system by providing a decentralised and dynamic task allocation strategy

that will mitigate the impact on performance by non-uniform network configurations.

The aim of the task allocation strategy will be to allow the system to consume as much

idle processing time as possible while ameliorating the effects of slower resources on the

overall completion time of the work tasks.

The specific contributions of this study are the following:

• The proposal of two novel approaches for dynamic task allocation, based on ant

algorithms.

• The proposal of a procedure for tuning the parameters of the proposed task allo-

cation strategies.

• An analysis of the viability of the proposed task allocation strategies.

1.4 Dissertation Outline

The study is presented in the following chapters:

• Chapter 2, which provides an overview of task allocation in distributed systems

and defines the context within which this study is set.

• Chapter 3, which traces the origin and evolution of the ant algorithms that inspire

the task allocation strategies proposed by this study.

• Chapter 4, which describes the proposed task allocation strategies in detail and

illustrates the simplified model of a distributed computing system used to evaluate

the proposed strategies.

• Chapter 5, which explains the sensitivity analysis of the free parameters, followed

by the parameter optimization procedure employed to find suitable values for the

free parameters of the proposed task allocation algorithms.

Chapter 1. Introduction 5

• Chapter 6, which describes the empirical analysis of the proposed task allocation

strategies, including the optimization of said strategies’ parameter values, the com-

parison of the strategies, a scalability analysis of the strategies, the presentation

of all results, and the discussion of the results.

• Chapter 7, which summarises the findings of the empirical analysis, presents the

conclusions of this study, and outlines potential avenues of future work.

Additional information about this study is provided in the following appendices:

• Appendix A, which lists and defines the acronyms used.

• Appendix B, which lists the symbols used.

• Appendix C, which lists the publications that were derived from this work.

Chapter 2

Overview of Task Allocation in

Distributed Computing Systems

This study will seek to provide a novel solution to load balancing in a distributed com-

puting system. This chapter defines the application area of the study by introducing

the relevant aspects of distributed computing in a top-down approach. Each increas-

ingly specific concept is defined and positioned with respect to the target application. A

broad overview of the salient concepts is presented and then each concept is examined in

greater detail to elucidate those characteristics of distributed computing that determine

the scope of the study. Section 2.1 explains what is meant by distributed computing

and Section 2.2 describes the scheduling of tasks in a distributed computing system.

Section 2.3 summarises the chapter.

2.1 Distributed Computing Systems

A distributed system is a collection of hardware components that are physically sepa-

rate and of software components that can be logically disjunct [52]. A salient reason

for creating a distributed system is to share resources such as data, software services

or hardware facilities, which include storage and processing time. An important goal,

embodied by the above definition, of any distributed system is to provide users with a

coherent view of a single system by hiding the fact that the system is actually made up

6

Chapter 2. Overview of Task Allocation in Distributed Computing Systems 7

of many parts that may not even be located in the same vicinity as the users.

A distributed computing system is a specific class of distributed system that provides

for the aggregation of processing resources and the sharing of processing time [52]. By

combining multiple computing nodes and, by implication, processors, a distributed com-

puting system aggregates the individually weak nodes into a single and more powerful

processing resource. Such a resource is typically used in the field of scientific computing,

which employs computerised simulations to analyse mathematical models of problems of

interest.

Behind the façade of a unified system, the computing tasks issued by a user must be

mapped to the physical and logical parts of the distributed computer. How computing

tasks are mapped to the various nodes depends on the nature of the computing tasks,

the nature of the computing nodes, and the quality of service required by the user.

2.1.1 Variations in Task Types

Computing tasks can exploit the resources of a distributed computing system by invoking

functions provided by individual nodes or by executing directly atop one or more nodes.

In the former case, a task resides on a single node, from where it requests services

from other nodes in the system. Those requests are parameterized and the computations

to perform those requests are carried out by the nodes that host the requested functions,

which then return the results of those computations to the requesting task.

In the latter case, a task embodies all of the programming instructions required to

complete the task’s work and the task is executed directly by a node. The node essentially

becomes the hardware host for the task.

A task operates on data in order to produce a result for the user. When the data can

be divided such that each subgroup of data can be operated upon by a different instance

of the task, the task can exploit multiple processing nodes in a technique known as Single

Program, Multiple Data (SPMD) (also known as Single Process, Multiple Data), which

was first described by Auguin and Larbey in [7].

SPMD is a means of executing a task in parallel in order to lower the time needed to

compute its result. This is achieved by placing a copy of the program used to execute

the task and a different subgroup of the input data on each available processing node.

Chapter 2. Overview of Task Allocation in Distributed Computing Systems 8

The individual results of all of the computations are combined to produce the complete

result. This approach ostensibly leads to a linear reduction in computation time as the

number of nodes increases.

If there exist dependencies between the individual computations where, for instance,

the partial or complete results of one computation are required by another, then the

time required to compute the final result depends on the order in which computations

are performed and on the time that individual computations remain idle while waiting

for dependent results.

Problems that can be divided into individual computations that can be executed in-

dependently of one another are sometimes referred to as embarrassingly parallel problems

[30]. The computations of embarrassingly parallel problems do not require an ordering

in execution with respect to one another. However, the time required to compute the

final result depends on the characteristics of the hardware nodes that constitute the

distributed computer and upon which the individual computations are disseminated.

2.1.2 Variations in Node Types

The nodes that constitute a distributed computing system vary along two axes, namely

architecture and performance. A system comprised of nodes that exhibit the same ar-

chitecture is said to be homogeneous while a heterogeneous system includes nodes of two

or more different architectures [31].

General purpose distributed computing systems typically are homogeneous and no

special care with respect to architecture need be taken when mapping tasks to nodes.

However, a specialized task can benefit from execution by a computer architecture that

is suited to the particular computation to be performed by that task. A heterogeneous

system provides some of the flexibility of a general purpose system, in that it can be

used to perform a number of task types, but additionally allows certain tasks to take

advantage of specialized architectures. A heterogeneous system must be cognisant of

the types of tasks that it processes as well as the types of nodes that are available for

processing in order to perform an effective mapping of tasks to nodes. Braun et. al

describe various mapping techniques in [17].

The variation in processing performance of nodes within a certain architecture deter-

Chapter 2. Overview of Task Allocation in Distributed Computing Systems 9

mines whether a group of nodes is uniform, where all nodes in the group exhibit the same

processing performance, or non-uniform, where nodes differ by their processing speeds.

A typical example of a uniform system is a cluster [50], formed of multiple, identical

processing nodes that are often co-located and tightly coupled by a high-speed network

and control software. A computational grid [9] is an exemplar non-uniform system, being

made up of geographically distributed nodes that, being subject to individual ownership

and control, are more likely to differ in processing performance.

2.1.3 Quality of Service

A system is built to perform one or more functions at the behest of a user. The sys-

tem is considered to be correct if it performs its functions correctly, i.e., a given input

results in an expected output [52]. However, correctness does not prescribe how well a

function is executed by the system with respect to predetermined criteria. Such criteria

include those characteristics of a function that describe the performance of the function

irrespective of its correctness.

Quality of Service (QoS) refers to the measure, according to some scale, of the per-

formance of a system’s functions that constitute that system’s service to a user [2]. In

the context of a distributed computing system, QoS can refer to the time required to

deploy a computing task to the system, the time taken to complete a task, and the time

required to retrieve the results of a computation from the system. The aforementioned

criteria are herein generalised as a single criterion and labelled the turnaround time.

2.2 Scheduling

Given a correctly implemented and functioning distributed computing system, QoS be-

comes the determining factor of the system’s usefulness. For instance, a lower turnaround

time not only allows individual users to obtain their results in a shorter time span but

also enables the system to accomplish more work for a user or to service more users.

The approach taken to lower turnaround time depends on the nature of the computing

nodes and the nature of the tasks that are to be executed by the system.

The process of optimising the placement and execution of tasks is referred to as

Chapter 2. Overview of Task Allocation in Distributed Computing Systems 10

scheduling or, synonymously, task allocation. A distinction between the two terms can

be drawn by referring to scheduling from a user’s perspective and to task allocation from

a computing resource perspective. Task allocation algorithms are broadly categorised by

whether they are static or dynamic [20].

2.2.1 Static Task Allocation

When information about tasks and computing nodes is available before computation

begins, a distributed computing system can employ static task allocation to determine

the mapping of work tasks to computing nodes prior to executing the work tasks. Once a

mapping is determined, the tasks are deployed to the chosen nodes and remain allocated

to those nodes for the duration of the computation.

A priori determination of task allocation is indicated when tasks exhibit dependencies

amongst each other. A scheduler determines the order of execution of the tasks to

minimize overall execution time or to minimize communication costs between nodes

that host dependent tasks.

A heterogeneous computing system will employ static task allocation to determine

which nodes are best suited to executing a user’s tasks, based on the fit of a task to a

particular hardware architecture.

A homogeneous but non-uniform computing system will take into account the fact

that some processing nodes are faster than others and will favour the allocation of tasks

to those faster nodes.

However, if the time required to complete a task by a node cannot be determined,

then a mapping of tasks to nodes cannot be reliably established. Furthermore, if the

performance of computing nodes is subject to change during runtime, then a static

mapping of tasks to nodes will become suboptimal when the performance characteristics

of the distributed computer change.

2.2.2 Dynamic Task Allocation

Dynamic task allocation algorithms aim to perform the same functions as their static

counterparts but do so during the runtime of a computing task. By being responsive to

Chapter 2. Overview of Task Allocation in Distributed Computing Systems 11

environmental changes, dynamic task allocation algorithms address problems that static

algorithms do not. Such problems include fault tolerance, whereby a task is reallocated

when its host fails, and load balancing, which seeks to ensure that computing nodes are

evenly loaded with tasks in cases where computing loads change during runtime.

In its general form, “load balancing” refers to the scheduling of differing quantities

and types of work on specific resources such that a particular quality of service criterion

is met. For instance, service requests are spread over multiple machines such that one

machine does not become overloaded and incapable of servicing any request in some

expected, minimum period of time.

A dynamic task allocation algorithm does not need to calculate the time required to

complete a task in order to find a suitable hardware host for it. Unlike a static algo-

rithm, a dynamic algorithm uses information available at runtime to determine allocation

strategies. This characteristic is useful in non-uniform systems where, for instance, the

very fact that a fast node becomes idle while a slow node continues to execute a task is

a reason to reallocate the task in question [21, 54].

This adaptive behaviour is also suitable in cases where the composition of a dis-

tributed computing system changes during runtime. Certain computing systems are

designed to allow for nodes to be added and removed over time and without disrupting

the service offered by the system. Even when the nodes themselves are not physically

removed, they can be repossessed temporarily by their owners who only lend idle pro-

cessing time to the computing system [61]. In both cases, a dynamic task allocation al-

gorithm will reallocate tasks, depending on the changing performance of existing nodes,

the performance of newly added nodes, or the departure of nodes previously occupied

by tasks.

Centralisation versus Decentralisation

A dynamic task allocation algorithm can be implemented in terms of a centralised or

a decentralised architecture [61]. A centralised architecture locates the scheduling al-

gorithm on a single, physical node or logical (software) module within the distributed

computing system. Alternatively, a decentralised architecture nominates multiple (or

all) nodes to perform scheduling functions.

Chapter 2. Overview of Task Allocation in Distributed Computing Systems 12

Centralisation implies that information about the state of the system will have to

be communicated to a single, predetermined location. Likewise, instructions to effect

reallocation of tasks will have to be issued from a central point. This central point

becomes a dependency in the system. If the point fails, then the whole system becomes

inoperable. In cases where the point is not replicated, especially when it is located on a

single hardware node, the scalability of the system is limited by the amount of bandwidth

available to communicate with the task allocation algorithm.

Decentralisation of task allocation distributes related communication over a greater

part of the system’s network, thus increasing the upper bound of the system’s scalability.

At the same time, because there is no single point of failure for the task allocation

algorithm, cognisance of its physical location in the system’s topology becomes irrelevant.

However, decentralisation presents its own challenge in the question of whether or not

nodes should cooperate in the scheduling process.

Cooperative versus Non-cooperative Algorithms

When scheduling is distributed amongst multiple nodes, those nodes can cooperate to

inform a logically composite task allocation process. The decisions made by the compos-

ite process address the global scheduling needs of the distributed system. A cooperative

scheduler will incur costs in networking bandwidth and the time required for the partic-

ipating nodes to communicate information about the state of the system amongst each

other.

Non-cooperative algorithms are implemented as independent nodes that make schedul-

ing decisions which do not take into account the scheduling needs of the global system.

Instead, each node bases its scheduling decisions on the benefit of those decisions to

the node alone. While this approach does eliminate the need for nodes to communicate

scheduling information amongst each other, it either increases the difficulty of finding

optimal task allocations or prohibits the possibility entirely [20].

2.2.3 Task Allocation Quality

Both static and dynamic scheduling algorithms contribute to the overall throughput of

the system, not just due to the task allocation solutions they generate but due also to the

Chapter 2. Overview of Task Allocation in Distributed Computing Systems 13

time they require to compute those solutions. A dynamic scheduling algorithm must be

able to make changes to the allocation of tasks more than once, thus needing to compute

multiple task allocation solutions during runtime. A static scheduling algorithm runs

only once, before computing begins, and, conceivably, has more time in which to find a

solution than a dynamic algorithm. However, both static and dynamic schedulers are

constrained by the QoS policy in place for the distributed computer.

Static and dynamic scheduling algorithms can be designed to compute the best possi-

ble task allocation. If such a computation will be too difficult to compute in a reasonable

amount of time, a suboptimal solution that is faster to compute, can be used. In the lat-

ter case, the methods by which a suboptimal solution is computed is categorised broadly

as approximate and heuristic.

Approximate solutions are found by approximation algorithms, that is, scheduling

algorithms that narrow the search space for a solution and pick a solution that is good

enough, albeit not optimal. By excluding a portion of the search space, the scheduling

algorithm reduces the amount of time taken to find a solution [1].

Heuristic scheduling algorithms employ simplified models of the distributed system

that allow the algorithms to exclude details of the system deemed less important by

the implementer. Heuristic scheduling algorithms make use of input parameters that

indirectly affect the quality of solutions produced. While the time required to produce

a sufficiently good solution can be lower than that required by approximation methods,

the required input parameters may have to be tuned manually for each system topology

[39].

Scheduling algorithms that operate on a fixed set of input parameters for the dura-

tion of a computation are classified as non-adaptive algorithms [20]. Such algorithms

are sufficient when changes in one or more environmental variable do not significantly

influence the quality of the solutions produced.

Adaptive algorithms modify either their scheduling policies or the parameters that

control their heuristic decision methods in response to changes in the environment. This

ability allows the algorithms to maintain consistency in the kinds of solutions they pro-

duce even when the distributed system’s topology or performance characteristics vary

widely. The configuration of adaptive algorithms can be more complex than that of

Chapter 2. Overview of Task Allocation in Distributed Computing Systems 14

non-adaptive algorithms because the mechanisms that control how certain parameters

are weighted can themselves be subject to configuration by additional parameters.

2.2.4 Remarks on Scheduling

Dynamic task allocation is not a panacea to solve all scheduling problems. Where stat-

ically allocated tasks begin execution in an optimal assignment to nodes, a dynamic

task allocation algorithm requires lead time to assess the state of the system and effect

necessary changes. Moving tasks amongst nodes incurs costs in terms of time spent

during transit and bandwidth required to communicate a task’s data and, possibly, also

program code.

It is therefore necessary to employ a task allocation strategy that is suited to the

structure and variability of the distributed computing system as well as the QoS required

by the system’s users.

2.3 Summary

The construction and operation of a distributed computing system poses, amongst others,

a challenge in the allocation of tasks to computing nodes in order to meet the desired

QoS criteria. This chapter presented the characteristics of systems that give rise to the

problems that task allocation algorithms must solve as well as the general categories of

algorithms that allocate tasks to nodes.

The scenario that this research addresses was presented and described. The specific

characteristics of the problem were stated and the scope of the research was defined.

Chapter 3

Overview of Ant Algorithms

The task allocation algorithms that are proposed and studied in this work are inspired

by models of ant behaviour, namely that of cemetery formation and of division of labour.

The fundamental characteristics of both models include an absence of central control and

the independent operation of the processes that constitute the conceptual colony. These

characteristics are desirable in distributed systems where central control is associated

with performance bottlenecks and critical points of failure, while dependencies are asso-

ciated with a lack of robustness in unpredictable operating environments. This chapter

details the aforementioned models and examines the algorithms that have been based

on them. Section 3.1 describes the cemetery formation model and Section 3.2 describes

the division of labour model. Section 3.3 summarises the chapter.

3.1 Cemetery Formation

Some species of ants, including Lasius niger and Pheidole pallidula, as reported in [22]

and [25], respectively, organise their eggs, larvae, and dead into clusters. Each cluster

contains items of the same type while items of differing types would originally have been

scattered throughout the nest. Individual ants co-locate items of matching types, thereby

sorting the items. The ants do not communicate directly with each other in order to

reach a consensus about how different items will be sorted. Likewise, there is no central

manager with a view of the whole nest that coordinates the individual workers. Instead,

15

Chapter 3. Overview of Ant Algorithms 16

each worker follows a simple set of rules and actions that effect a sorting of randomly

located items. One worker alone can sort all of the items, while multiple workers, all

working according to the same behaviourial pattern, complete the sorting process at a

higher rate. The sorting process is henceforth referred to as cemetery formation.

This section describes a model of cemetery formation in ant colonies and the clus-

tering algorithms that have been derived from it. Subsection 3.1.1 describes the simple

model of cemetery formation, Subsection 3.1.2 describes the Lumer-Faeita algorithm for

data clustering, Subsection 3.1.3 describes algorithms that modify or extend the Lumer-

Faieta algorithm, Subsection 3.1.4 presents an alternative, minimalist model of cemetery

formation, and Subsection 3.1.5 concludes with a summary of the problems to which

cemetery formation algorithms have been applied.

3.1.1 Simple Model

Deneubourg et al. [25] have demonstrated a simple model of cemetery formation that

mimicks said behaviour in ants even if it does not necessarily describe the exact, biological

mechanisms involved. The model assumes that a nest is divided into a grid, that items of

two different types are scattered randomly throughout the grid, that each cell contains

either zero or one items, that ants do not communicate with each other or a central

authority, that multiple ants cannot occupy the same cell at the same time, and that

each ant has a short-term memory that recalls the last m items it has encountered. At

each time step, each ant, chosen in a random order, that is currently on the grid will

perceive its current cell. If the cell is empty, the ant will move to another, randomly

chosen cell. If there exists an item in the cell, the ant will pick up the item with the

probability Pp before moving to another cell. The pickup probability is computed as

Pp =

(
θ1

θ1 + f

)2

(3.1)

where f is the estimated fraction of nearby cells occupied by items of the same type and

θ1 is a constant. Accordingly, when f is small, the probability that an ant will pick up

the item in its cell is high. Conversely, a large value of f indicates that the perceived

Chapter 3. Overview of Ant Algorithms 17

items are already part of a cluster and therefore the probability to pick an item up is

low. An ant makes use of its memory to calculate the fraction of cells containing an item

of type A that it has encountered in the last m steps, as follows:

fA =
nA
m

(3.2)

where nA is the number of cells containing an item of type A and nA < m.

If an ant is carrying an item, it will drop the item in a new cell with probablity Pd,

which is calculated as

Pd =

(
f

θ2 + f

)2

(3.3)

where f is as in Equation (3.1) and θ2 is a constant. In this case, when f is large, the

probability that an ant will drop the item it is carrying is high. A small value of f

indicates that items of the same type as that carried by the ant are scarce within the

ant’s vicinity and therefore do not constitute an existing cluster.

Deneubourg et al. [25] also showed that by introducing an error into an ant’s percep-

tion of item types, the number of clusters can be reduced and sorting efficiency increased

at the cost of a small overlap of clusters. The error is determined by deliberately misread-

ing a fraction of one type of item as another with the fraction of type A items calculated

as

fA =
nA + enB

m
(3.4)

where nA and nB are the numbers of items of type A and type B, respectively, and e is

the error rate.

Oprisan et al. [49] modified the simple model such that each ant maintains a memory

that encompasses the complete history of object types encountered during the ant’s walk.

However, in this modification, an ant does not treat each observed instance of an item

type in memory as having an equivalent bearing on the determination of the type’s

Chapter 3. Overview of Ant Algorithms 18

local density. Instead, an instance of an item type carries a weight that is inversely

proportional to the number of simulation steps that have elapsed since the instance was

observed. The designation of weights is adjusted by a parameter, referred to as the

memory radius, that determines how far into the past items are assigned a significant

weight and beyond which weights become very small. Oprisan et al. [49] showed that

only certain values for the memory radius allowed for the formation of clusters, and that

the memory radius affected the time required to complete the sorting procedure.

3.1.2 Algorithm for Data Classification

Lumer and Faieta [41] extended the simple model introduced by Deneubourg et al. [25]

to facilitate clustering of multidimensional data that differ along a continuous similarity

measure. The Lumer-Faieta algorithm changes an ant’s perception from a limited track

record of recent steps to an s × s view of its surrounding, square area, where s is the

number of cells that constitute the length of a side of the square. While the algorithm

retains Equation (3.1), it uses the following to determine the probability Pd(i) of dropping

an item, i:

Pd(i) =

{
2f(i) if f(i) < θ2

1 otherwise
(3.5)

where f(i) is an estimation of the density of elements in the ant’s vicinity and their

similarity to item i, computed as

f(i) =

{
1
s2

∑
j(1− d(i, j)/α) if f > 0

0 otherwise
(3.6)

where d(i, j) is a dissimilarity measure used to evaluate every item j in the ant’s vicinity

that surrounds i and α is used to scale the dissimilarities.

The effectiveness of the algorithm was limited by its tendency to create superfluous

clusters. To address this issue, Lumer and Faieta [41] studied three modifications to their

proposed method. The first modification diversifies the population of ants with respect

to their movement speed and the accuracy of their dissimilarity measures. A fast-moving

Chapter 3. Overview of Ant Algorithms 19

ant is not discriminating in its comparison of items, while a slow-moving ant compares

items more accurately. Equation (3.6) is rewritten as follows to accommodate ants that

differ by movement speed:

f(i) =

{
1
s2

∑
j(1−

d(i,j)
α+α(v−1)/Vmax

) if f > 0

0 otherwise
(3.7)

where Vmax is the number of cells that an ant travels in one time step and v ∈ [1, Vmax].

The faster and less accurate ants essentially prime the sorting process by creating the

initial clusters, while the slower and more accurate ants refine the new clusters by sorting

the items that the faster ants tend to misplace. The result of this modification was that

the number of superfluous clusters was reduced.

The second modification includes a memory for each ant. However, instead of using

the memory to recall what types of items were encountered in the last m steps, an ant

records the locations of the last m items that it dropped. The ant then compares each

item that it picks up with those in its memory and transports the new item to the

location of the most similar, remembered item. The result of this modification was the

creation of fewer clusters with the same, statistical distribution.

The third modification addresses the premature stabilisation of the clustering process,

whereby superfluous clusters are formed. Ants are unlikely to remove an item from an

established cluster due to the high density of surrounding items. Therefore, a behavioural

switch was introduced to cause an ant to begin breaking down a cluster if the ant has not

picked up an item after a preset number of steps. The effect of the behavioural switch

was to reduce the number of smaller clusters.

3.1.3 Variations of The Lumer-Faieta Algorithm

The Lumer-Faieta algorithm was combined with the k-means clustering algorithm [42] by

Monmarché et al. [47] to produce a hybrid clustering method called AntClass. AntClass

is based on a modification to the assumptions about the placement of data items in

the 2-dimensional grid in which the ants operate. Specifically, multiple data items can

occupy the same cell and form a heap. Clusters are defined by heaps instead of by spatial

Chapter 3. Overview of Ant Algorithms 20

arrangements of items.

As with the Lumer-Faieta algorithm, the ant population in AntClass is heterogeneous

with respect to the speed of the ants. The proposed advantage of using a heterogeneous

population is that the speed parameter does not need to be determined and set by a user

[47]. Furthermore, each ant in AntClass maintains a memory that records the location

of every encountered heap as well as the heap’s centroid in order to guide ants carrying

items to the heap with the least dissimilar centroid. Finally, while ants in AntClass do

not implement a behavioural switch that causes them to break existing clusters after a

period during which the ant manipulates no items, the ants are able to pick up one of a

heap of items - that being the item that is most dissimilar with respect to the centroid

of the mass to which the heap belongs.

The AntClass method proceeds in four steps:

1. apply cemetery formation to the data items that have not yet been assigned to a

cluster in order to obtain an initial partition,

2. apply k-means to the initial partition in order to reduce the classification error,

3. apply cemetery formation to the heaps,

4. apply k-means to the partitioned heaps once again in order to reduce the classifi-

cation error.

Monmarché [46] showed that the quality of clustering, with respect to the accuracy

of assigning items to clusters and the number of resulting clusters, improved with each

of the aforementioned steps in the AntClass method. The same publication also showed

that AntClass produced superior results to those obtained by using k-means alone.

Wu and Shi [58] proposed a variant clustering algorithm that combines the essential

concept of pick up and drop probabilities, as in the simple model, and a measure of sim-

ilarity, like that of Lumer and Faieta’s dissimilarity measure [41]. The variant algorithm

defines the probability that an ant will pick up and drop an item as

Pp =


1 if f(oi) ≤ 0

1− βf(oi) if 0 < f(oi) ≤ 1/β

0 if f(oi) > 1/β

(3.8)

Chapter 3. Overview of Ant Algorithms 21

and

Pd =


1 if f(oi) ≥ 1/β

βf(oi) if 0 < f(oi) < 1/β

0 if f(oi) ≤ 0

(3.9)

respectively, where β is a constant and f(oi) is defined as

f(oi) =
∑
j∈N(r)

[
1− d(i, j)

α

]
(3.10)

where N(r) defines a circular local area in terms of the radius r, d(i, j) is the Euclidean

distance between items i and j, and α is a coefficient.

Wu and Shi’s algorithm executes over a range of values for α. The parameter, α,

decreases as the number of time steps increases [58]. A large value of α results in a short

completion time of the clustering procedure because the contribution of the dissimilarity

measure to the calculation of f(oi) is reduced. Consequently, items are more likely to

be placed in any cluster that is encountered, regardless of whether the item is similar to

the items within the cluster. A small value of α results in a longer time to completion

of the clustering procedure because the contribution of the dissimilarity measure to the

calculation of f(oi) is increased and ants spend more time looking for clusters that

contain items that are similar to those that they are carrying. Therefore, the algorithm

starts with a large value for α and gradually decreases this value in order to produce a

similar effect to that obtained by Lumer and Faieta’s use of fast and slow ants. Wu and

Shi’s algorithm requires suitable values for its free parameters (β and r), as well as an

initial value for α and, as pointed out by Monmarché [47], these values can be difficult

to determine for a previously unseen problem.

In a similar vein to that of Wu and Shi’s contribution, Handl et al. [34] proposed

several modifications to both Deneubourg’s simple model [25] and to the Lumer-Faieta

algorithm [41] to synthesize an alternative method. The algorithm of Handl et al. em-

ploys the following probability definitions for the pick up, Pp, and drop, Pd, actions:

Chapter 3. Overview of Ant Algorithms 22

Pp =

{
1 if f(i) ≤ 1

1
f(i)2

otherwise
(3.11)

and

Pdrop =

{
1 if f(i) ≥ 1

f(i)4 otherwise
(3.12)

where f(i) is a modified version of Equation (3.6) and is the local density of item i,

defined as

f(i) =

{
1
σ2

∑
j(1−

d(i,j)
α

) if f(i) > 0 and ∀j : (1− d(i,j)
α

) > 0

0 otherwise
(3.13)

where σ2 is the size of the ant’s local neighbourhood and α is as for Equation (3.6). The

modified local density function increases, firstly, the penalty for empty cells, thus increas-

ing the density of clusters and, secondly, increases sensitivity towards high dissimilarities,

thus effecting a greater separation of clusters. The variant probability functions were

empirically derived on the basis of the variant local density function and were tailored

to increase the speed of the classification algorithm.

Handl et al. observed that the Lumer-Faieta algorithm’s use of an ant’s memory

to remember items that were previously dropped by the ant falls short in one respect.

Specifically, a remembered item may be moved by another ant between the time that

it was recorded and the time that another item is picked up. As such, the comparison

of the picked up item with the remembered item will not be valid. In order to preserve

the use of memory as a directional bias, the variant algorithm modifies Lumer and

Faieta’s use of an ant’s short-term memory. Instead of comparing a newly picked up

item with a remembered item, the variant visits the location of each remembered item

and calculates a value for f(i), where i is the carried item. Upon having visited all

remembered locations, the ant will execute a single-step jump to the location with the

highest value for f(i), with probability Pd. If the jump is not executed, then the ant’s

Chapter 3. Overview of Ant Algorithms 23

memory is disabled and the ant continues by attempting to drop its item at random

locations.

The size of the local area that an ant perceives affects the quality and speed of

clustering. A large view increases sorting quality but inhibits the early formation of

clusters. A small view limits information about the dispersion of items, thus decreasing

sorting quality but increasing the speed at which clusters are formed. Handl et al. [34]

exploited the aforementioned relation by increasing the size of an ant’s view of its vicinity

over time. Consequently, the variant algorithm conserved computation time during the

early stages of the classification process, while ensuring that initial clusters were easily

formed. As time progressed, smaller clusters were destroyed by ants with an increasingly

larger view of the grid.

Due to the reliance on item density by the general cemetery formation model, a

classification algorithm based on said model will form initial clusters in areas where

the density of items of the same type happens to be relatively high. Consequently,

clusters can form very near to one another and then remain so for the remainder of the

classification process. In order to increase the spatial separation of clusters, Handl et

al. [34] introduced a temporary period of time during which the scaling parameter of

Equation (3.13), σ2, is replaced with Nocc, where Nocc is the actual observed number of

occupied grid cells within an ant’s vicinity. Consequently, density was no longer taken

into account and only the similarity of items was considered. The effect of this was that

ants gradually moved clusters apart from one another and, after the aforementioned

temporary period elapsed, the ants resumed cluster formation but around the new focal

points defined by the displaced clusters.

The Lumer-Faieta algorithm employs a parameter, α, to scale the dissimilarities in

Equation (3.6) and Equation (3.7). An inappropriate value for α causes ants either to

create clusters of dissimilar items or to create many, smaller and superfluous clusters.

The nature of the data to be clustered determines what a suitable number of clusters is

and therefore the value for α depends on the nature of the data. To remove the need

for α to be set before commencement of the classification procedure, Handl et al. [34],

like Monmarché et al. [47], employed a heterogeneous population of ants. Each ant, k,

maintains its own value for αk and, furthermore, updates the value based on its rate of

Chapter 3. Overview of Ant Algorithms 24

failure to pick up and drop items. Initially, αk ∼ U(0, 1). Subsequently, α is updated

according to:

αk ←

 αk + 0.01 if
nk
f (T)

nk(T)
> 0.99

αk − 0.01 if
nk
f (T)

nk(T)
≤ 0.99

(3.14)

where nkf (T) is the total number of times that an item drop was considered by the ant

but did not occur because the probability of dropping the item was too low and nk(T)

is the total number of moves made by ant k at time step T .

Unlike the approaches previously described in this subsection, Yang and Kamel [59]

implemented the concept of heterogeneity at the colony level. The population of each

colony is homogeneous with respect to how the movement of ants is determined but the

colonies differ by movement paradigms. The algorithm employed by a colony is based on

Deneubourg’s simple model [25] and Wu and Shi’s algorithm [58]. Similarity, distance,

and speed are related by the local density function,

f(i) = max

0,
1

s2

∑
j∈Ns×s(r)

[
1− d(i, j)

α(1 + ((v − 1)/Vmax))

] (3.15)

where v, Vmax, and α are as in Equation (3.7), s is the length of a side of the square area

of the ant’s neighbourhood, and Ns×s(r) denotes the ant’s neighbourhood with r as the

centre. The dissimilarity measure, d(i, j), can be the Euclidean distance,

d(i, j) =

√√√√ l∑
k=1

(ik − jk)2 (3.16)

where i = (i1, i2, · · · , il) and j = (j1, j2, · · · , jl), or the cosine distance:

d(i, j) = 1− sim(i, j) (3.17)

where

Chapter 3. Overview of Ant Algorithms 25

sim(i, j) =

∑m
k=1(ik, jk)√∑m

k=1(ik)
2 ·
∑m

k=1(jk)
2

(3.18)

which computes the angle between the vectors i and j. Yang and Kamel’s algorithm

employs both the Euclidean distance and the cosine distance so that each measure com-

pensates for the other’s limitation. For instance, two vectors may be present on the same

line, thus being separated by an angle of 0◦, but may still lie on different points of that

line. The pick up and drop actions are governed by the functions Pp and Pd, respectively,

as

Pp = 1− S(f(i)) (3.19)

and

Pd = S(f(i)) (3.20)

where S is the sigmoid function

S(x) =
1

1 + e−ax
(3.21)

and a affects the slope of the sigmoid function. The value of a also affects the speed of the

clustering procedure. Stable clusters, which are no longer broken down or merged with

other clusters, can be formed sooner by increasing the value of a. Yang and Kamel’s

algorithm employs three colonies of ants. The first colony’s ants move at a constant

speed. The second colony’s ants move at speeds that are randomly chosen from [1, Vmax]

where Vmax is the maximum speed. The third colony’s ants begin by moving at a specified

speed and, over time, that speed is reduced by a randomly chosen fraction of the current

speed. The algorithm proceeds in two phases. In the first phase, each of the three

colonies independently produces a clustering of the data. In the second phase, the three

classifications are combined according to a hypergraph model [59].

Chapter 3. Overview of Ant Algorithms 26

3.1.4 A Minimal Model of Cemetery Formation

Contrary to the predisposition of researchers to alter and extend the simple cemetery

formation model, Martin et el. [44] proposed a minimal model of cemetery formation

that reduces the simple model. The minimal model eschews the use of a memory as

well as probabilities in the decision-making process for picking up and dropping items.

Instead, the minimal model consists of a rule to govern the picking up of an item, a rule

to govern the dropping of an item, and a rule to govern the movement of an ant.

An ant functioning according to the minimal model will pick up an item in a neigh-

bouring cell with a probability of one. If multiple, neighbouring cells are each occupied

by an item, then an item is chosen at random. An item is dropped if the ant has carried

the item to at least one new cell and the current cell adjoins at least one cell occupied

by an item. An ant moves by selecting a direction at random, after which it selects the

distance to travel, also at random. Once an ant reaches the end of its chosen path, it

picks a new path, as previously described. The maximum distance that an ant randomly

chooses to travel is set by a parameter and this is the only free parameter that is required

by an implementation of the minimal model.

Comparisons of the minimal model with Deneoubourg’s simple model [25] showed

that the latter produced an implementation that was 10 times faster than the former.

Martin et al. [44] suggested that the addition of a memory could be responsible for

the improvement in the speed of the process. However, the minimal model produced

clusters of a lower density than those produced by the simple model. Most significantly,

the minimal model demonstrated that as the number of ants decreased, down to one,

the construction of clusters did not suffer in any respect but completion time. This last

observation implies that there is no presence of an emergent behaviour in a colony of

ants operating according to the minimal model.

3.1.5 Applications of Cemetery Formation Algorithms

The cemetery formation model, as proposed by Deneubourg [25], has been shown to

be an effective basis for novel classification algorithms. Firstly, no global view or prior

partitioning of the data is required, making the model suitable in knowledge discovery

Chapter 3. Overview of Ant Algorithms 27

applications and in those cases where a physical view of the environment and objects of

interest is not available. Secondly, since no central authority is required to control the

individual processes (ants), each process functions and fails independently of its peers,

thus raising the possibility of implementing an algorithm based on cemetery formation

as a concurrent program.

Furthermore, while extensions to the model pose relatively small costs in computing

resources where the algorithm implementation is based entirely in software, the sim-

plicity and limited number of behaviours ascribed to each process are advantageous in

robotics applications. As each robot requires little in the way of processing ability and

memory, the cost of producing each robot remains low, enabling the deployment of many,

potentially disposable robots.

Cemetery formation has been used to sort structured data [41] and the Lumer-Faieta

algorithm was adapted and applied for use in graph colouring and graph partitioning

[37, 38]. Applications in robotics include using a swarm of robots to create annular

structures of objects [57] that mimic brood care behaviour, and employing a swarm of

robots to partition randomly distributed items [45].

3.2 Division of Labour

In his book, Die Siel van die Mier (The Soul of the White Ant), Eugene Marais [43]

discusses his studies of termite colonies in South Africa. Marais’ studies included an

observation that identified division of labour amongst the termites. In one example,

termites are divided into physiological castes, which included soldiers and workers. The

workers performed different tasks such as construction and maintenance of the colony

mound, tending of the larvae, and foraging for food and water. When the colony mound

was damaged, soldiers gathered at the area of the damage and, after ascertaining that

the perceived threat had passed, signaled an alarm by making a clicking sound. The

alarm compelled workers, who were performing other tasks, to gather at the site of the

damage and to begin repairing the mound.

This section describes division of labour in ant colonies, a mathematical model of the

mechanism of division of labour, and the algorithms that have been derived from that

Chapter 3. Overview of Ant Algorithms 28

model. Subsection 3.2.1 describes the relationship between caste ratios and the division

of labour in ant colonies, Subsection 3.2.2 describes a fixed threshold model, which seeks

to reproduce the mechanism underlying division of labour, Subsection 3.2.3 expands the

fixed threshold model with a variable threshold model that takes temporal polyethism

and task specialisation into account, Subsection 3.2.4 introduces a modification to the

variable threshold model in order to cause ants that perform certain tasks for long

periods of time to become specialists, and Subsection 3.2.5 concludes with a summary

of the problems to which division of labour algorithms have been applied.

3.2.1 Caste Ratios and Division of Labour

Edward Wilson [55] posits a correlation between caste ratios and the division of labour

in colonies of the genus Pheidole. The study observed different species of Pheidole, each

of which consists of minor and major workers. When the number of minor workers was

reduced to less than 50% of the workforce, the major workers increased their repertoire

of behaviours to assume most of the tasks of the minor workers and increased their

rate of activity in performing those tasks. When the ratio of minor to major workers

was returned to original levels, the major workers reduced their repertoire of behaviours

and decreased their rate of activity. Conversely, when the number of minor workers

was increased, no effect on either caste was observed. Wilson termed the behavioural

response by major workers to changes in the colony as the elasticity of an individual

or caste. The colony’s resilience to environmental changes is therefore determined by

elasticity.

The raison d’être for the existence of both minor and major workers instead of, for

instance, only major workers who perform all actions at all times, is speculated by Wilson

to be that a trade-off exists between specialization and energy usage. Specifically, major

workers are more efficient at performing certain tasks than their minor counterparts

but are also anatomically larger, requiring more energy to function. Minor workers

are therefore more economical, at the colony level, at performing menial tasks, while a

smaller number of major workers perform primarily specialised tasks. When the number

of minor workers falls to levels where the functioning of the colony is impaired, major

workers are temporarily able to assume enough of the roles of the minor workers to return

Chapter 3. Overview of Ant Algorithms 29

the colony to its prior state of fitness.

Wilson assumed that members of the major caste employed some means by which

to detect a decline in the number of minor workers and, in [56], proposed a caste-

aversion mechanism that could explain the division of labour. According to [56], major

workers tended to perform brood care tasks unless they encountered minor workers

near the brood. Major workers that encountered minor workers near the brood were

likely to abandon the brood chamber, while minor workers showed little or no reaction.

Consequently, a diminishing minor workforce would result in less avoidance of the brood

by major workers, which would eventually fill the roles vacated by the previous minor

workforce.

3.2.2 The Fixed Threshold Model

Bonabeau et al. [15] introduced a fixed threshold model (FTM) to explain some of the

observations in [55]. The FTM assumes that a task to be performed emits a stimulus,

γ, which represents the demand associated with said task. This demand increases over

time, T , and is scaled by the size of the colony, C, according to

γ(T + 1) = γ(T) + δ − τ

C

C∑
l=1

Cl (3.22)

where Cl is the number of individuals of caste l performing the task, δ is the increase

in stimulus intensity, and τ representes the efficiency of task performance, under the

assumption that all individuals are equally efficient over time. By Equation (3.22), the

demand for a task increases over time until a sufficient number of workers perform the

task, at which point the stimulus either remains constant or decreases.

A threshold for performing a task is associated with each individual member of the

colony. The probability Pl that an individual belonging to caste l transitions from an

idle state (X = 0) to an active state (X = t) of performing task t is defined by

Pl(X = 0→ X = t) =
γ2t

γ2t + θ2lt
(3.23)

Chapter 3. Overview of Ant Algorithms 30

where γt is the stimulus emitted by task t and θlt is the caste’s threshold associated with

performing task t.

At each time step an active individual becomes inactive with probability p, given as

Pl(X = t→ X = 0) = p (3.24)

Bonabeau et al. [15] simulated a colony consisting of two castes, namely major workers

and minor workers, and considered the cases where: (i) one task was performed and only

minor workers were specialised (i.e., had a lower threshold) in performing the task, (ii)

two tasks were performed and minor workers were specialised in both tasks, and (iii)

two tasks were performed and each caste was specialised in only one of the tasks. In the

first and second cases, the FTM yielded similar results to those obtained by Wilson in

[55]. The third case yielded the observation that both castes were elastic in their ability

to assume the behavioural role of the diminishing caste. The FTM can be extended to

any number of tasks by associating a unique threshold with each task for each worker,

as described by Equation (3.23). The FTM was also shown to account for a division of

labour without the need to model Wilson’s proposed caste-aversion mechanism [56].

The fixed threshold model assumes that tasks are preallocated to individuals and that

individual thresholds remain constant over time. As such, the FTM does not explain how

division of labour occurs - only that it exists. Furthermore, the FTM does not account

for task specialization within castes or for temporal polyethism, whereby individuals

perform different tasks at correspondingly different stages of their lives.

3.2.3 Variable Threshold Model

Theraulaz et al. [53] introduced a variable threshold model whereby a threshold is

decreased over time when an individual performs the related task and is increased over

time when the individual does not perform the task. The variable threshold model

employs the same equations as the FTM, namely Equations (3.22), (3.23), and (3.24)

but introduces the following formula to update individual i’s threshold θ associated with

task t:

Chapter 3. Overview of Ant Algorithms 31

θit → θit − xitξ∆T + (1− xit)ρ∆T (3.25)

where xit is the fraction of time T that individual i spends performing task t, and ξ and

ρ are coefficients that describe learning and forgetting, respectively.

Theraulaz et al. showed that when thresholds are determined by genes, that is, the

thresholds vary amongst individuals, those individuals with low thresholds for certain

tasks will perform those tasks more readily from an early age, thus accounting for tempo-

ral polyethism. When all thresholds are initialised to be equal, stochastic perturbations

lead some individuals to specialise in a task, while other individuals specialise in a dif-

ferent task. Finally, when a group of specialists declines in number, non-specialists will

eventually take over the roles of the absentees. This is because a task associated stimulus

will continue to increase while an insufficient number of workers is performing said task,

and the stimulus will eventually exceed the thresholds of the non-specialists.

3.2.4 Worker Specialization

Gautrais et al. [33] studied the effects of colony size and demand on worker polyethism

under Theraulaz’s variable threshold model. In order to be able to compare different

colony sizes, the study incorporated a measure of demand, which specifies the proportion

of the total potential work of the colony that is required to perform a task. The demand

influences the rate of increase of a task’s stimulus. Thus a small colony can be compared

with a large colony when both colonies exhibit the same demand. The results of the study

showed that when demand was low in a small colony, most, if not all, individuals remained

at rest. In a large colony, a small proportion of workers (the specialists) exhibited

heightened activity while a larger proportion (the generalists) worked sporadically or

remained at rest. Larger demands increased the number of active workers in small

colonies and increased the effect of specialization in larger colonies. Specialization took

place when a proportion of workers were able to begin working on a task during the

early stages of a simulation by having respectively low thresholds. The active workers

therefore had time to “learn” the task, thereby decreasing their thresholds towards that

task. Once a sufficient number of workers were performing a task, the stimulus produced

Chapter 3. Overview of Ant Algorithms 32

by the task was reduced, preventing workers with respectively higher thresholds from

beginning to perform the task in the first place.

3.2.5 Applications of Division of Labour Algorithms

Campos et al. [18] compared the variable threshold model of division of labour [53] with

a market-based algorithm in an application to a dynamic flow shop scheduling problem.

The performance of the two algorithms, with respect to makespan, was found to be simi-

lar. However, the ant-based algorithm performed significantly better at cost optimization

due to progressive specialization exhibited by the ant-based agents. Furthermore, the

work demonstrated that task allocation can be viewed as a scheduling problem that is

solved by the variable threshold division of labour model in a dynamic environment.

3.3 Summary

The models of cemetery formation and division of labour discussed in this section are

examples of distributed systems in nature. Both models function on the principle that

seemingly sophisticated behaviour need not be the product of a monolithic mechanism.

However, as shown by Martin et al. [44], it is not necessarily the case that complex

behaviour emerges from a collective of individually simpler behaviours. This trait in

particular is potentially useful in a distributed computational system where degradation

to the extreme point of only one functioning process does not compromise the system’s

function but merely slows it down.

Chapter 4

Dynamic Load Balancing Based on

Ant Algorithms

This chapter describes the ant-inspired opportunistic load balancing strategies that were

designed and implemented for this study. The strategies were studied within an experi-

mental model that expresses a simplified distributed computing system and narrows the

focus of the study to a test of each strategy’s viability. The model is described here

in detail and each strategy’s realization within the model is articulated. The problem

domain is then described in terms of the experimental model and a scope for the study

is established.

Section 4.1 describes the experimental model that was devised for the purposes of

this study. Section 4.2 describes the baseline task allocation strategy that was used to

provide a basis for comparison of the proposed task allocation algorithms. Section 4.3

describes the cemetery formation task allocation strategy in terms of the experimental

model. Section 4.4 describes the division of labour task allocation strategy in terms

of the experimental model. Section 4.5 defines the problem domain, which specifies

the composition of the distributed system’s network within the experimental model and

Section 4.6 summarises the chapter.

33

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 34

4.1 The Experimental Model

Each of the dynamic load balancing (DLB) strategies that was studied is defined within

the context of the experimental model that was designed for the purpose of this inves-

tigation. The model includes representations of the hardware and software required to

provide a general-purpose distributed computing service and is implemented as a simu-

lator that executes distributed computations and measures the time taken to complete

those computations. The goal of the experimental model is twofold: (i) to test a DLB

strategy’s efficacy in balancing computation loads and (ii) to do so without having to

prescribe a specific system configuration or specific systems of measure by which to eval-

uate the results. The remainder of this section describes the experimental model in

detail. The problem space is defined first, after which the architecture and component

interactions of the experimental model are discussed. Thereafter, the parameters that

define instances of the experimental model as well as the observable effects of those pa-

rameters are described. Finally, the assumptions made by the experimental model are

listed and rationalised.

4.1.1 Elements of the Problem Space

The problem space is divided into two areas, the service and the facility, each of which is

addressed by the experimental model. The service encompasses the activities for which

the system is intended and includes the users of the system and the processes that they

transact on the system. The facility includes the hardware and software that constitute

the system and in this investigation focuses on the ownership of those assets. Each area

of the problem space is further described next.

The Service

The experimental model is defined for the parallel execution of tasks that contribute to

the solutions to embarrassingly parallel problems. An embarrassingly parallel problem is

herein fully described as a project. Each project is divided into a subset of independent

parts, each of which is herein referred to as a task. Tasks are independent of each other

in that no dependencies between tasks exist, allowing tasks to be executed irrespective of

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 35

each other. A task is discrete in that it cannot be subdivided and it cannot be executed

by multiple, concurrently executing processes. The execution of a task produces a result,

which itself is a part of the solution to the project. The complete solution to the project

is obtained by forming a combination of the results produced by the executions of its

constituent tasks.

The Facility

While a distributed computing system harnesses multiple computers to provide a co-

herent service to its users, those computers are not necessarily owned and managed by

a single administrative domain. One of the the aims of this study is to produce DLB

strategies that support the creation of a distributed computing system that incorpo-

rates computers that are designated for a purpose other than distributed computation.

Consequently, it is foreseeable that the owners of these computers may wish to utilize

their hardware at various points in time and, in so doing, may preempt the execution

of tasks at any time, for arbitrary durations of time. Furthermore, the aim to incorpo-

rate computers from multiple administrative domains raises the possibility that not all

of the computers connected to the distributed computing system will exhibit the same

performance characteristics.

In order to address both the unpredictability of computer owners and the variety

of their computers’ processing capacities, the experimental model makes provision for

disparity in the performance of the distributed computing system’s individual nodes.

The experimental model defines a non-uniform grid, which is comprised of computers

with unequal performance characteristics, and a uniform grid, which is comprised of

computers with equal performance characteristics.

4.1.2 Component Architecture

The experimental model is designed according to a client-server architecture [23, 52]

because this architecture is readily understood and uncomplicated in implementation. A

single server hosts the tasks that must be processed and is herein referred to as the project

server. Multiple processing nodes are connected to the host of the project server as well

as to each other. For each physical processor there exists a client application, herein

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 36

referred to as a resource. Together, the resources and project server form a computing

grid. Resources request tasks from the project server, execute those tasks and return the

results of those computations to the project server. Thus the project server acts as the

user entry and exit points to and from the system, respectively.

The project server effectively centralizes the source of tasks and the results repository.

Even though the DLB strategies are decentralized, the system is still prone to a single

point of failure. Since this study focuses on the DLB strategies themselves and does not

aim to build a complete middleware layer, a distinction is drawn between allocation and

communication. The experimental model facilitates the optimal allocation of tasks to the

available resources and excludes means by which to correct faults in the communication

of tasks and results.

Each host possesses a single network interface controller (NIC). Communication

amongst resources and between the resources and the project server is connectionless

and asynchronous. For the sake of simplicity, no persistent connection is established

between communicating processes.

4.1.3 Component Behaviour and Collaboration

The experimental model comprises a number of components, each of which exhibits

behaviour that may be translated into an executable process. These components include:

the project server, the resources, and the tasks. Each of these components is described

in this section.

Task

A task is a self-contained program instance in that it contains the data to be processed,

the parameters for the computation, and the process logic by which to transform the data

or generate a result. The single responsibility of a task is to produce a result. When a

task is executed, its process logic is invoked with the associated parameters. The partial

result of a task is stored with the task component until the task is completed, at which

point the result may be retrieved. A task’s execution may be suspended at any point in

time and the current state of the task process may be serialized and transmitted to a

remote host.

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 37

Project Server

As the user interface to the distributed computing system, the project server has three

responsibilities: (i) enqueue projects for execution on the grid, (ii) make the constituent

tasks of a project available to resources, and (iii) collect the results of completed tasks.

When a user wishes to execute a project on the computational grid, he or she will

enqueue the task on the project server. If no projects are pending, then the project

will immediately be deployed for execution. Otherwise, the project will be placed in a

queue. Once a project is deployed, its tasks are available to the resources in the grid and

requests for tasks may be serviced. The project server responds to a request for a task by

recording the task’s unique identifier and then sending the task to the requesting process.

When a result is received, the originating task’s identifier is extracted from the result

message, the result is stored and its associated task is marked as having been completed.

When the status of a project is queried, the project server checks if any results are

outstanding and, if none are, then the project server returns a positive response.

Resource

A resource has four responsibilities: (i) obtain a task, (ii) execute that task, (iii) return

the results of the task to the project server, and (iv) respond to requests for the task.

When a resource has no task to execute, the resource requests a task from some source,

which is determined by the DLB strategy. On receiving a task, a resource begins to

execute that task. Otherwise, the resource repeats its attempt to acquire a task. Once a

task is complete, the resource transmits the result of the task to the project server. The

time taken by a resource to complete a task is dependent upon the speed and capabilities

of the resource host’s processor. While in any state, a resource may receive a request for

a task from another resource in the grid.

4.1.4 Parameters Defining Model Instances

An instance of the experimental model is defined by a single project server, one or more

resources of one or more types, the network formed by the server and resources, and a

set of tasks, collectively referred to as the project, to be executed by the resources. The

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 38

following parameters define these components.

Task Count

The task count represents the number of tasks present in a project. A corresponding

result is required for each task in order for the project to be completed.

Task Duration

The duration of a task reflects the number of processing steps required to complete

the task. A task is completed when the requisite steps to perform the task have been

executed by one or more resources.

Resource Count

The type of a resource is determined by its processor performance. While a uniform

network of resources would contain only one type of resource, a non-uniform network

would contain multiple resource types. The resource count specifies the total number of

resources of all types in the network.

Resource Processor Performance

Each resource is associated with a single, physical processor. A processor performs a task

by performing the task’s individual steps. Therefore, the performance of a resource is

determined by the number of steps that its associated processor is capable of performing

per unit of time.

4.1.5 Observable Effects

For the purpose of this study two measures of performance are taken into consideration

and are used to determine whether or not a DLB strategy is promising. The turnaround

time measures the effectiveness of a DLB strategy in maximizing the use of the fastest

processors. The message count measures the cost, in terms of network communication, of

achieving the measured turnaround time. These measures are the only observable effects

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 39

of a simulation run within the framework of the experimental model. Each measure is

described below.

Turnaround Time

The duration of time that elapses between the user starting the project and the return,

to the project server, of results from all constituent tasks is herein referred to as the

turnaround time. The turnaround time is the number of units, in whatever measure of

time is chosen, that the grid takes to complete the specified project. A DLB strategy

will aim to minimize the turnaround time.

Message Count

The message count is the number of messages that are required to be carried by the grid

network in order to complete the specified project. The message count is analysed in

order to investigate the cost of employing the various DLB strategies. As with turnaround

time, the actual unit of measure is left abstract and the message count is broken down

into counts of the different types of messages transmitted during the execution of a

project. Consequently, each type of message can be associated with a specific weight -

for instance, the number of bits required to represent the message - in order to facilitate

an analysis for a specific application. A DLB strategy will aim to minimize its message

count.

4.1.6 Assumptions Made by The Model

The purpose of this study is to determine the viability of the ant-inspired DLB strategies.

Instead of producing results that are specific to network topologies and resource host

configurations, this study aims to present a platform upon which further research may

be conducted. Subsequently, assumptions are made about the experimental model that

simplify and generalize the empirical analysis. These assumptions include the following:

• Each node in the grid is connected to every other node in the grid, obviating the

need to simulate routing within the network. Network topologies are determined

by specific application domains. This study aims to investigate only the general

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 40

viability of the proposed DLB strategy. Therefore, no routing is simulated within

the network.

• No specific software, including a stack of network protocols, is taken into consid-

eration. This study is concerned only with the cost of communications exhibited

by the DLB strategies under study. Network protocols in layers below that of the

application layer of the Open Systems Interconnection (OSI) network model [35]

are, like the network topology, determined by specific application domains.

• Nodes within the grid are free to transmit any amount of data per unit of time.

This allows for the measurement of bandwidth usage within the network, providing

more information than a simulation that constrains communications by limiting

bandwidth and reduces results to turnaround times only.

• There exists a means by which to measure the maximum and current performance

of a computer in real time such that different computers may be compared in terms

of their performance values. The DLB strategies investigated by this study depend

on the ability to determine the performance of resource hosts.

• Only one project is executed at a time. The experimental model does not employ

any mechanisms that facilitate the use of the grid to execute multiple projects

simultaneously. Such functionality is typically implemented by the distributed

system middleware [52], of which the DLB strategies are only a part.

• Network communication is free of faults. In this way, the experimental model

guarantees that messages sent using a connectionless protocol are always delivered.

• It is always possible to retrieve a task from a resource. The experimental model

does not make provision for the case where a task and its result are not retrievable

because a resource goes off-line.

4.2 The Baseline Task Allocation Strategy

In order to provide a point of reference for the evaluation of the ant-inspired DLB

strategies, a performance baseline will be drawn within the framework of the experi-

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 41

mental model. The ant-inspired strategies aim to mitigate the negative effect that a

non-uniform grid may have on the turnaround time of a project. Therefore, the choice of

a baseline, against which the performance of the ant-inspired strategies will be compared,

aims to express that negative effect.

The strategy used to determine the baseline performance data is based on the faulty

premise that precipitated Amdahl’s Law [3] - that the relation between the number of

processors and the performance of parallel programs is linear. As Amdahl demonstrated,

even small proportions of time spent executing sequential code negate the perceived

benefits of high degrees of concurrency, resulting in non-linear speedup and potentially

wasted investments in processor hardware. In a similar vein, a single resource host that

underperforms all other resource hosts in a computational grid may become the factor

that limits the minimum bound of project turnaround time. Therefore, the goals of

the baseline strategy are: (i) to demonstrate that a non-uniform computational grid is

subject to bottlenecks due to performance variations across resource hosts, and (ii) to

establish the situations under which the bottlenecks occur.

The remainder of this section describes the method employed by the baseline strategy

to allocate tasks to resources.

4.2.1 The Task Allocation Mechanism

Opportunistic Load Balancing

The essential aim of the baseline task allocation mechanism is to saturate the network

with tasks indiscriminately by making use of opportunistic load balancing [6, 16, 31]. Op-

portunistic load balancing is a crude implementation of general load balancing, whereby

the next task is allocated to the first available node. The desired consequence of this

approach is that every resource that requests a task will obtain a task (as long as tasks

are available from the project server).

Figure 4.1 depicts the states and transitions for a resource operating according to the

baseline strategy. An idle resource requests a task from the project server once during

each unit of time. While waiting for a response from the server, a resource remains in the

sourcing state. If a task is available, then the project server sends the task to the resource

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 42

Idle

Sourcing

Processing

'no task' received

new task
requested[results
submitted]

task received

task requested

stopped

stopped

stopped

do / request task

do / wait

do / process task
do[task complete] /
submit results

Figure 4.1: State transitions for a baseline resource.

for execution. A resource is in the processing state while it executes a task. When a

resource completes its task, the resource returns the result of the task to the server and

requests another task. The project is complete when no more tasks are available and all

results have been returned.

4.3 The Cemetery Formation Task Allocation Strat-

egy

Lumer and Faieta [41] described a model of cemetery formation (CF) by ant colonies,

which, in its generalized form, describes a clustering method. However, the simpler

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 43

model described by Deneubourg et al. [25] and studied by Dorigo et al. [26] is used

as the basis for the first task allocation mechanism proposed by this study. The simple

model of cemetery formation is henceforth referred to as the original cemetery formation

model (OCFM). In terms of the experimental model under study, tasks are viewed as

ant corpses, which are moved by ants from slower resource hosts to faster ones. The

mechanism by which ants in Dorigo’s et al. model decide when to pick up a corpse and

when to put it down is adapted to compare resource host performance measures. Each

cell in the grid utilized by the study in [26] is represented here by a resource. As such,

ants wander the network, relocating tasks to idle resources that can execute those tasks

faster than those resources where the tasks are currently situated.

This section describes the method used by the CF task allocation strategy to allocate

tasks to resources. The task allocation mechanism is described and the implications of

the mechanism’s realization within the experimental model are discussed. Thereafter,

the ant actions that define the task allocation protocol are described and, finally, the

parameters that control task allocation are listed and explained.

4.3.1 The Task Allocation Mechanism

Consider a grid that operates according to the baseline task allocation strategy, that is,

according to opportunistic load balancing. When no more tasks are available from the

project server and the only pending tasks are those being executed by resources in the

grid, the turnaround time of the project will be determined by the completion time of

the task being executed by the slowest resource. At the same time, a faster resource

might be idling because it has completed a task and no more tasks are available for it to

execute. In such a case, an incomplete task can be moved from the slow resource to the

faster, idle resource in order to reduce the project’s turnaround time. Therefore, the CF

task allocation mechanism attempts to locate pairs of non-uniform resources, between

which the reallocation of a task will reduce the task’s completion time.

Task allocation may be divided into two phases: a deployment phase and an opti-

mization phase. The deployment phase begins when a project is deployed by the project

server and resources begin to request tasks from the project server. While the project

server contains incomplete tasks, any resource may request a task and the next task in

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 44

the project server’s queue is transmitted to the requesting resource. The project server

does not order a project’s tasks in any way. The aim of the deployment phase is to

saturate the grid with tasks and to empty the project server’s queue of tasks. The

deployment phase ends when no more tasks remain in the project server’s queue.

The optimization phase begins when a resource receives a response from the project

server stating that no more tasks are available from the project server’s queue. The

implication of this response is that there is at least one resource that is idle and that

there may be another resource, within the grid, that is busy executing a task and is

doing so at a slower rate than what the idle resource is capable of. The optimization

phase ends when no more tasks are available from amongst the resources and the project

is complete.

The baseline strategy views the allocation of a task as a once-off process in that once a

task is sent to a resource it remains with the resource until it is completed. Therefore, the

baseline task allocation strategy employs only the deployment phase. The CF strategy

complements the baseline task allocation algorithm by implementing the optimization

phase, which adds a mechanism that moves tasks from slow resource hosts to faster ones

when both (i) no more tasks are available from the project server and (ii) a discrepancy

in performance is detected between a busy and an idle resource.

The Representation of Ants

The OCFM includes the concept of ants as individual and independent entities that

wander about a defined space and move objects to form clusters. The CF task alloca-

tion mechanism discards the notion of ants as independent entities that wander from

resource to resource. The first reason for this is that care is taken to avoid unnecessary

expenditure of bandwidth. For instance, ants that wander the network must necessarily

be transmitted from one host to another and consume bandwidth in the process. The

second reason is that a population of ants as software agents would have to be man-

aged so that ants that are lost due to a hardware failure or some similar reason could

be replaced. This raises the question of how the replacement of ants is done with the

consequence being that the computational grid system becomes more complex.

It is informative to note the implications of the scenario where an independent ant

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 45

colony is employed to wander the network. An ant may pick up the address of a busy

resource and search for a faster, idle resource where it might drop the address, thus

brokering a connection. However, while the ant searches for a better resource, the in-

formation it is carrying (the address of the busy resource) ages. The busy resource

may complete its task before the ant finds a suitable resource at which it may drop the

address.

Alternatively, an ant may pick up the address of an idle resource and search for a

slower, busy resource where the ant might drop the address. However, as the ants do

not coordinate their activities, there exists the possibility for multiple ants to search on

behalf of the same idle resource. While this may decrease the time needed to locate

a suitable source for a task, it also makes it possible for multiple ants to service one

resource while no ants service another, potentially faster resource. To have resources act

as ants, the latency inherent in waiting for optimization to take place is reduced. For the

sake of simplicity, the CF task allocation mechanism avoids adding any kind of control

process that coordinates the ant colony and replaces wandering ants with a more succinct

method, by which the CF resource takes on the role of the OCFM ant. A resource that

operates according to the CF task allocation strategy ‘wanders’ the network by polling

its neighbouring resources, which it chooses at random.

The Orientation of The Polling Action

In the OCFM, ants perform two actions: they pick up corpses and they put them down.

Likewise in the experimental model, ants record (pick up) the location of a resource

and initiate a connection with another resource (put down) to facilitate the transfer of

a task. In the grid, a suboptimal task allocation exists when a slow resource possesses

a task while a faster resource remains idle. As described previously, a resource in the

experimental model assumes the role of the ant and performs its own search by polling

neighbours in the network. The polling action can be oriented in two ways.

Firstly, an idle resource polls its neighbours for a task when the project server contains

no more tasks in the hope that one of the polling resource’s neighbours that does contain

a task is slower than the polling resource. This orientation is intuitive because polling

messages are transmitted only during the optimization phase. However, in practice, when

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 46

no project is queued on the project server, all resources will be idle and all resources will

attempt to locate tasks amongst themselves, thus transmitting unnecessary messages. A

practical solution to this problem is found in the use of a termination detection algorithm

such as the Dijkstra-Scholten algorithm [29]. A termination detection algorithm will

allow resources to determine when a project is complete so that no more polling messages

are transmitted.

Secondly, and alternatively, the polling action is reversed so that a busy resource

attempts to locate a faster, idle resource. A resource that becomes idle will not transmit

any polling messages and will wait for an offer of a task that it can complete sooner than

the current host of the task. Meanwhile, only those resources that are busy processing

tasks will transmit polling messages. When no tasks are available and all resources

are idle, no unnecessary polling messages are transmitted. However, this alternative

orientation implies that polling messages will be transmitted during both the deployment

phase and the optimization phase.

Since this study considers only the optimization phase of a project’s execution on a

computational grid, the question of which of the two orientations is most suitable to the

optimization phase is pertinent. Consider the first orientation whereby idle resources

transmit polling messages. Figure 4.2 depicts two resources, one of which is faster than

the other. Each resource can be in one of two states: busy or idle, denoted by B and

I in the figure, respectively. In the first time step, both resources are busy processing

a task so neither resource transmits a polling message. After the first time step, the

fast resource completes its task and becomes idle, while the second resource continues to

process its task. The idle resource transmits a polling message to its slower neighbour,

which relinquishes its task to the faster resource. After the second time step, the fast

resource completes the task that it acquired from its neighbour and, in the third time

step, the project is complete. Only one polling message was required during the depicted

execution.

Now consider the second orientation whereby busy resources transmit polling mes-

sages. Figure 4.3 depicts once again a fast and a slow resource, both of which begin the

first time step processing tasks. Both resources transmit a polling message during the

first time in the hopes of finding a faster, idle resource but no such resource exists and

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 47

B B1:

Fast
Resource

Slow
Resource

I B2:

B I

I I3:
T

im
e

st
ep

s

Figure 4.2: Message count for idle resources that transmit polling messages

so both resources continue to process their respective tasks. After the first time step,

the fast resource completes its task while the slow resource sends out another polling

message. This time around, the faster resource, being idle, accepts the slower resource’s

offer and acquires that resource’s task. As before, the fast resource completes the second

task during the second time step and the project is complete at the beginning of time

step three. A total of three polling messages were required during the depicted execution.

B B1:

I B2:

B I

I I3:

Fast
Resource

Slow
Resource

T
im

e
st

ep
s

Figure 4.3: Message count for busy resources that transmit polling messages

Since the second orientation of the polling action contributes to a higher message

count than the first orientation without affecting the turnaround time of the project,

only the first orientation is considered by this study.

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 48

The Implementation of Actions

The OCFM defines two actions for each ant: pick up and put down. The probability

that an ant will pick up a corpse that it encounters is high when the density of corpses

in the ant’s vicinity is low. The probability that an ant will put down a corpse that

it is carrying is high when the density of corpses in the ant’s vicinity is high. The CF

task allocation mechanism views the address of a resource as a corpse. An ant picks up

the address of a resource and puts down the address at some other resource. Thus a is

connection brokered between the two resources so that a task may be transferred from

the slower of the two resources to the faster one.

However, as discussed earlier, the CF task allocation strategy transfers the role of the

ant to the resource and limits the lifespan of a query to one remote resource. As such it

is necessary that the query records its origin. This implies that the pick up action of a

resource is deterministic, with the effect that a resource that performs a search always

picks up its own address. Therefore, the CF task allocation mechanism implements only

the put down action probabilistically.

In order that resources can be compared, the CF task allocation mechanism compares

the performance measures of each of the origin and potential destination resource hosts.

A difference between the maximum performance of an idle resource and the current

performance (with respect to the time at which the comparison is made) of a busy

resource indicates what is herein referred to as a shortfall in performance. In other

words, the shortfall represents a potential improvement in the performance of a task,

at a specific point in time. The shortfall is based on the difference between the current

performance of the slower resource and the potential maximum performance of the faster

resource. The reason that the current performance of the slower resource is used is

that the usage of resources by their owners, as described in Section 4.1.1, may thus be

detected by the task allocation mechanism. The probability of putting down an address

is dependent on the shortfall, with the probability of brokering a connection between

two resources being high when the shortfall in performance between those resources is

high.

Formally, if S and D are the potential source and destination of a task, respectively,

and Wmax(R) is the maximum work that can be done by resource R per unit of time T ,

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 49

while W (R, T) is the amount of work being done by resource R at time T , the normalized

shortfall s is expressed as:

s = exp

(
−α W (S, T)

Wmax(D)

)
(4.1)

where α determines the steepness of the shortfall. The probability PSD that a connection

is brokered between resources S and D is:

PSD =

(
s

θ + s

)n
(4.2)

where θ is a constant and n determines the steepness of the result. This function is

the same as that used in the OCFM and replaces the frequency of ant corpses with

performance shortfall between the two resources in question.

Summary

The CF task allocation strategy is an adaptation of the original CF model to the ex-

perimental model under study. The nature of the computational grid expressed by the

experimental model necessitates that the notion of ants and their actions, as described

by the original cemetery formation model, be adapted to the experimental model. The

task allocation strategy implemented for this study transfers the role of the ant to the

resource, which performs the search for suboptimal task allocations that would otherwise

be performed by ants wandering throughout the network. The orientation of the two ant

actions, pick up and put down, may be varied depending on the behaviour of the system

and is addressed in Chapter 6. The probability of brokering a connection is dependent

on the performance shortfall calculated between two resources.

Figure 4.4 depicts the states and transitions for a resource operating according to the

CF task allocation strategy. The baseline strategy is extended to include a prospecting

state. When a resource requests a task from the project server but the server does not

contain any more tasks, the resource will prospect for tasks amongst the other resources

in the network. A resource will remain in the prospecting state while the resource queries

other resources for available tasks.

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 50

Idle

Sourcing

Processing Prospecting

task received

results submitted

'no task'
received

task requested

stopped

stopped stopped

stopped

timed outtask requested

do / request task

do / wait

do / process task do / select resource
do[resource selected] /
request task

do[task complete] /
submit results

Figure 4.4: State transitions for a resource operating according to the CF task allocation

strategy

4.3.2 Parameters of the Task Allocation Mechanism

In addition to the parameters controlling the shape of the probability curve generated

by equation (4.2), the CF task allocation mechanism is controlled by one additional

parameter. The prospecting range determines the number of resources that a prospecting

resource will attempt to contact per unit of time. An increase in the prospecting range

will increase the message count because more queries will be issued by resources during

the optimization phase. Prospecting resources choose remote resources at random so a

higher prospecting range, which covers more of the network, increases the chance that

a suboptimal task allocation is encountered in a unit of time. However, as fewer tasks

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 51

remain toward the completion of a project, the number of remaining tasks cannot satisfy

the greater number of prospecting resources and the numerous requests will increasingly

contribute to wasted bandwidth. In practice, physical limitations, such as the throughput

of the network interface hardware, will establish a ceiling value for this parameter.

4.4 The Division of Labour Task Allocation Strategy

As described in detail in Chapter 3, Bonabeau et al. [15] introduced a model of division of

labour (DL) based on threshold-response functions and fixed threshold values. The fixed

threshold model is used as the basis for the second task allocation mechanism proposed by

this study and is henceforth referred to as the original division of labour model (ODLM).

In terms of the experimental model used for this study, a resource emits a stimulus while

it executes a task. This stimulus is broadcast to the whole network wherein all idle

resources compare their performance measures with that reported by the stimulus. Each

resource that perceives the stimulus broadcast attempts to acquire the associated task

based on a probability that is dependant on the performance shortfall between itself and

the resource at which the task is currently located.

The remainder of this section describes the method employed by the DL task alloca-

tion strategy to allocate tasks to resources.

4.4.1 The Task Allocation Mechanism

As with the CF task allocation strategy, the characteristics of the distributed computing

system expressed by the experimental model necessitate consideration of how the ODLM

is expressed in terms of the experimental model. In the case of the DL task allocation

mechanism, the role of the ant in task allocation and the originator of the stimulus

broadcast, i.e., busy or idle resource, are considered.

The Role of the Ant

An ant in the ODLM performs tasks and a resource in the experimental model does the

same. However, while a task in the ODLM attracts multiple ants to perform it, a task in

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 52

the experimental model is executed by one resource at a time. A task attracts resources

that are capable of processing it at a higher rate than its current resource can. The first

idle resource to request a task that is currently being processed causes its host resource

to relinquish the task to the requesting resource. Subsequent requests are answered with

a response indicating that no task is available.

The Originator of the Stimulus

A stimulus message can be broadcast by either an idle resource or a busy resource. If

a busy resource broadcasts a stimulus, then it does so in order to attract the attention

of an idle resource that is capable of executing the busy resource’s task at a higher rate.

The idle resource then requests the task from the busy resource, which transfers the task

to the faster host. When multiple resources in the network are idle, the stimulus message

is perceived by all of them and they all send a request for the task to the busy resource.

The busy resource then picks one of the requesting resources probabilistically, transfers

the task to the chosen resource, and sends null messages to the other resources.

Alternatively, an idle resource broadcasts a stimulus in order to attract the attention

of a slower, busy resource. A resource that possesses a task will perceive the stimulus

and transmit the task to the originator of the stimulus message. When multiple, busy

resources perceive a stimulus message, the potential exists for all of the busy resources

to send their tasks to the originator of the stimulus at the same time. To prevent the

transmission of multiple tasks, the idle resource must first choose one of the resources

that expresses an interest in transmitting a task. In order for the idle resource to make

a choice, each busy resource must transmit an offer to the idle resource, which will then

choose from amongst the offers it receives.

The reasoning about the effect of the stimulus origin on message counts is the same

as it is for the CF task allocation strategy’s polling message. This implies that, in order

to minimize the message count, idle resources should broadcast the stimulus. However,

as described previously, due to the fact that the stimulus is transmitted to multiple re-

sources simultaneously, a bidding system is required to prevent a resource from being sent

multiple tasks. The bidding system incurs four exchanges of messages to complete the re-

allocation of a task, namely: (i) stimulus broadcast, (ii) bid, (iii) acceptance/declination

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 53

of bid, and (iv) transmission of the task. On the other hand, where busy resources broad-

cast the stimulus, only three exchanges of messages are required: (i) stimulus broadcast,

(ii) task request, and (iii) transmission of the task/null message. Therefore, this study

considers only the latter origin of the stimulus message.

Stimulus Processing in Detail

A stimulus in the ODLM increases in intensity over time while an insufficient number of

ants is performing the task associated with the stimulus. Once enough ants have been

diverted to a new task, its associated stimulus either remains constant or it declines. In

the DL task allocation mechanism, a resource places the performance measure of its host

in the stimulus message. A resource that perceives a stimulus compares the associated

performance measure with a measure of its own host’s performance. With S and D

the potential source and destination of a task, the difference in performance is given by

the normalized shortfall, s, as expressed in equation (4.1). The probability, PSD, that

resource D will request a task from resource S is:

PSD =
sn

sn + θn
(4.3)

where θ represents the response threshold parameter and n determines the steepness of

the threshold.

Since the actual stimulus is relative to the resource where it is generated, the stimulus

is not increased or decreased over time. Instead, the stimulus represents the current

performance of the originating resource and therefore changes as the performance of

the associated resource changes. Subsequently, PSD increases as the difference between

Wmax(D) and W (S, T) increases, thus allowing idle resources to claim tasks from busy

resources that slow down or stop for any reason.

4.4.2 Summary

Within the DL task allocation mechanism, resources take on the role of the ants that

perform tasks. Busy resources broadcast stimuli that idle resources may respond to. An

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 54

idle resource that reacts to a sufficiently intense stimulus will request the task currently

being processed by the associated resource. A task is sent to the first resource that issues

the request for the task and each task is processed by a single resource. A resource may

be acquired by its owner at an arbitrary point in time, after which point the resource

will not process any tasks until the owner releases it.

Figure 4.5 depicts the states and related transitions for a resource operating according

to the resulting DL strategy. The states and transitions are identical to those of the CF

task allocation strategy. However, while a DL resource is in the processing state, it also

broadcasts a stimulus message to the other resources in the network. A DL resource

that is in the prospecting state will consider stimulus messages that it receives.

4.4.3 Parameters

In addition to the parameters controlling the shape of the probability curve generated

by equation (4.3), the parameter described here controls the behaviour of the resource

state machine depicted in Figure 4.5.

Stimulus Period

While a resource executes a task the resource repeatedly broadcasts a stimulus message.

The frequency of the repetition is controlled by the stimulus period. Higher frequencies

will allow idle resources to respond sooner to suboptimal task distributions, at the cost of

an increase in message count. Lower frequencies reduce the message count but increase

the potential duration that task distributions remain suboptimal. The stimulus period

determines the interval between stimulus broadcasts.

4.5 Problem Domain

The domain is defined by the network of resources that constitute the distributed com-

puting system. When the resources vary in their performance capabilities, they consti-

tute a non-uniform network. This study considered five cases of performance differences

amongst the slowest and the fastest resources in the network. In each case, a range of

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 55

Idle

Sourcing

Processing Prospecting

task received

results submitted

'no task'
received

task requested

stopped

stopped stopped

stopped

timed outtask requested

do / request task

do / wait

do / process task do[received stimulus] /
process stimulus

do[task complete] /
submit results

do / broadcast stimulus
do[activated] / request
task

Figure 4.5: State transitions for a resource operating according to the DL task allocation

strategy

resource performances was defined and each resource in the simulated network was as-

signed a performance capability in the specified range, such that the performances were

evenly distributed within the network. Table 4.1 depicts the ranges for the five, chosen

cases.

Table 4.1: Resource performance values that define the five problem cases considered.

Criterion Case I Case II Case III Case IV Case V

Minimum Performance 1 10 100 1 1

Maximum Performance 10 100 1000 100 1000

Chapter 4. Dynamic Load Balancing Based on Ant Algorithms 56

For all cases, the network consisted of 10 resources and 10 tasks so that each evalua-

tion could begin with the optimization phase of the algorithm. In other words, no tasks

were queued on the project server. The durations of the tasks were fixed at 10000 units

so that the slowest resource in Case I would require 10000 steps to complete a task and

the fastest resource in Case III and Case V would require 10 steps to complete a task.

This study considered the five cases described above and the empirical analyses, de-

scribed in the following chapters, will make references to the cases, as shown in Table 4.1.

4.6 Summary

This chapter presented the load balancing strategies that are investigated by this study

and the experimental model within which the strategies were studied. A baseline strat-

egy was established as a means by which to compare the ant-inspired strategies in terms

of turnaround time and number of messages transmitted within the network. Each of the

cemetery formation and division of labour strategies was adapted to the experimental

model under investigation. The experimental model thus provides a basis for investigat-

ing more detailed designs and implementations of the suggested ant-inspired strategies.

Finally, the problem domain was described and five cases of resource performance dis-

tribution were identified to serve as the scope of the empirical analysis.

The following chapter digresses from the topic of ant algorithms and turns to param-

eter optimization and the procedure by which the algorithms described in this chapter

were tuned.

Chapter 5

The Parameter Optimization

Procedure

The cemetery formation and division of labour task allocation strategies each employ a

function that determines the probability that a task will be relinquished by one resource

and transmitted to another. The curve produced by each function is shaped by a set of

parameters. To determine the effect of the probability curves on turnaround time and

message count, the aforementioned parameters were explored. The following sections

present the technique used to test the effects of the probability curves on the performance

of the cemetery formation and division of labour task allocation strategies and describe

the procedure used to select suitable parameter values for the empirical study.

Section 5.1 describes the analysis conducted to determine the sensitivity of the

turnaround time and message count to the individual input parameters of the two al-

gorithms. Section 5.2 defines the general, parameter optimization problem. Section 5.3

provides an overview of the procedures that were considered to address the optimization

problem. Section 5.4 describes how the chosen parameter optimization procedure was

modified to suit this particular study, and Section 5.5 concludes this chapter with a

summary of the key points.

57

Chapter 5. The Parameter Optimization Procedure 58

5.1 Parameter Sensitivity Analysis

As described in Chapter 4, the performance of the cemetery formation and division

of labour task allocation strategies is observed by measuring each strategy’s turnaround

time and message count. Each strategy is configured with a set of values for its respective

parameters. Since both strategies were herein proposed for the first time, the effect of

each parameter on a strategy’s performance could, at best, only be intuited. Therefore,

an empirical analysis of parameter sensitivity was carried out and is described in this

section.

5.1.1 Choice of Parameter Value Ranges

The range of values for each parameter was chosen to encompass variations of the sigmoid

function produced by Equation 4.2 and, where applicable and feasible, to encompass all

sensible values. The individual set of values for each parameter is given in Table 5.1.

The parameters α, θ, and n are those found in Equation 4.1 and Equation 4.2. The

parameter λ controls the prospecting range of each resource, as described in Chapter 4.

Table 5.1: Values chosen for parameter sensitivity analysis of the cemetery formation algo-

rithm.

parameter candidate values

α {α|α ∈ Z ∧ α ∈ [1, 9]}
θ {0.1θ|θ ∈ Z ∧ θ ∈ [1, 9]}
λ {λ|λ ∈ Z ∧ λ ∈ [1, 9]}
n {n|n ∈ Z ∧ n ∈ [1, 9]}

As with the CF task allocation algorithm, the range of parameter values for the

DL algorithm were chosen to encompass variations of the sigmoid function produced by

Equation 4.3. The individual set of values for each parameter is given in Table 5.2. The

parameters α, θ, and n are those found in Equation 4.1 and Equation 4.3. The parameter

γ controls the stimulus period of each resource, as described in Chapter 4.

Chapter 5. The Parameter Optimization Procedure 59

Table 5.2: Values chosen for parameter sensitivity analysis of the division of labour algorithm.

parameter candidate values

α {α|α ∈ Z ∧ α ∈ [1, 9]}
γ {γ|γ ∈ Z ∧ γ ∈ [1, 10, 20, ..., 90]}
θ {0.1θ|θ ∈ Z ∧ θ ∈ [1, 9]}
n {n|n ∈ Z ∧ n ∈ [1, 9]}

5.1.2 Choice of Problem Domains

Each of the CF and DL algorithms was evaluated with the ranges of parameters described

in Table 5.1 and Table 5.2, respectively, by each algorithm’s application to each of the

five problem cases outlined in Chapter 4.

5.1.3 Choice of Problem Instances

In the context of the simulated network, a problem represents the arbitrary initialization

and subsequent order of execution of the resources within the network. Each problem was

defined by a single number, which was used as the seed for a pseudo-random number

generator that determined the initialization and execution orders. Problems for the

purpose of optimization were generated by means of another pseudo-random number

generator, which essentially produced a sequence of seeds to be used by the simulation.

Therefore, the entire class of problems could be determined by a single, primary seed

number. The primary seed, 15151003, was selected and kept constant for both algorithms

and all cases in the sensitivity analysis. The problems that were generated during the

sensitivity analysis were filtered to ensure that no problem was used more than once.

5.1.4 Analysis Procedure

Each of the CF and DL algorithms was executed for every permutation of parameter

values in the previously chosen ranges. For each execution - that is, for each permutation

of parameter values - the turnaround time and message count were recorded. Each case

produced 6561 results.

Chapter 5. The Parameter Optimization Procedure 60

The sensitivity of each algorithm’s outputs to each respective parameter was deter-

mined by calculating the Pearson correlation coefficiant (PCC) for each set of outputs

(turnaround time and message count) and each parameter.

5.1.5 Results of Analysis

The resulting PCC values for the cemetery formation algorithm are presented in Ta-

ble 5.3. A visualisation of the results was produced for each parameter by selecting

the median PCC value over all cases and plotting the respective performance value

(turnaround time or message count) against the respective parameter value. The data

for each visualisation was sorted, in ascending order, by the parameter value. Therefore,

each visualisation depicts the performance value as the parameter value was increased,

within the range described in Table 5.1. A trend line was computed for each visualisation

to depict the degree to which a performance value is sensitive to a particular parameter.

The direction of a trend line is not as important as the steepness of its gradient, where a

high degree of steepness indicates high sensitivity and a low degree of steepness indicates

low sensitivity.

The median value over all cases, for each parameter, as correlated with turnaround

time, is depicted in Figures 5.1, 5.2, 5.3, and 5.4. Likewise, the median value over

all cases, for each parameter, as correlated with message count, is depicted in Fig-

ures 5.5, 5.6, 5.7, and 5.8.

Both turnaround time and message count were correlated with each of the four pa-

rameters. That is to say that all PCC values were non-zero. However, the correlation

between turnaround time and α was significantly weaker than any of the other correla-

tions. The order of parameters, from most correlated to least correlated, with respect to

turnaround time is: n, θ, λ, α. The order of the same parameters, from most correlated

to least correlated, with respect to message count is: λ, n, α, θ. The aforementioned

orders were determined according to the median PCC value over all cases.

Chapter 5. The Parameter Optimization Procedure 61

Table 5.3: Pearson correlation coefficients for the cemetery formation algorithm. Turnaround

time and message count are abbreviated as T and M , respectively.

T/λ M/λ T/α M/α T/θ M/θ T/n M/n

Case I -0.163 0.320 -0.058 -0.299 0.520 -0.191 0.581 -0.305

Case II -0.278 0.306 -0.037 -0.305 0.495 -0.222 0.560 -0.341

Case III -0.355 0.357 -0.016 -0.242 0.513 -0.361 0.588 -0.486

Case IV -0.262 0.347 -0.028 -0.293 0.491 -0.223 0.557 -0.339

Case V -0.341 0.386 -0.009 -0.236 0.468 -0.355 0.536 -0.478

Figure 5.1: Cemetery Formation - Turnaround Time vs. λ - Mean PCC

Figure 5.2: Cemetery Formation - Turnaround Time vs. α - Mean PCC

Chapter 5. The Parameter Optimization Procedure 62

Figure 5.3: Cemetery Formation - Turnaround Time vs. θ - Mean PCC

Figure 5.4: Cemetery Formation - Turnaround Time vs. n - Mean PCC

Figure 5.5: Cemetery Formation - Message Count vs. λ - Mean PCC

Chapter 5. The Parameter Optimization Procedure 63

Figure 5.6: Cemetery Formation - Message Count vs. α - Mean PCC

Figure 5.7: Cemetery Formation - Message Count vs. θ - Mean PCC

Figure 5.8: Cemetery Formation - Message Count vs. n - Mean PCC

Chapter 5. The Parameter Optimization Procedure 64

The resulting PCC values for the division of labour algorithm are presented in Ta-

ble 5.4. The visualisation of the results was produced in the same way as for the cemetery

formation algorithm, as previously described. Each visualisation depicts a performance

value as the respective parameter value was increased, within the range described in

Table 5.2.

The median value over all cases, for each parameter, as correlated with turnaround

time, is depicted in Figures 5.9, 5.10, 5.11, and 5.12. Likewise, the median value over

all cases, for each parameter, as correlated with message count, is depicted in Fig-

ures 5.13, 5.14, 5.15, and 5.16.

Both turnaround time and message count were correlated with each of the four pa-

rameters. That is to say that all PCC values were non-zero. Unlike the PCC values for

the CF algorithm, those obtained for the DL algorithm were more varied across cases.

This suggests that the DL algorithm is more sensitive to the composition of resources

in a network than the CF algorithm. The order of parameters, from most correlated to

least correlated, with respect to turnaround time is: γ, n, α, θ. The order of the same

parameters, from most correlated to least correlated, with respect to message count is:

γ, α, θ, n. The aforementioned orders were determined according to the median PCC

value over all cases.

Table 5.4: Pearson correlation coefficients for the division of labour algorithm. Turnaround

time and message count are abbreviated as T and M , respectively.

T/γ M/γ T/α M/α T/θ M/θ T/n M/n

Case I 0.133 -0.395 -0.412 -0.335 -0.035 -0.179 -0.266 -0.103

Case II 0.557 -0.502 -0.120 -0.372 0.393 -0.161 -0.370 -0.138

Case III 0.984 -0.902 -0.008 -0.138 0.002 -0.089 -0.008 -0.027

Case IV 0.579 -0.534 -0.110 -0.352 0.390 -0.154 -0.360 -0.129

Case V 0.999 -0.810 -0.012 -0.197 0.006 -0.134 -0.013 -0.034

Chapter 5. The Parameter Optimization Procedure 65

Figure 5.9: Division of Labour - Turnaround Time vs. γ - Mean PCC

Figure 5.10: Division of Labour - Turnaround Time vs. α - Mean PCC

Figure 5.11: Division of Labour - Turnaround Time vs. θ - Mean PCC

Chapter 5. The Parameter Optimization Procedure 66

Figure 5.12: Division of Labour - Turnaround Time vs. n - Mean PCC

Figure 5.13: Division of Labour - Message Count vs. γ - Mean PCC

Figure 5.14: Division of Labour - Message Count vs. α - Mean PCC

Chapter 5. The Parameter Optimization Procedure 67

Figure 5.15: Division of Labour - Message Count vs. θ - Mean PCC

Figure 5.16: Division of Labour - Message Count vs. n - Mean glsPCC

5.1.6 Analysis Remarks

The results of the sensitivity analysis lead to two conclusions. Firstly, the fact that a

correlation exists between each output and each parameter, for both algorithms, suggests

that good or optimal values for the parameters will have to be determined before either

algorithm is employed. However, in practice, a parameter that is weakly correlated with

a performance value, as with the α parameter of the CF algorithm, need not be optimised

if insufficient time exists to perform the optimisation.

Secondly, while the CF algorithm’s PCC values were relatively consistent across cases,

those of the DL algorithm were not. This implies that the DL algorithm’s parameters

will need to be optimised each time that the distribution of resources, with respect to

Chapter 5. The Parameter Optimization Procedure 68

their performance, changes within the network. In practice, this reduces the potential

to add or remove resources arbitrarily. On the other hand, the CF algorithm appears

to be less sensitive to resource distribution and a set of good values for the algorithm’s

parameters will likely remain good as the composition of resources changes.

The study of the cemetery formation and division of labour algorithms proceeds with

the optimisation of both algorithms’ parameters, which is described in the next section.

5.2 The Parameter Optimization Problem

A metaheuristic algorithm that exhibits free parameters must be tuned to each class of

problem to which the algorithm will be applied. The tuning of a metaheuristic requires

that a set of values for the metaheuristic’s free parameters be chosen and that any

component algorithms or procedures employed by the heuristic are selected. The chosen

set of values and component algorithms define a configuration.

In formal terms, the determination of a metaheuristic configuration requires the fol-

lowing:

1. A problem class that defines the type of problem to which the metaheuristic will be

applied. The problem class defines a space, I, from which a possibly infinite number

of problem instances, i ∈ I are sampled. It is assumed that it will be possible to

obtain a training sample from I such that the training sample is representative

of the problem class. In other words, the configuration determined by testing the

metaheuristic’s application to each of the problem instances in the training sample

will also be applicable to problem instances not in the training sample.

2. A space, K, from which to sample a possibly infinite number of configurations,

κ ∈ K.

3. An objective function, F , which expresses the measure by which to determine the

optimal or desired performance of the metaheuristic. Therefore, F (κ, i) represents

the performance of the metaheuristic, as configured according to κ and applied to

a problem instance, i.

Chapter 5. The Parameter Optimization Procedure 69

A suitable configuration, κ′, is determined by

κ′ = arg max
κ∈,i∈I

F (κ, i) (5.1)

The procedure by which configurations and problem instances are sampled and by which

κ′ is determined depends on the type of the metaheuristic to be optimized, the type of the

problem to which the metaheuristic will be applied, and the time available to complete

the optimization procedure. Optimization procedures and the factors that influence their

choice are discussed next.

5.3 Procedures for Parameter Optimization

The determination of a metaheuristic configuration is subject to several factors that

determine how much time will be required to produce a viable, sufficient, or even optimal

configuration. These factors include the following:

• The number of free parameters exhibited by the metaheuristic to be configured.

The number of combinations of parameter values will increase as the number of

parameters increases. While a relatively small number of parameters can be con-

sidered by a manual process, beyond some point, the employment of an automated

procedure will be required.

• The sensitivity of the parameters. Parameter sensitivity contributes to how many

potential values for the parameters are sampled. Highly sensitive parameters will

require that many, small increments of values are sampled, while less sensitive

parameters will require fewer values to be sampled.

• The type of the parameters of a metaheuristic. Parameters can be either continuous

or discrete. The values of continuous-valued parameters can be subdivided ad

infinitum. Good values may exist within those fractional ranges, making the choice

of subdivisions a trade-off between optimization quality and the computational

time required to evaluate the smaller increments of values. On the other hand,

discrete-valued parameters readily divide a configuration search space.

Chapter 5. The Parameter Optimization Procedure 70

• The ranges of the parameters. The range of values for a parameter delineate the

configuration search space. A large configuration search space will require that a

greater number of parameter values are sampled, while a smaller search space will

require that a smaller number of values are sampled.

• The availability of expert knowledge of the metaheuristic and problem class. Ex-

pert knowledge can be employed to select a configuration that has been empirically

derived and published in the relevant literature. If no configuration for a particular

problem class is known but the effects and sensitivities of the specific metaheuris-

tic’s parameters have been studied and are known, then an appropriate space of

potential configurations can be defined and searched. Either way, knowledge of the

metaheuristic, the problem, or both can be utilized to constrain the configuration

search space to known, feasible areas of configurations, or to obviate a search for

configurations altogether.

The size of the configuration search space, along with available computing time,

determines what kind of optimization procedure will be feasible to employ in order to

configure the metaheuristic for a particular application. Two common procedures are

discussed next and thereafter the procedure chosen for this study is introduced.

5.3.1 Brute Force Search

A brute force search is an exhaustive evaluation of every configuration that is sampled

from a defined configuration search space. The advantage of a brute force search is

that a definitive set of suitable configurations can be determined. However, available

computing time will define an upper bound on the size of the configuration search space

that is evaluated. Therefore, a brute force search is unlikely to be feasible when the

search space is large or infinite.

5.3.2 Full Factorial Design

The number of potential configurations can be reduced or the search space can be ex-

panded if configurations are sampled at some, non-zero interval. full factorial design

Chapter 5. The Parameter Optimization Procedure 71

(FFD) [28] is a procedure for evaluating combinations of factors, f , that are sampled

at different levels, b, to produce bf evaluations. By separating tests into levels, it is

possible to discern the effect of each factor on the response variable without having to

test factors independently and exhaustively. Furthermore, a test that yields the sought

after result might point to an area within the configuration search space where similar or

better configurations are to be found. A subsequent series of tests can then be executed

for configurations that are sampled from only the area near to or around the previ-

ously ascertained, promising configuration. A search for good configurations is guided

by the researcher and is therefore limited in scale by a researcher’s ability to consider

the number of tests that will result from a large number of factors.

5.3.3 F-Race

F-Race [11] is an automated parameter optimization procedure that repeatedly tests

a set of configurations and employs a statistical significance test to eliminate config-

urations that produce low values for F , as described in Section 5.2. The initial set

of candidate configurations is chosen according to the previously described factors of

parameter number, parameter type, and the availablity of expert knowledge. Each can-

didate configuration is then evaluated by its application to a single problem instance and

the performance of each configuration is recorded. Evaluation proceeds in steps, with

each step employing a new problem instance to test the set of candidate configurations.

Table 5.5 depicts the stepwise evaluation of configurations by F-Race.

At the end of each step, F-Race employs the Friedman test for variance by ranks [24]

in order to determine if there is a statistically significant difference between at least one

pair of candidate configurations, in terms of F , in the current set of configurations. The

Friedman test obviates the need to compare all possible pairs of candidates, which would

be computationally time-consuming as well as wasteful in situations when no differences

exist. If the Friedman test indicates that a difference exists in the set of candidates (at

a confidence level of 95%), then F-Race selects the candidate with the lowest rank as

the best-performing candidate, and compares all other candidates with the chosen elite

candidate, in terms of F , using the Wilcoxon signed ranks test [24]. If a statistically

significant difference is detected between a candidate and the elite candidate, then the

Chapter 5. The Parameter Optimization Procedure 72

Table 5.5: Visualization of candidate configurations, problem instances, and results for m

candidate configurations and k problem instances.

I/ κ1 κ2 . . . κm

i1 F (κ1, i1) F (κ2, i1) · · · F (κm, i1)

i2 F (κ1, i2) F (κ2, i2) · · · F (κm, i2)

...
...

...
. . .

...

ik F (κ1, ik) F (κ2, ik) · · · F (κm, ik)

former is discarded. Once all comparisons are completed, the next step is executed with

the set of surviving candidate configurations.

The F-Race procedure is stopped when either a pre-determined budget of evaluations

of F is exhausted or when a specified, minimum number of surviving candidates remain.

If multiple candidates remain when the procedure is terminated, then either the surviving

candidates are indistinguishable with respect to F or additional testing will eventually

discard the remaining, lesser candidates. Either way, the result of the procedure is not

necessarily the determination of the optimum candidate, which may be present in the

configuration search space but was not sampled for the initial candidate set.

Balakaprash et al. [8] proposed an iterative method, I/F-Race, that is intended to

refine a search for good configurations by repeatedly narrowing the space of configura-

tions. I/F-Race joins multiple iterations of the F-Race procedure such that the initial

candidate set in all but the first iteration is sampled around an elite, surviving candidate

from a previous iteration. Birattari et al. [14] suggested choosing an elite set of survivors

by Ne = min{Nsurvive, Nmin} where Nsurvive is the number of candidates remaining after

the previous iteration of F-Race completes and Nmin is a predetermined, desired number

of survivors. The elite candidates are weighted by

wz =
Ne − rz + 1

Ne · (Ne + 1)/2
(5.2)

Chapter 5. The Parameter Optimization Procedure 73

for z = 1, . . . , Ne and where rz is the rank of an elite configuration. One of the elite

survivors is then chosen with a probability that is proportional to wz and each new can-

didate configuration, x = 〈x1, x2, . . . , xQ〉, is sampled around the chosen elite candidate,

xz = 〈xz,1, xz,2, . . . , xz,Q〉, where Q is the number of parameters. Each component, xz,q,

is sampled according to a normal distribution with xz,q used as the mean and σl,q as the

standard deviation, defined by

σl+1,q = vq ·
(

1

Nl+1

) 1
Q

(5.3)

for l = 1, . . . , L− 1 and where L is the number of iterations, Q is the number of compo-

nents of a configuration, and vq is the range of the component xq. The elite candidate is

included with the newly sampled candidates and all of these candidates are tested again.

The implication of this design is that the bias of the sampling distribution towards the

elite candidate is increased as the number of components (or parameters) is increased

and as the number of candidate configurations to be sampled is increased.

The computational budget, B, is distributed over all iterations according to

Bl =
B −Bused

L− l + 1
(5.4)

where l = 1, · · · , L and Bused is the computational budget used up to and including

iteration l − 1.

Each iteration of F-Race is stopped when at most Nmin candidate configurations

remain, where

Nmin = 2 + round(log2Q) (5.5)

The following are the advantages of F-Race and I/F-Race:

• a large number of candidate configurations are evaluated in a structured procedure,

Chapter 5. The Parameter Optimization Procedure 74

• the resulting configuration is justifiable by virtue of it having been selected by the

results of statistical significance tests,

• the means by which an initial candidate set is sampled can be determined by the

researcher, thus accommodating expert knowledge, and

• the computational cost of the procedure can be controlled by an evaluation budget

and, in the case of I/F-Race, by limiting the number of iterations.

However, when the need to find a good or optimal configuration outweighs the need to

limit the amount of time to be spent on searching for a good configuration, the choice

of an evaluation budget is no longer justifiable. The following section describes a novel

extension to the F-Race procedure, proposed by this author, to provide a reasonable

stopping condition.

5.4 A New F-Race Termination Condition

When the constraint of minimising the time required to perform the tuning procedure

can be relaxed in favour of minimising the number of surviving candidates, the choice of

a computational budget for F-Race becomes arbitrary.

Firstly, it stands to reason that if all of the candidate configurations selected for a tun-

ing procedure are statistically significantly distinguishable with respect to the algorithm

to be tuned and the problem instances upon which the configurations are evaluated,

then the tuning procedure can be run until only one candidate configuration remains.

However, if two or more candidates are not distinguishable, then an execution of the

tuning procedure with an unlimited budget will run indefinitely. Since chosen candidate

configurations cannot be distinguished before the tuning procedure is executed, neither

an outcome of one surviving candidate nor indefinite execution can be predicted.

Secondly, even when it is possible to execute a tuning procedure until only one config-

uration remains, the computational time required to do so may nevertheless be infeasible.

The following tuning procedure was executed in order to observe the p-values produced

by the Friedman test after each step. A set of instances of the travelling salesman prob-

lem was produced such that each instance contained 100 nodes, randomly distributed

Chapter 5. The Parameter Optimization Procedure 75

on a 1000× 1000 unit grid. The ant system (AS) variant of the ant colony optimization

metaheuristic was chosen for its relative simplicity as the algorithm to tune and the

candidate configurations were chosen according to Table 5.6.

Table 5.6: Initial set of candidate configurations chosen for the observation of p-value gener-

ation.

parameter candidate values

α α ∈ {0.1α|α ∈ Z ∧ α ∈ [1, 10]}
β β ∈ {β|β ∈ Z ∧ β ∈ [1, 10]}
ρ ρ ∈ {0.1ρ|ρ ∈ Z ∧ ρ ∈ [1, 10]}

As suggested by Dorigo and Stützle [27], the value for τ0, the initial pheromone value,

was determined by calculating C̄nn, the mean shortest path over all problem instances, as

calculated by the nearest-neighbour heuristic for each instance, and computing m/C̄nn,

where m is the number of ants. The number of ants was fixed and equal to the number

of nodes. Each run of AS was limited to 10 iterations.

The tuning procedure was executed until only one candidate configuration remained.

A new set of candidate configurations was chosen by reducing the ranges of possible

parameter values such that each new configuration was much closer (in Euclidean space)

to the reference candidate. The reduced ranges of the new candidate configuration

parameter values are described in Table 5.7. The aim of choosing the new set was to test

candidates that were potentially difficult to distinguish from each other by statistical

significance.

Table 5.7: Subsequent set of candidate configurations chosen for the observation of p-value

generation.

parameter candidate values

α α ∈ {0.01α|α ∈ Z ∧ α ∈ [90, 100]}
β β ∈ {0.1β|β ∈ Z ∧ β ∈ [4, 6]}
ρ ρ ∈ {0.01ρ|ρ ∈ Z ∧ ρ ∈ [50, 70]}

Figure 5.17 depicts the p-values produced in the first 20 000 steps of the second

Chapter 5. The Parameter Optimization Procedure 76

execution. Initially, before sufficient evidence to distinguish the candidates has been

gathered, the p-values appear close to 1.0. As more problems are evaluated, the p-

values decline and when the p-value drops below the critical value (0.05 in this case),

the candidates are evaluated in pairs and those that are determined to be statistically

significantly different from the chosen best candidate thus far are discarded. The step

immediately following a discard once again bears little evidence to distinguish the new

set of surviving candidates so the p-values increase. The crucial observation to be made

is that the number of steps that elapse between discards of candidates increases after

each discard. This occurs as the poor candidate configurations are discarded, leaving

increasingly similar candidates to be tested. Consequently, a larger number of problems

must be evaluated in order to gather sufficient evidence to distinguish the remaining

candidate configurations.

Figure 5.17: p-values for the first 20 000 steps.

Figure 5.18 depicts the p-values produced in the last 20 000 steps of the second

execution. No discards take place in the depicted set of steps and although the depicted

p-values are decreasing, the rate of decrease is now much lower than that of the p-values

produced during the initial 20 000 steps. Naturally, it is not possible to know how many

steps will be required to distinguish all of the candidates before the tuning procedure

Chapter 5. The Parameter Optimization Procedure 77

is executed. If the time required to evalute one configuration upon one problem is

relatively high, then the amount of time required to complete the entire execution can be

unacceptably large even though one might initially have decided that computational time

is not an important constraint. Therefore, it is not possible to choose a computational

budget a priori such that an appropriate number of steps is completed and the tuning

procedure is terminated before the number of steps required to reach the next discard

potentially becomes either infeasible or infinite.

Figure 5.18: p-values for the last 20 000 steps.

In order to provide a justifiable stopping condition for the optimization of the load

balancing algorithms proposed by this study, a heuristic termination mechanism was

added to F-Race, as described next.

5.4.1 Overview of the Termination Heuristic

F-Race employs the Friedman test for variance by ranks to determine if a statistically

significant difference with respect to f exists within a set of candidate configurations.

The termination heuristic, proposed in [36], makes use of the p-values of the Friedman

test computed since the last step wherein candidates are discarded as an indicator of the

likelihood that statistically significant differences will be found in further testing.

Chapter 5. The Parameter Optimization Procedure 78

The termination heuristic gathers a minimum number of p-values in order to form

a sample from which to compute a trend. The trend is determined by means of least

squares linear regression, whereby a line is fitted to the sample of p-values. The op-

timization procedure is permitted to continue as long as the slope of the trend line is

decreasing. Once the slope of the line becomes absolutely constant or begins to increase,

the optimization procedure is stopped. The size of the p-value sample is increased by

adding to the sample the p-value of each new test as long as no candidates are discarded.

The p-value sample is discarded whenever candidates are discarded and a new sample is

built and evaluated in the subsequent F-Race steps.

The minimum size of the p-value sample is a constant and is not used as a parameter.

The p-value sample size is related to a computational budget in that changes to the

minimum sample size would be subject to the same a priori estimates. For this study, a

minimum of ten p-values were sampled before the termination condition was evaluated.

The termination heuristic was evaluated upon a single, customized instance of the

travelling salesman problem (TSP) in [36] to determine the viability of the heuristic

method. Thereafter, additional instances of the TSP were evaluated in order to consti-

tute a more substantial body of evidence to support and characterize the termination

heuristic. The additional empirical analysis is described next.

5.4.2 Empirical Analysis

The fundamental behaviour of the termination heuristic that determines the heuristic’s

feasibility is the heuristic’s use of computational time. The ideal case is one where the

heuristic uses only as much computational time as is required to differentiate all but one

candidate or a group of similar candidates. The empirical analysis was therefore begun

by posing the following questions:

1. If a set of candidate configurations contains statistically significantly distinguish-

able candidates, then does the termination heuristic allow for enough computa-

tional time to elapse in order to differentiate the candidates at least once?

2. If a set of candidate configurations contains statistically significantly distinguish-

able candidates, then does the termination heuristic stop the optimization proce-

Chapter 5. The Parameter Optimization Procedure 79

dure after the candidates have been reasonably distinguished, leaving either only

one candidate or a group of very similar or identical candidates?

To determine the behaviour of the termination heuristic with respect to the above

questions, a series of trials was run. The goal of each trial was to determine a good

configuration for an application of the AS variant of the ant colony optimization (ACO)

metaheuristc [27] to an instance of the TSP. A configuration’s fitness was measured

by the length of the shortest path reported after an execution of the AS algorithm

according to the respective configuration. Therefore, in relation to Equation (5.6), a

good configuration, κ′, was determined by

κ′ = arg min
κ∈,i∈I

F (κ, i) (5.6)

where κ is a configuration, F is the AS algorithm, I is the TSP problem set, and i is a

problem instance chosen from I.

The implementation of F-Race used for this study evaluated ten problem instances

before beginning testing using the Friedman test. The reason for this is that the Friedman

test statistic is approximated by the χ2 distribution when the number of ranks (candidate

configurations) is three and the number of observations (problem instances) is greater

than nine and when the number of ranks is four and the number of observations exceeds

four [32]. Therefore, in order to ensure a good approximation by the Friedman statistic

of χ2, the minimum number of evaluations performed before statistical testing was begun

was ten times the number of configuration candidates. The significance level used for

the Friedman test was set to 95.0% and that of the Wilcoxon signed ranks test was set

to 97.5%, as described by Birattari et al. [13] (later published in [12]).

F-Race was executed four times for each trial. The first execution employed the

proposed termination heuristic and the number of evaluations made during the execu-

tion was noted and used as the reference budget for the subsequent, three executions.

The remaining executions were performed without the termination heuristic and with a

constant budget of evaluations. As in [36], the constant budgets were multiples of the

reference budget and were determined by the multipliers, 0.0, 0.5, and 2.0. A budget

multiplier of 0.0 indicates that only the minimum number of evaluations were performed,

Chapter 5. The Parameter Optimization Procedure 80

as described in the preceeding paragraph, and that no budget was allocated beyond the

minimum number of required evaluations.

No limit on the number of surviving candidates was set and each execution was ter-

minated when the computational budget was exhausted, when the termination heuristic

determined that no further testing should be conducted, or when only one configuration

remained. The candidate configuration that survived after each execution was selected

as the best configuration for the associated budget. If more than one candidate config-

uration survived, then the candidate with the lowest rank, by the Friedman test, was

selected as the best configuration.

Three parameters of the AS algorithm were chosen for optimization: pheromone

influence, heuristic information influence, and pheromone evaporation rate, which in [27]

are α, β, and ρ, respectively. The ranges of values from which initial candidates were

generated were informed by the suggested settings for ACO algorithms without local

search in [27]. The initial set of candidates was sampled using FFD, as described in

Subsection 5.3.2, and each parameter range was divided evenly into a number of levels.

A total of 5184 candidates were sampled. Table 5.8 lists the AS parameters that were

chosen for optimization and shows the range and number of levels for each parameter.

Table 5.8: Initial set of candidate configurations chosen for the comparison of budgets.

Parameter Range Levels

α [0.0,1.0] 6

β [1.0,11.0] 6

ρ [0.0,1.0] 6

τ0 [0.0,1.0] 6

g (number of ants) [1,100] 4

Furthermore, each run of the AS algorithm was allowed to perform ten iterations

and to execute to completion. The distance of the shortest path reported after the

ten iterations were completed was taken as the fitness value by which the candidate

configuration was evaluated.

Chapter 5. The Parameter Optimization Procedure 81

The problem class used for the trials was a set of TSP instances that were generated

at random. Each instance consisted of 100 nodes in a fully connected graph in a two-

dimensional space of size u2 for 0 ≤ u ≤ 1000 and u ∈ Z. Euclidean distances between

nodes were computed by the AS implementation. Each execution in a trial started with

the same problem instances and employed as many problem instances as required, up to

termination. Executions within the same trial employed the same problems instances up

to the point where their budgets diverged. This ensured that executions were identical

if their budgets were identical and differed if and only if their budgets differed and only

after the point at which their budgets differed. However, problem instances were not

reused amongst trials. In total, 100 trials were completed to produce 100 configurations

for each of the four budgets. For each budget, the 100 selected configurations were each

evaluated with 100 problems to produce 10 000 shortest path results. Each candidate

was evaluated on a different set of 100 problems. However, the same 10 000 problems

were used for each budget. The budget variations were then compared in terms of their

associated sets of 10 000 shortest path results using the Student’s t-test.

Table 5.9 lists the median, mean, and standard deviation of the shortest paths ob-

tained by the configurations for each budget variation.

Table 5.9: Configuration evaluation results for budget multipliers 0.0, 0.5, 1.0, and 2.0, where

the multiplier 1.0 refers to the reference budget.

Budget Multiplier Median Mean Standard Deviation

0.0 8656.9650 8652.2766 360.0252

0.5 8644.6200 8640.7622 362.7801

1.0 8636.4850 8629.0478 363.8898

2.0 8630.5100 8628.6663 363.1426

As was expected, the mean and the median decrease as the budget increases. The

reason for this is that a larger computational budget allows F-Race to perform a larger

number of evaluations, which serve to distinguish the better performing configurations

from other configurations in the set of candidates. In other words, where candidates were

Chapter 5. The Parameter Optimization Procedure 82

0.0 0.5 1.0 2.0

~0.0000

~0.0000

0.0243

0.0226

Evaluation Results for Increasing
Budget Multipliers

Computational Budget Multiplier

p-
va

lu
e

s
(t

-v
al

ue
s)

0.9409

(4.6169)

(4.5376)

(0.0742)

(2.2527)

(2.2797)

Figure 5.19: Configuration comparison results for budget multipliers 0.0, 0.5, 1.0, and 2.0,

where the multiplier 1.0 refers to the reference budget.

evaluated more often, more problem instances were tested. A larger number of problem

instances constitutes a more accurate sample of the problem class and therefore serves

as a more accurate way to differentiate the candidate configurations.

Figure 5.19 depicts the values for the comparisons of the configuration evaluations for

the four budget variations. Each horizontal bar between two budget variations indicates

that those variations were compared. The label above each horizontal bar depicts the

p-value for the Student’s t-test and the label below the bar depicts the value of t.

The results of the statistical significance tests yielded the following observations:

1. The configurations for the budget multipliers of 0.0 and 2.0 produced statistically

significantly different sets of shortest paths.

2. The configurations for the budget multipliers of 0.0 and 1.0 produced statistically

significantly different sets of shortest paths.

Chapter 5. The Parameter Optimization Procedure 83

3. The configurations for the budget multipliers of 1.0 and 2.0 were not statistically

significantly differentiable.

4. The configurations for the budget multipliers of 0.0 and 0.5 produced statistically

significantly different sets of shortest paths.

5. The configurations for the budget multipliers of 0.5 and 1.0 produced statistically

significantly different sets of shortest paths.

The first observation shows that the candidate configurations were differentiable at

least once. The second observation shows that the termination heuristic allowed F-Race

to continue to evaluate candidates until the candidates were differentiated at least once,

thus answering the first of the two questions posed for the empirical analysis. The third

observation shows that the termination heuristic tended to stop F-Race from performing

evaluations at a point when the candidate configurations had been reasonably differ-

entiated. However, a caveat should be noted here. The p-value for the comparison of

multipliers 1.0 and 2.0 suggests that, in at least some of the trials, a better configuration

might have been ascertained, given enough of a computational budget. With reference

to the second question posed for the empirical analysis, what is ‘reasonable’ here de-

pends on how much real time a larger computational budget implies. For the purposes

of this study, the fact that twice the reference computational budget did not yield a

superior configuration was sufficient to accept the configuration yielded by the use of the

termination heuristic.

It should be noted that even though a statistically significant difference was observed

between multipliers 0.0 and 1.0 and that none was observed between multipliers 1.0

and 2.0, the number of evaluations performed under the guidance of the termination

heuristic is not necessarily optimal. Therefore, a multiplier of 0.5 was used to determine

if candidates might have been reasonably differentiated sooner than what the termination

heuristic suggests. The fourth and the fifth observations above show that the candidate

configurations were differentiable at least twice before the termination heuristic stopped

F-Race. If F-Race had been stopped at some point between the multipliers of 0.5 and

1.0, the second differentiation might not have taken place. Once again, this observation

shows that the termination heuristic did not use an optimal amount of computational

Chapter 5. The Parameter Optimization Procedure 84

time, but that the computational time spent by the tuning procedure was reasonable.

5.5 Summary

The overview of optimization presented in this chapter provided an introduction to the

problem of finding good parameters for a metaheuristic or any other algorithm that re-

quires configuration prior to its application. The optimization problem was stated in

formal terms, after which the factors that influence a potential solution to the problem

were discussed. While the approaches to parameter optimization presented in this chap-

ter are not comprehensive, they do provide an illustration of the challenges of sampling

a parameter search space and evaluating parameters within a feasible period of time.

The F-Race procedure was presented as a means by which to address the aforemen-

tioned challenges of parameter optimization. Thereafter, an extension to F-Race was

introduced in order to provide a justifiable way to terminate an optimization procedure

without compromising the search for a good configuration. The proposed extension was

evaluated empirically and the results showed that the extension allowed for a sufficient

amount of computational time to be expended in order to find a good configuration.

Subsequently, the proposed extension was accepted for use in this study.

Chapter 6

Comparison of The Proposed Load

Balancing Algorithms

In order to determine the viability of the proposed task allocation algorithms, each

algorithm is herein compared to a baseline. Section 6.1 describes the procedure used to

select the parameters for the load balancing algorithms. Section 6.2 details the design of

the experiments employed to compare the algorithms. Section 6.3 presents the results of

the comparisons and Section 6.4 discusses the findings. Section 6.5 describes the method

that was used to investigate and compare the scalability of the cemetery formation and

DL algorithms. Section 6.6 presents the results of the scalability analysis. Section 6.7

posits remarks on the findings. Section 6.8 summaries this chapter.

6.1 Parameter Optimization

For each algorithm, a set of parameter values was found in order to minimize the

turnaround time and another set of values was found in order to minimize the number

of task transmissions, henceforth referred to as the message count. F-Race, as described

in Chapter 5, was used to perform the optimization. The following subsections describe

each aspect of the optimization procedure in detail and the resulting parameter values

that were obtained.

85

Chapter 6. Comparison of The Proposed Load Balancing Algorithms 86

6.1.1 Problem Instances

As described in Chapter 5, a problem is defined by a pseudo-random number generator

seed and seeds are produced by a primary random number generator. The primary seed,

1212141827, was selected prior to the commencement of optimization and testing and

was kept constant for the remainder of the study.

The problems that were generated during the optimization procedure were filtered

to ensure that no problem was used more than once. All of the problems used during

optimization were recorded so that a new, unique set of problems (from the same seed)

could be generated for the purpose of testing, after optimization was completed.

6.1.2 Parameter Search Space

The initial set of parameters (candidates) to evaluate was chosen by means of full factorial

design, which was informed by knowledge of the proposed task allocation algorithms.

The initial set of candidates for both the minimization of turnaround time and message

count within the CF task allocation algorithm were chosen to encompass variations

of the sigmoid function produced by Equation 4.2. The individual set of values for

each parameter is given in Table 6.1. The parameters α, θ, and n are those found in

Equation 4.1 and Equation 4.2. The parameter λ controls the prospecting range of each

resource.

Table 6.1: Initial set of candidate configurations chosen for the CF task allocation algorithm.

parameter candidate values

α {α|α ∈ Z ∧ α ∈ [1, 10]}
θ {0.01θ|θ ∈ Z ∧ θ ∈ [1, 100]}
λ {λ|λ ∈ Z ∧ λ ∈ [1, 9]}
n {n|n ∈ Z ∧ n ∈ [1, 10]}

As with the CF task allocation algorithm, the initial set of candidates for the DL

algorithm were chosen to encompass variations of the sigmoid function produced by

Equation 4.3. The individual set of values for each parameter is given in Table 6.2. The

Chapter 6. Comparison of The Proposed Load Balancing Algorithms 87

parameters α, θ, and n are those found in Equation 4.1 and Equation 4.3. The parameter

γ controls the stimulus period of each resource.

Table 6.2: Initial set of candidate configurations chosen for the DL task allocation algorithm.

parameter candidate values

α {α|α ∈ Z ∧ α ∈ [1, 10]}
γ {γ|γ ∈ Z ∧ γ ∈ [1, 10, 20, ..., 100]}
θ {0.01θ|θ ∈ Z ∧ θ ∈ [1, 100]}
n {n|n ∈ Z ∧ n ∈ [1, 10]}

6.1.3 F-Race Configuration

The F-Race procedure was augmented with the termination heuristic described in Sec-

tion 5.4.1 and, in each case, the procedure was run for one iteration only. The best pa-

rameter configuration was chosen from amongst the surviving candidate configurations

by picking the configuration with the lowest rank sum. F-Race evaluated at least ten

problems before commencing statistical significance testing. The termination heuristic’s

minimum sample size was also set to ten. To ensure that the load balancing algorithm,

as fitness function, was evaluated accurately the algorithm was executed 100 times for

each configuration, per problem, and the mean fitness value was utilized by F-Race to

rank the candidates.

6.1.4 Resulting Parameter Values

The candidates chosen at the end of the optimization procedure in each case, for each

algorithm, to favour either turnaround time or message count are depicted in Tables 6.3,

6.4, 6.5, and 6.6.

The chosen parameter values were used to conduct the evaluations and comparisons

of the CF and DL task allocation algorithms, which are presented next.

Chapter 6. Comparison of The Proposed Load Balancing Algorithms 88

Table 6.3: Chosen parameter values for the cemetery formation algorithm to favour

turnaround time.

Case α θ λ n

I 9 7 0.15 1

II 9 7 0.10 1

III 9 7 0.10 1

IV 9 7 0.13 1

V 9 7 0.12 1

Table 6.4: Chosen parameter values for the cemetery formation algorithm to favour message

count.

Case α θ λ n

I 1 1 0.59 10

II 1 1 0.59 10

III 1 1 0.59 10

IV 1 1 0.59 10

V 1 1 0.59 10

Table 6.5: Chosen parameter values for the division of labour algorithm to favour turnaround

time.

Case α θ γ n

I 10 1 0.58 7

II 10 1 0.59 10

III 1 1 0.59 10

IV 10 1 0.59 10

V 1 1 0.57 8

6.2 Comparison Design

This study considered two criteria of algorithm performance, previously introduced as

the turnaround time and the message count (number of task transmissions between

Chapter 6. Comparison of The Proposed Load Balancing Algorithms 89

Table 6.6: Chosen parameter values for the division of labour algorithm to favour message

count.

Case α θ γ n

I 100 1 0.88 8

II 100 1 0.59 10

III 100 1 0.10 1

IV 100 1 0.59 10

V 100 1 1.00 5

resources). For each criterion, both task allocation algorithms were compared with a

baseline algorithm and with each other. The baseline algorithm is simply the simulated

network of resources without any task allocation strategy. That is, each resource exe-

cutes its task to completion and tasks are not moved between resources. The baseline

algorithm thus serves also to demonstrate that the absence of a task allocation strategy

in a non-uniform, distributed computing system, leads to an unnecessary increase in the

turnaround time of a project.

As described in Section 6.1, the problems used during the optimization procedure

for each task allocation strategy were recorded and a new, different set of problems was

generated for the purpose of testing. This served to illustrate that the strategies were not

tuned for a specific set of training problems but that the parameter values were applied

to the general class of problem (the sequence of random numbers due to the chosen

primary seed). The same set of testing problems was used for all of the evaluations to

ensure that the strategies could be compared.

Each strategy was evaluated to produce samples of 30, 100, and 1000 turnaround

time and message count values. Each sample was tested for normality using D’Agostino

and Pearson’s omnibus test. At sample sizes of 100 and 1000, the samples could not be

considered to be normally distributed. Therefore, the strategies were compared using

the Mann-Whitney U test.

Furthermore, the standard error of the mean (SEM) was calculated for each sample

(for turnaround time). At a sample size of 1000, the SEM was found to be approximately

3% of the mean. At a confidence level of 95%, with a z∗-value of 1.96, the sampling

Chapter 6. Comparison of The Proposed Load Balancing Algorithms 90

margin of error would therefore be approximately +5.88%/− 5.88% of the mean, which

was considered to be acceptable.

Consequently, the largest sample (1000 values) affordable in terms of processing time

was used to ascertain the most accurate results.

The median, mean, and standard deviation were computed for each sample. The

results of the evaluations and comparisons are presented, as follows.

6.3 Comparison Results

The baseline, CF, and DL algorithms were compared according to each of the two criteria

for each case. The p-value for each comparison is depicted in Table 6.7 and Table 6.8.

Table 6.7: Comparison p-values of the algorithms under study for turnaround time.

Case Algorithm Cemetery Formation Division of Labour

I Baseline 0.000 0.000

I Cemetery Formation - 0.001

II Baseline 0.000 0.000

II Cemetery Formation - 0.000

III Baseline 0.000 0.000

III Cemetery Formation - 0.000

IV Baseline 0.000 0.000

IV Cemetery Formation - 0.000

V Baseline 0.000 0.000

V Cemetery Formation - 0.000

The median, mean, and standard deviation for the turnaround time criterion of each

algorithm are depicted in Tables 6.9, 6.10, and 6.11.

The median, mean, and standard deviation for the message count criterion of each

algorithm are depicted in Tables 6.12, 6.13, and 6.14.

The results obtained by evaluating the task allocation algorithms described in this

study and depicted in this section are discussed next.

Chapter 6. Comparison of The Proposed Load Balancing Algorithms 91

Table 6.8: Comparison p-values of the algorithms under study for message count.

Case Algorithm Cemetery Formation Division of Labour

I Baseline 0.000 0.000

I Cemetery Formation - 0.000

II Baseline 0.000 0.000

II Cemetery Formation - 0.000

III Baseline 0.000 0.000

III Cemetery Formation - 0.000

IV Baseline 0.000 0.000

IV Cemetery Formation - 0.028

V Baseline 0.000 0.000

V Cemetery Formation - 0.000

Table 6.9: Median turnaround time for each algorithm and each case.

Algorithm Case I Case II Case III Case IV Case V

Baseline 10000.000 667.000 64.000 1429.000 152.000

Cemetery Formation 2184.500 222.000 24.000 241.000 26.000

Division of Labour 2139.000 214.000 23.000 233.000 25.000

Table 6.10: Mean turnaround time for each algorithm and each case.

Algorithm Case I Case II Case III Case IV Case V

Baseline 8115.877 651.109 63.749 2503.910 423.923

Cemetery Formation 2253.739 228.307 24.274 250.097 26.900

Division of Labour 2220.619 221.388 23.241 242.363 25.700

6.4 Comparison Discussion

The comparisons of the three task allocation strategies yielded p-values that suggest that

all of the results, for each of the two criteria of turnaround time and message count, were

statistically significantly different at a confidence level of 95%. This result was expected

because the algorithms are fundamentally different from one another. Therefore, the

Chapter 6. Comparison of The Proposed Load Balancing Algorithms 92

Table 6.11: Standard deviation of the turnaround time for each algorithm and each case.

Algorithm Case I Case II Case III Case IV Case V

Baseline 2686.369 216.050 20.427 2703.261 981.840

Cemetery Formation 347.108 33.491 3.493 44.415 4.881

Division of Labour 371.437 34.275 3.460 46.086 4.794

Table 6.12: Median message count for each algorithm and each case.

Algorithm Case I Case II Case III Case IV Case V

Baseline 20.000 20.000 20.000 20.000 20.000

Cemetery Formation 59.000 25.000 21.000 27.000 21.000

Division of Labour 37.000 27.000 20.000 27.000 22.000

Table 6.13: Mean message count for each algorithm and each case.

Algorithm Case I Case II Case III Case IV Case V

Baseline 20.000 20.000 20.000 20.000 20.000

Cemetery Formation 60.644 25.366 20.793 27.213 21.586

Division of Labour 37.032 27.002 20.000 27.481 21.976

Table 6.14: Standard deviation of the message count for each algorithm and each case.

Algorithm Case I Case II Case III Case IV Case V

Baseline 0.000 0.000 0.000 0.000 0.000

Cemetery Formation 13.553 2.444 0.856 3.336 1.275

Division of Labour 4.507 1.837 0.000 1.914 1.843

mean, median, and standard deviations were taken at face value and used to categorise

the algorithms that were studied. The following subsections describe the results for each

task allocation strategy in detail.

Chapter 6. Comparison of The Proposed Load Balancing Algorithms 93

6.4.1 Baseline Strategy

The turnaround times obtained for the baseline strategy are the highest amongst those

for all of the algorithms in all of the cases. This result is in line with expectations for

the reason that tasks were not moved from slower to faster resources during runtime.

Therefore, the turnaround time was always determined by the slowest resource in the

network.

The standard deviations for the turnaround times are relatively large because the

turnaround times obtained were entirely dependent on the performance of the slowest

resource within the network. If the performance of the slowest resource was closer to the

highest possible value in the specified range of performance values, then the turnaround

time would have been lower. Likewise, if the performance of the slowest resource was

closer to the lowest possible value in specified range of performance values, then the

turnaround time would have been higher.

The message counts obtained were exactly as expected. In each case, 20 transmissions

occurred – one transmission for each of the 10 tasks from the project server to a resource

and one transmission for each task back to the server on completion. There were no

other transmissions because no task allocation was performed during runtime.

6.4.2 Cemetery Formation Strategy

The mean and median turnaround times obtained for the CF strategy were lower than

those of the baseline in all cases, which is reasonable because the baseline strategy did

not perform any task allocation. Furthermore, the mean and median turnaround times

of the CF strategy are higher than those of the DL strategy in all cases.

The standard deviations for the turnaround times of the CF and DL strategies are

similar, with those of the CF strategy being lower in cases I, II, and IV and higher in

cases III and V. This suggests that the greater range of resource performance, as in cases

III and V, contributes to an increase in the CF strategy’s turnaround time deviations in

a similar fashion to that of the baseline strategy. In other words, while the CF algorithm

does reallocate tasks during runtime, thus mitigating its dependency on the performance

of the slowest resource, it is not independent of the distribution of the resources in the

Chapter 6. Comparison of The Proposed Load Balancing Algorithms 94

network.

The mean and median message counts obtained for the CF strategy were higher

than those of the baseline in all cases because the CF stragegy performed additional

task allocation during runtime, in addition to the 20 basic transmissions incurred by

the baseline stragegy. The mean message counts obtained for the CF strategy were

higher than those of the DL strategy in cases I and III and lower in cases II, IV, and

V. The median message counts obtained for the CF strategy were higher than those of

the DL strategy in cases I and III, lower in cases II and V, and equal in case IV. Taken

together with the turnaround times, this suggests that the CF algorithm is generally

weaker than the DL algorithm in that it produces higher turnaround times, often at

greater or equivalent cost in terms of task transmissions (message count). Where the

message counts are lower, the higher turnaround times are seen as a tradeoff.

The standard deviations of the message counts for the CF strategy are higher than

those of the DL strategy in all cases except for case V. The reason for this is attributed to

the polling strategy employed by each of the aforementioned task allocation strategies.

The CF strategy requires a resource to choose another resource to poll at random, while

the DL strategy has a resource broadcast its poll to the entire network. The former

strategy can cause a task to be moved between two resources prematurely – that is,

before a better resource is located by the random polling. The latter strategy locates the

best pairing of resources between which to exchange a task after only one poll broadcast.

In other words, minimal transmission of tasks in the CF strategy depends on the fortuity

of the polling.

6.4.3 Division of Labour Strategy

The mean and median turnaround times obtained for the DL strategy were lower than

those of the baseline in all cases, which, as with the CF algorithm, is due to the baseline

strategy not having perfomed any task allocation. As described in the previous subsec-

tions on the baseline and CF strategies, the DL strategy exhibited the lowest mean and

median turnaround times in all cases.

With reference to the standard deviations of the turnaround times obtained for the

CF strategy, those obtained for the DL strategy suggest that the latter strategy is most

Chapter 6. Comparison of The Proposed Load Balancing Algorithms 95

resilient to the distribution of the resources in the network. This is due to the polling

message being broadcast, thus enabling the best resource to be located each time.

As described previously with regards to the CF strategy, the DL strategy tended to

exhibit higher mean message counts in cases II, IV, and V and higher median message

counts in cases II and V. The reason for this difference is attributed to the poll broadcast.

While the lower standard deviations of message counts obtained for the DL strategy were

attributed to this broadcast, the broadcast also appears to present opportunities for task

reallocation more often than the CF strategy. The latter strategy must poll iteratively,

hoping to find an opportunity to reallocate a task, while the latter strategy perceives

opportunities for reallocation more often. This explains why the DL strategy exhibits

the lowest turnaround times – tasks are reallocated more favourably, more often. The

occassional increase in cost of task transmissions (message count) is seen as the tradeoff

for this increased performance.

6.5 Scalability Analysis Design

In order to determine the effect of problem and network scale on the proposed task

allocation algorithms, increasing numbers of tasks and resources within the network

were tested. Once again, each problem case was tested separately for each algorithm

and each performance measure. For each case, the number of tasks to complete was

minimally 10 and maximally 100. For each set of tasks, the number of resources ranged

from 10 to 100. Therefore, 100 instances were computed for each performance measure

of each algorithm, for each case.

Since problem cases I, II, and III differ by an order of magnitude in both minimum

and maximum resource performance, cases II and III were not included in the scalability

analysis. Instead, the analysis focused on cases I, IV, and V, wherein the difference

between the minimum resource performance and the maximum resource performance

grows from one order of magnitude, in case I, to three orders of magnitude, in case V.

Chapter 6. Comparison of The Proposed Load Balancing Algorithms 96

6.6 Scalability Analysis Results

The results of the scalability analysis for the CF algorithm are depicted in Figures 6.1, 6.2,

and 6.3, for turnaround time. Every set of 10 values represents an incremental increase

in the number of tasks and every result within the set represents an incremental increase

in the number of resources.

As the number of tasks increases, so too does the turnaround time. This is ex-

pected because processing more tasks takes more time. In each set, the turnaround time

decreases as more resources are added. Again, this is expected because adding more

resources increases the capacity for processing more tasks in parallel.

Figure 6.1: Cemetery Formation - Turnaround Time vs. [Task Resource] Count - Case I

Figure 6.2: Cemetery Formation - Turnaround Time vs. [Task Resource] Count - Case IV

Chapter 6. Comparison of The Proposed Load Balancing Algorithms 97

Figure 6.3: Cemetery Formation - Turnaround Time vs. [Task Resource] Count - Case V

With reference to the first set of results for case I, where the task count is 10 and

the resource count ranges from 10 to 100, the turnaround time decreases as the number

of resources increases from 10 to 40. The reason for this decrease is that the resource

performance values, as specified for case I, were evenly distributed amongst the set of

resources. Therefore, as the number of resources increased, the absolute number of fast

resources also increased, thus providing the algorithm with better resources with which

to complete the 10 tasks. In other words, the algorithm moved some tasks from slower

to faster resources when more, faster resources were available. However, the trend does

not appear to continue beyond 50 resources. The reason for this is that the tasks were

already being completed in as short a time as physically possible and the addition of yet

more resources afforded no further gains.

With reference to the last set of results for case I, where the task count is 100 and

the resource count ranges from 10 to 100, the turnaround time continues to decrease

with each increment in resource count because each additional 10 resources allows for 10

additional tasks to be processed in parallel.

The same results were observed for cases IV and V. Where the maximum resource

performance increased, as specified for each case, the turnaround time decreased corre-

spondingly.

The results for the message count of the CF algorithm appear in Figures 6.4, 6.5,

and 6.6. The number of messages transmitted within the network increased as the

number of tasks increased. Naturally, more messages are transmitted simply by virtue

Chapter 6. Comparison of The Proposed Load Balancing Algorithms 98

of the greater number of tasks as well as their results being moved around the network.

Furthermore, as the number of resources increased, more prospecting messages were sent

out by idle resources and tasks were moved more frequently, thus adding to the total

count of transmitted messages.

Figure 6.4: Cemetery Formation - Message Count vs. [Task Resource] Count - Case I

Figure 6.5: Cemetery Formation - Message Count vs. [Task Resource] Count - Case IV

With reference to the first five sets of results for case I, where the task count ranges

from 10 to 50, the trend within each set appears as a concave curve. The reason for this

is that an increasing number of resources produced an increasing number of prospecting

messages, thereby increasing the total message count. However, the rate of increase

slowed as more resources were added. This is because there were relatively few tasks

Chapter 6. Comparison of The Proposed Load Balancing Algorithms 99

Figure 6.6: Cemetery Formation - Message Count vs. [Task Resource] Count - Case V

present in the network and these tasks were acquired by the faster resources, which

completed the tasks relatively quickly, giving the slower resources less time to transmit

polling messages. Essentially, the sooner a project was completed, the less time other

resources had to transmit polling messages.

Now consider the second five sets of results for case I, where the task count ranges

from 60 to 100. The trend within each set appears first as a convex curve and then,

within the last set, as a linear increase. The reason for this change in the shape of

the trend is that as more of the network was saturated with tasks, more of the slower

resources acquired tasks, too. Then, when the faster resources completed their tasks,

not only did those faster resources transmit polling messages but those polling messages

also resulted in tasks being moved from the slower resources to the faster ones. Those

task movements account for the increase in overall message count.

The trends described above are less pronounced in the results for case IV, while

case V depicts mostly linear, increasing trends in the sets of results. The maximum

performance of resources was higher in case IV than it was in case I and was highest

in case V. The effect of this difference was that the performance of the faster resources

in each test was higher in each case. Therefore, where the number of tasks was small,

the faster resources completed the project quickly and little time was spent by slower

resources on transmitting polling messages and moving tasks. Where the number of

tasks was large, the network behaved as in case I.

The results for the DL algorithm are depicted in Figures 6.7, 6.8, and 6.9, for

Chapter 6. Comparison of The Proposed Load Balancing Algorithms 100

turnaround time.

Figure 6.7: Division of Labour - Turnaround Time vs. [Task Resource] Count - Case I

Figure 6.8: Division of Labour - Turnaround Time vs. [Task Resource] Count - Case IV

The results for the DL algorithm, with respect to turnaround time, are essentially

the same as those observed for the CF algorithm. In each set, the turnaround time

decreased as the number of resources increased. The turnaround time increased across

sets as the number of tasks increased.

Figures 6.10, 6.11, and 6.12 depict the results for the DL algorith with respect to

message count.

Once again, the results followed a similar pattern to that of the results for the CF

algorithm. However, with reference to the first set of results for case I, of both algorithms,

Chapter 6. Comparison of The Proposed Load Balancing Algorithms 101

Figure 6.9: Division of Labour - Turnaround Time vs. [Task Resource] Count - Case V

Figure 6.10: Division of Labour - Message Count vs. [Task Resource] Count - Case I

a distinct difference is apparent. As more resources were added, the CF algorithm

exhibited a diminishing increase in message count, while the DL algorithm exhibited

a linear increase in message count. Since a resource operating according to the DL

algorithm transmits a stimulus message only while it is processing a task, the fact that

the message count increased as resources were added suggests that tasks were exchanged

more frequently as more resources were added. In other words, resources exhibited

thrashing while moving tasks.

As the difference between minimum resource performance and maximum resource

performance increased in case IV and again in case V, the increase in message count

became much more gradual in each set of results. When the faster resources possessed

Chapter 6. Comparison of The Proposed Load Balancing Algorithms 102

Figure 6.11: Division of Labour - Message Count vs. [Task Resource] Count - Case IV

Figure 6.12: Division of Labour - Message Count vs. [Task Resource] Count - Case V

tasks, their stimulus messages advertised substantially greater performance than the

slower resources were able to compete with so the probabilistic function that determines

whether or not to acquire a task from another resource was not frequently activated. In

other words, thrashing was reduced because the difference in performance between the

slow resources and fast resources was large.

6.7 Scalability Analysis Remarks

The results of the scalability analysis are generally in line with the expectations that an

increase in resources will result in a decrease in turnaround time and an increase in mes-

Chapter 6. Comparison of The Proposed Load Balancing Algorithms 103

sage count. However, some specific observations have yielded practical considerations.

Firstly, both algorithms incur an unavoidable cost in message count while resources

remain idle. Therefore, the number of tasks should ideally either meet or exceed the

number of resources in a network. Secondly, the DL algorithm is more prone to thrash-

ing than the CF algorithm when the network is composed of resources with similar

performance capabilities.

6.8 Summary

This chapter described the empirical methodology followed to complete the study. The

procedure used to find suitable values for the free parameters of the task allocation

strategies was specified and the chosen parameter values were presented. The design of

the testing procedure was detailed and the results of evaluating and comparing the task

allocation strategies were depicted. The statistical significance tests used to compare

the strategies under study revealed that both proposed task allocation strategies outper-

formed the baseline and that while both proposed strategies exhibited similar results,

they did provide a tradeoff with respect to the two criteria of turnaround time and task

transmission (message count) chosen for this study. Additionally, a scalability analaysis

of the proposed task allocation algorithms was conducted. The results of the analysis

provided evidence to show that the algorithms perform as designed and also that care-

ful attention to the composition of the network is required when using the algorithms.

The following chapter summarises the findings of this chapter and presents some final

remarks to conclude the study.

Chapter 7

Conclusions

The findigs of the empirical analysis of the task allocation strategies proposed by this

study were reported in Chapter 6. This chapter summarises the findings of the empirical

analysis and suggests possible directions for further studies. Section 7.1 outlines the

conclusions of the study and Section 7.2 describes potential future work.

7.1 Summary of Conclusions

This study isolated the turnaround time of completing an embarassingly parallel project

using a distributed computing system as the key problem to solve and identified task

transmission (bandwidth usage) as the cost of doing so. The resulting contributions are

dynamic task allocation algorithms that facilitate decentralised control in a stochastic

environment. The findings of the study are detailed in the following subsections.

7.1.1 Parameter Sensitivity Analysis

The cemetery formation and division of labour algorithms were evaluated by means

of a parameter sensitivity analysis. The analysis was used to determine the relative

importance of each parameter to each of the two measures used to evaluate algorithm

performance, as well as the necessity of finding optimal parameter values before applying

either algorithm.

104

Chapter 7. Conclusions 105

The sensitivity analysis found that each parameter, of each algorithm, has a bearing

on each algorithm’s performance. However, the parameters are not all equally important,

with some parameters having exhibited a substantially smaller influence on performance

than others. Subsequently, a practical application of either algorithm may proceed by

optimising the most influential subset of parameters and may exclude the least significant

parameters from optimisation where the time available for optimisation is limited.

The most significant parameters of the Cemetery Formation algorithm, for minimal

turnaround time, are, in order from most to least significant, n, θ, λ, with α being

substantially less important. The most significant parameters of the CF algorithm, for

minimal message count, are, in order from most to least significant, λ, n, α, θ, with no

parameter being substantially less important than the others.

The most significant parameters of the Division of Labour algorithm, for minimal

turnaround time, are, in order from most to least significant, γ, n, α, θ, with θ and

n being substantially less important in some but not all cases. The most significant

parameters of the DL algorithm, for minimal message count, are, in order from most

to least significant, γ, α, θ, n, with θ and n being substantially less important again in

some but not all cases.

As is inferred from the fact that the DL algorithm’s parameters are not important in

all of the cases that were studied, the DL algorithm was found to be more sensitive than

the CF algorithm to the distribution of resource performance. The consequence of this

characteristic is that the DL algorithm’s parameters will need to be optimised for each

application of the algorithm and that the network within which the algorithm operates

cannot be modified arbitrarily without potentially requiring a new set of parameter

values for the DL algorithm.

7.1.2 Optimization Procedure

The procedure to tune the parameters of the task allocation strategies proposed by this

study was based on an augmented version of F-Race. The modification to F-Race added

a termination heuristic that allowed for the execution of the procedure to be stopped

when a reasonably good set of parameter values was found. The heuristic method was

evaluated empirically and found to produce reasonable results. An advantage conveyed

Chapter 7. Conclusions 106

by the heuristic was that it provided a concrete substantiation for the time expended to

determine the parameter values that were ultimately chosen.

On its own, the termination heuristic is a small but novel contribution to the field

of numerical optimisation and, specifically, to the evolution of the research embodied by

the F-Race procedure.

7.1.3 Statistical Significance Tests

The two task allocation strategies that were proposed by this study were inspired by the

cemetery formation and division of labour ant algorithms, respectively. The empirical

analysis of the proposed strategies showed that the proposed means of task allocation

were able to overcome the dependence of turnaround time on the performance of the

slowest resource in the network, thus achieving lower turnaround times than that of the

baseline.

While the task allocation strategies performed similarly with respect to turnaround

time and the number of effected task transmissions, the division of labour strategy was

found to achieve the lowest turnaround time in general. However, the cemetery forma-

tion strategy reallocated tasks less often than the division of labour strategy. The two

algorithms present a trade-off of turnaround time for number of task transmissions.

This trade-off can be employed to favour either performance or bandwidth. Specifi-

cally, if the tasks to be performed by the distributed computing system would require a

large amount of bandwidth to transmit from one resource to another, then the cemetery

formation strategy could be employed. Alternatively, the division of labour strategy

could be employed where the tasks are small and a low turnaround time is desired.

7.1.4 Scalability Analysis

A scalability analysis of the proposed task allocation strategies was conducted in order

to determine how the CF and DL algorithms performed as the numbers of tasks and

resources were increased. In general, increasing the number of resources reduces the

turnaround time of a project for both algorithms. However, increasing the number of

resources beyond approximately twice the number of tasks leads to diminishing returns.

Chapter 7. Conclusions 107

Furthermore, the DL algorithm is more prone to thrashing – that is, moving tasks

between resources unnecessarily – than the CF algorithm when most of the resources

in the network exhibit similar performance. In other words, the DL algorithm is better

suited to networks where the resources can be separated into two, distinct categories,

with one category of resources being significantly faster than the other.

7.2 Future Work

Beyond the scope of task allocation in a dynamic, distributed computing system, the

following issues were not addressed and may be considered as future work:

• Minimization of the control messages transmitted by the task allocation algorithms.

• Alternative threshold-response functions that take more information about the

network into account.

• Robustness of the distributed computing system in the event of nodes failing un-

expectedly.

• Separation of the task from its data and how that data might be handled within

the network.

Bibliography

[1] William Aiello, Baruch Awerbuch, Bruce Maggs, and Satish Rao. Approximate

Load Balancing on Dynamic and Asynchronous Networks. In Proceedings of the

25th Annual ACM Symposium on Theory of Computing, pages 632–641, 1993.

[2] Rashid Al-Ali, Kaizar Amin, Gregor von Laszewski, Omer Rana, David Walker, Mi-

hael Hategan, and Nestor Zaluzec. No Title. Journal of Grid Computing, 2(2):163–

182, 2004.

[3] Gene M. Amdahl. Validity of the single processor approach to achieving large

scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring Joint

Computer Conference, pages 483–485. ACM, 1967.

[4] David P Anderson. BOINC : A System for Public-Resource Computing and Storage.

In GRID ’04: Proceedings of the 5th IEEE/ACM International Workshop on Grid

Computing, pages 4–10. IEEE Computer Society, 2004.

[5] David P Anderson, Jeff Cobb, Eric Korpela, and Matt Lebofsky. SETI@home: an

experiment in public-resource computing. Communications of the ACM, 45(11):56–

61, 2002.

[6] Robert Armstrong, Debra Hensgen, and Taylor Kidd. The relative performance of

various mapping algorithms is independent of sizable variances in run-time predic-

tions. In 7th IEEE Heterogeneous Computing Workshop (HCW ’98), pages 79–87,

1998.

108

Bibliography 109

[7] Michel Auguin and Francois Larbey. OPSILA: an advanced SIMD for numerical

analysis and signal processing. In Microcomputers: developments in industry, busi-

ness, and education, pages 311–318, 1983.

[8] Prasanna Balaprakash, Mauro Birattari, and Thomas Stützle. Improvement Strate-

gies for the F-Race Algorithm: Sampling Design and Iterative Refinement. Technical

Report May, Université Libre de Bruxelles, 2007.

[9] Fran Berman, Geoffrey Fox, and Tony Hey. The Grid: past, present, future. In

Fran Berman, Geoffrey Fox, and Tony Hey, editors, Grid Computing: Making the

Global Infrastructure a Reality, pages 9–50. Wiley, 2003.

[10] Cyrille Bertelle, Antoine Dutot, Frédéric Guinand, and Damien Olivier. Orga-

nization Detection for Dynamic Load Balancing in Individual-Based Simulations.

Multiagent and Grid Systems, 1(1):141–163, 2007.

[11] Mauro Birattari. The Problem of Tuning Metaheuristics as Seen from a Machine

Learning Perspective. PhD thesis, Université Libre de Bruxelles, 2004.

[12] Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stutzle. Auto-

mated Algorithm Tuning using F-races: Recent Developments. MIC 2009: The

VIII Metaheuristics International Conference, pages 1–10, 2009.

[13] Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stützle. F-Race

and iterated F-Race : An overview. Technical Report June, Université Libre de

Bruxelles, 2009.

[14] Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stützle. F-Race

and iterated F-Race: An overview. In Experimental methods for the analysis of

optimization algorithms, pages 311–336. Springer Berlin, 2010.

[15] Eric Bonabeau, Guy Theraulaz, and Jean-Louis Deneubourg. Quantitative Study

of the Fixed Threshold Model for the Regulation of Division of Labour in Insect

Societies. Proceedings of the Royal Society B: Biological Sciences, 263(1376):1565–

1569, November 1996.

Bibliography 110

[16] T.D. Braun, H.J. Siegel, N. Beck, L.L. Boloni, M. Maheswaran, A.I. Reuther, J.P.

Robertson, M.D. Theys, Bin Yao, D. Hensgen, and R.F. Freund. A comparison study

of static mapping heuristics for a class of meta-tasks on heterogeneous computing

systems. In Proceedings of the Eighth Heterogeneous Computing Workshop (HCW

’99), pages 15–29, San Juan, 1999.

[17] Tracy D Braun, Howard Jay Siegel, Noah Beck, Ladislau L Bölöni, Muthucumaru

Maheswaran, Albert I. Reuther, James P Robertson, Mitchell D Theys, Bin Yao,

Debra Hensgen, and Richard F. Freund. A Comparison of Eleven Static Heuristics

for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Comput-

ing Systems. Journal of Parallel and Distributed Computer, 61(6):810–837, 2001.

[18] Mike Campos, Eric Bonabeau, Guy Théraulaz, and Jean-Louis Deneubourg. Dy-

namic Scheduling and Division of Labor in Social Insects. Adaptive Behavior,

8(2):83–95, March 2000.

[19] Junwei Cao. Self-Organizing Agents for Grid Load Balancing. In Proceedings of the

5th IEEE/ACM International Workshop on Grid Computing, number November,

pages 388–395. IEEE Computer Society, 2004.

[20] T.L. Casavant and J.G. Kuhl. A taxonomy of scheduling in general-purpose

distributed computing systems. IEEE Transactions on Software Engineering,

14(2):141–154, 1988.

[21] Timothy C.K. Chou and Jacob A. Abraham. Load Balancing in Distributed Sys-

tems. IEEE Transactions on Software Engineering, SE-8(4):401–412, 1982.

[22] L. Chrétien. Organisation spatiale du materiel provenant de lexcavation du nid

chez Messor Barbarus et des cadavres douvrieres chez Lasius Niger. PhD thesis,

Universite Libre de Bruxelles, 1996.

[23] Douglas E. Comer. Computer Networks and Internets. Prentice Hall, 2001.

[24] W. J. Conover. Practical Nonparametric Statistics. John Wiley & Sons, 3rd editio

edition, 1999.

Bibliography 111

[25] J.-L. Deneubourg, S. Goss, N. Franks, A. Sendova-hanks, C. Detrain, and

L. Chrétien. The dynamics of collective sorting: robot-like ants and ant-like robots.

In J.-A. Meyer and S.W. Wilson, editors, Proceedings of the First International

Conference on Simulation of Adaptive Behavior: From Animals to Animats, pages

356–363, 1991.

[26] Marco Dorigo, Eric Bonabeau, and Guy Theraulaz. Ant algorithms and stigmergy.

Future Generation Computer Systems, 16(8):851–871, June 2000.

[27] Marco Dorigo and Thomas Stützle. Ant Colony Optimization. MIT Press, 2004.

[28] R. A. Fisher. The Design of Experiments. Oliver & Boyd, Oxford, England, 1935.

[29] Wan Fokkink. Distributed Algorithms: An Intuitive Approach. MIT Press, 2013.

[30] Ian Foster. Designing and Building Parallel Programs: Concepts and Tools for

Parallel Software Engineering. Addison-Wesley, 1995.

[31] Richard F. Freund and Howard Jay Siegel. Heterogeneous Processing. Computer,

26(June):13–17, 1993.

[32] Milton Friedman. The Use of Ranks to Avoid the Assumption of Normality Im-

plicit in the Analysis of Variance. Journal of the American Statistical Association,

32(200):675–701, 1937.

[33] Jacques Gautrais, Guy Theraulaz, Jean-Louis Deneubourg, and Carl Anderson.

Emergent polyethism as a consequence of increased colony size in insect societies.

Journal of theoretical biology, 215(3):363–73, April 2002.

[34] J Handl, J Knowles, and M Dorigo. Ant-Based Clustering: A Comparative Study

of Its Relative Performance with Respect to k-Means, Average Link and 1D-SOM.

Technical Report i, Université Libre de Bruxelles, 2003.

[35] Joint Technical Committee ISO/IEC JTC 1. Information technology - Open Systems

Interconnection - Basic Reference Model: The Basic Model. ISO/IEC, 2 edition,

1994.

Bibliography 112

[36] Ronald Klazar and Andries Engelbrecht. Parameter Optimization by Means of

Statistical Quality Guides in F-Race. In 2014 IEEE Congress on Evolutionary

Computation (CEC), pages 1–6, Beijing, 2014. IEEE.

[37] Pascale Kuntz and Snyers Dominique. New results on an ant-based heuristic for

highlighting the organization of large graphs. In Proceedings of the 1999 Congress

on Evolutionary Computation (CEC 99), pages 1451–1458, 1999.

[38] Pascale Kuntz, Dominique Snyers, and Paul Layzell. A Stochastic Heuristic for

Visualising Graph Clusters in a Bi-Dimensional Space Prior to Partitioning. Journal

of Heuristics, 5(3):327–351, 1999.

[39] Thomas Kunz. The Influence of Different Workload Descriptions on a Heuristic

Load Balancing Scheme. IEEE Transactions on Software Engineering, 17(7):725–

730, 1991.

[40] M.J. Litzkow, M. Livny, and M.W. Mutka. Condor-a hunter of idle workstations.

In 8th International Conference on Distributed Computing Systems, pages 104–111.

IEEE Comput. Soc. Press, 1988.

[41] Erik D. Lumer and Baldo Faieta. Diversity and Adaptation in Populations of Clus-

tering Ants. In Proceedings of the Third International Conference on Simulation of

Adaptive Behavior: From Animals to Animats 3, pages 501–508, 1994.

[42] J MacQueen. Some Methods for Classification and Analysis of Multivariate Obser-

vations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics

and Probability, volume 233, pages 281–297. University of California Press, 1967.

[43] Eugene N. Marais. The Soul of the White Ant. Review Press, 2009.

[44] Marc Martin, Bastien Chopard, and Paul Albuquerque. Formation of an ant ceme-

tery: swarm intelligence or statistical accident? Future Generation Computer Sys-

tems, 18(7):951–959, August 2002.

Bibliography 113

[45] Chris Melhuish, Owen Holland, and Steve Hoddell. Collective sorting and seg-

regation in robots with minimal sensing. In 5th International Conference on the

Simulation of Adaptive Behaviour, pages 465–470, 1998.

[46] N. Monmarché. On Data Clustering With Artificial Ants. In In AAAI-99 &

GECCO-99 Workshop on Data Mining with Evolutionary Algorithms: Research Di-

rections, pages 23–26, 1999.

[47] N. Monmarche, M. Slimane, and G. Venturini. AntClass: Discovery of Clusters in

Numeric Data by an Hybridization of an Ant Colony with the K-Means Algorithm.

Technical report, Laboratoire d’Informatique, University of Tours, 1999.

[48] Alberto Montresor, Hein Meling, and Özalp Babaolu. Messor: Load-Balancing

through a Swarm of Autonomous Agents. Technical Report September, University

of Bologna, 2003.

[49] Sorinel Adrian Oprisan, Viorel Holban, and Bogdan Moldoveanu. Functional

self-organization performing wide-sense stochastic processes. Physics Letters A,

216(6):303–306, June 1996.

[50] Gregory F. Pfister. In Search of Clusters. Prentice Hall PTR, 1998.

[51] John F. Shoch and Jon A. Hupp. The worm programs—early experience with

a distributed computation. Communications of the ACM, 25(3):172–180, March

1982.

[52] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems: Principles

and Paradigms (2nd Edition). Prentice Hall, 2006.

[53] Guy Theraulaz, Eric Bonabeau, and Jean-Louis Deneubourg. Response threshold

reinforcement and division of labour in insect societies. Proceedings of the Royal

Society Biological Sciences, 265(1393):327–332, 1998.

[54] Marc H Willebeek-LeMair and Anthony P Reeves. Strategies for Dynamic Load

Balancing on Highly Parallel Computers. IEEE Transactions on Parallel and Dis-

tributed Systems, 4(9):979–993, 1993.

Bibliography 114

[55] Edward O. Wilson. The relation between caste ratios and division of labor in the ant

genus Pheidole (Hymenoptera: Formicidae). Behavioral Ecology and Sociobiology,

16(1):89–98, November 1984.

[56] Edward O Wilson. Between-caste aversion as a basis for division of labor in the ant

Pheidole pubiventris (Hymenoptera: Formicidae). Behavioral Ecology and Sociobi-

ology, 17(1):35–37, 1985.

[57] Matt Wilson, Chris Melhuish, and Ana Sendova-franks. Creating Annular Struc-

tures Inspired by Ant Colony Behaviour Using Minimalist Robots. In Proceedings of

the IEEE International Conference on Systems, Man and Cybernetics, pages 53–58,

Yasmine Hammamet, 2002.

[58] Bin Wu and Zhongzhi Shi. A Clustering Algorithm Based on Swarm Intelligence. In

Proceedings of the International Conference on Info-tech and Info-net, pages 58–66,

Beijing, 2001.

[59] Yan Yang and Mohamed Kamel. Clustering Ensemble Using Swarm Intelligence.

In Proceedings of the IEEE Swarm Intelligence Symposium, pages 65–71, 2003.

[60] Irvin Yeaworth. The Blob, 1958.

[61] Mohammed Javeed Zaki, Li Wei, and Parthasarathy Srinivasan. Customized Dy-

namic Load Balancing for a Network of Workstations. In Proceedings of 5th IEEE

International Symposium on High Performance Distributed Computing, 1996.

Appendix A

Acronyms

The following is a list of acronyms used throughout the text and is arranged in al-

phabetical order. Each acronym is typeset in bold and its expanded form is displayed

alongside.

ACO ant colony optimization 79, 80

AS ant system 75, 79–81

BOINC Berkeley Open Infrastructure for Network Computing 2

CF cemetery formation vii, 43–45, 48–52, 58, 59, 64, 67, 68, 86, 87, 90, 93–97, 100, 101,

103, 105–107

DL division of labour 51, 53, 54, 59, 64, 85–87, 90, 93–95, 99–101, 103, 105–107

DLB dynamic load balancing 34–40

FFD full factorial design 70, 80

FTM fixed threshold model 29, 30

NIC network interface controller 36

OCFM original cemetery formation model 43, 45, 48, 49

115

Acronyms 116

ODLM original division of labour model 51, 53

OSI Open Systems Interconnection 40

PCC Pearson correlation coefficiant 60–67

QoS Quality of Service 9, 13, 14

SPMD Single Program, Multiple Data 7

TSP travelling salesman problem 78, 79, 81

Appendix B

Symbols

The following is a list of all mathematical symbols used throughout this text. Each

symbol is defined under the chapter in which it first appears.

B.1 Chapter 3: Overview of Ant Algorithms

α Coefficient

αk Coefficient for ant k

β Constant value

γ Stimulus

γt Stimulus emitted by task t

δ Increase in stimulus

θ1 Activation threshold for pick up

θ2 Activation threshold for put down

θit Activation threshold for individual i to perform task t

θlt Activation threshold for caste l to perform task t

ξ Coefficient

ρ Coefficient

σ Size of an ant’s local neighbourhood

τ Efficiency of task performance

117

Appendix B. Symbols 118

a Coefficient

C Number of individuals in a colony

Cl Number of individuals in caste l

d(i, j) Euclidiean distance between items i and j

e Error rate

f Fraction of nearby cells occupied by items

f(i) Fraction of nearby cells occupied by item i

i Index of an item

j Index of an item

l Index of a caste

m Number of steps

N(r) Circular, local area

Nocc Observed number of occupied cells

n Number of items

Pp Probability of an ant to pick up an item

Pd Probability of an ant to put down an item

Pl Probability of an ant in caste l to change state

p Probability of an ant to become inactive

r Radius

S Sigmoid function

s Length of a side of the square neighbourhood of an ant

T Time step

t Index of a task

v Ant velocity

Vmax Maximum ant velocity

X State of an ant

xit Fraction of time that individual i performs task t

Appendix B. Symbols 119

B.2 Chapter 4: Dynamic Load Balancing Based on

Ant Algorithms

θ Activation threshold

D Destination of a task

n Constant value

PSD Probability of a connection to be brokered between S and D

R Type of resource (S or D)

S Source of a task

s Normalised shortfall

Wmax(R) Maximum work that a resource is capable of performing

W (R, T) Work done by a resource at time T

B.3 Chapter 5: The Parameter Optimization Pro-

cedure

γ Stimulus period

Configuration space

κ A configuration

λ Prospecting range

ρ Evaporation rate

σl,q Standard deviation of parameter q in iteration l

τ0 Initial pheromone value

B Computational budget

Bused Computational budget used up to iteration l − 1

b Number of levels

C̄nn Mean shortest path, according to the nearest-neighbour heuristic

F Objective function

f Number of factors

Appendix B. Symbols 120

g Number of ants

I Problem space

i Index of a problem instance

k Number of problem instances

L Number of iterations

l Index of an iteration

m Number of candidate configurations

Ne Number of elite surviving configurations

Nmin Minimum number of surviving configurations

Nsurvive Number of surviving configurations

Q Number of parameters in a configuration

q Index of a parameter

rz Rank of configuration z

u Length of a side of the square of a TSP problem

vq Range of parameter q

wz Weight of configuration z

x New candidate configuration

xz Elite candidate configuration

xq Parameter q of candidate configuration x

z Index of a configuration

Appendix C

Derived Publications

The following list of publications were derived from this study:

• Ronald Klazar and Andries P. Engelbrecht, Dynamic load balancing inspired by

division of labour in ant colonies, 2011 IEEE Symposium on Swarm Intelligence

(SIS), IEEE, 2011.

• Ronald Klazar and Andries P. Engelbrecht, Dynamic load balancing inspired by

cemetery formation in ant colonies, Swarm Intelligence, pages 236-243, Springer

Berlin Heidelberg, 2012.

• Ronald Klazar and Andries P. Engelbrecht, Parameter Optimization by Means

of Statistical Quality Guides in F-Race, 2014 IEEE Congress on Evolutionary

Computation (CEC), IEEE, 2014.

121

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Related Work
	Objectives and Contributions
	Dissertation Outline

	Overview of Task Allocation in Distributed Computing Systems
	Distributed Computing Systems
	Variations in Task Types
	Variations in Node Types
	Quality of Service

	Scheduling
	Static Task Allocation
	Dynamic Task Allocation
	Task Allocation Quality
	Remarks on Scheduling

	Summary

	Overview of Ant Algorithms
	Cemetery Formation
	Simple Model
	Algorithm for Data Classification
	Variations of The Lumer-Faieta Algorithm
	A Minimal Model of Cemetery Formation
	Applications of Cemetery Formation Algorithms

	Division of Labour
	Caste Ratios and Division of Labour
	The Fixed Threshold Model
	Variable Threshold Model
	Worker Specialization
	Applications of Division of Labour Algorithms

	Summary

	Dynamic Load Balancing Based on Ant Algorithms
	The Experimental Model
	Elements of the Problem Space
	Component Architecture
	Component Behaviour and Collaboration
	Parameters Defining Model Instances
	Observable Effects
	Assumptions Made by The Model

	The Baseline Task Allocation Strategy
	The Task Allocation Mechanism

	The Cemetery Formation Task Allocation Strategy
	The Task Allocation Mechanism
	Parameters of the Task Allocation Mechanism

	The Division of Labour Task Allocation Strategy
	The Task Allocation Mechanism
	Summary
	Parameters

	Problem Domain
	Summary

	The Parameter Optimization Procedure
	Parameter Sensitivity Analysis
	Choice of Parameter Value Ranges
	Choice of Problem Domains
	Choice of Problem Instances
	Analysis Procedure
	Results of Analysis
	Analysis Remarks

	The Parameter Optimization Problem
	Procedures for Parameter Optimization
	Brute Force Search
	Full Factorial Design
	F-Race

	A New F-Race Termination Condition
	Overview of the Termination Heuristic
	Empirical Analysis

	Summary

	Comparison of The Proposed Load Balancing Algorithms
	Parameter Optimization
	Problem Instances
	Parameter Search Space
	F-Race Configuration
	Resulting Parameter Values

	Comparison Design
	Comparison Results
	Comparison Discussion
	Baseline Strategy
	Cemetery Formation Strategy
	Division of Labour Strategy

	Scalability Analysis Design
	Scalability Analysis Results
	Scalability Analysis Remarks
	Summary

	Conclusions
	Summary of Conclusions
	Parameter Sensitivity Analysis
	Optimization Procedure
	Statistical Significance Tests
	Scalability Analysis

	Future Work

	Bibliography
	Acronyms
	Symbols
	Chapter 3: Overview of Ant Algorithms
	Chapter 4: Dynamic Load Balancing Based on Ant Algorithms
	Chapter 5: The Parameter Optimization Procedure

	Derived Publications

