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Abstract

The self-organizing feature map (SOM) is an unsupervised machine learning approach

that offers extremely useful data modeling and visualization abilities. The approach has

been successfully employed in order to solve a wide variety of problems. Exploratory

data analysis (EDA) and data mining (DM) are both fields that attempt to algorith-

mically extract insightful knowledge from a data set, with a greater or lesser level of

human assistance. This work overviews the SOM algorithm, with a focus on EDA and

DM applications. Supervised and unsupervised neuron labeling methods for SOMs,

which are an integral part of most SOM-based EDA and DM exercises, are investigated.

Existing SOM-based EDA and DM approaches are also critically compared. A novel un-

supervised neuron labeling approach, namely unsupervised weight-based cluster labeling,

is introduced. This research also proposes HybridSOM, a novel hybrid framework for

DM-oriented rule extraction, which combines a SOM with an arbitrary rule extraction

algorithm. Two empirical investigations are reported. Firstly, existing supervised neuron

labeling techniques are experimentally compared. Secondly, the HybridSOM framework

is empirically compared to several existing DM rule extractors.

Keywords: Artificial intelligence, artificial neural networks, computational intelligence,

data mining, data visualization, emergent systems, exploratory data analysis, hybrid

models, rule extraction, self-organizing feature maps.
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“This is indeed a mystery,” I remarked. “What do you imagine that it

means?”

“I have no data yet. It is a capital mistake to theorise before one has

data. Insensibly one begins to twist facts to suit theories, instead of theories

to suit facts . . . ”

A Scandal in Bohemia, by Sir Arthur Conan Doyle (1892)

“My dear Watson, try a little analysis yourself,” said he, with a touch of

impatience. “You know my methods. Apply them, and it will be instructive

to compare results.”

The Sign of Four, by Sir Arthur Conan Doyle (1890)
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ments have greatly contributed towards the quality of the final manuscript;

• The colleagues I have shared a department and research group with, many of whom

offered advice or support in one form or another;

• My many friends, for helping to keep me motivated and in good spirits through

the frustrating and demotivating times that I experienced;

• The TechTeam of the Computer Science Department at the University of Pretoria,

for maintaining the computer infrastructure used during this research;

• The staff of the Department of Library Services for maintaining the library and

electronic reference infrastructure used during the literature survey;

• The developers, maintainers, and user communities of the various open-source and

freeware tools that were used during the production of this dissertation;

• The National Research Foundation (NRF) and the Department of Labour for the

financial assistance, in the form of a Scarce Skills Scholarship, that they have

provided during the course of this research.





Contents

List of Figures xv

List of Algorithms xix

List of Tables xxi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Foundations of Exploratory Data Analysis and Data Mining 8

2.1 Data versus Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Knowledge Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Learning Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Knowledge Discovery in Databases . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Data-Centric Organizations . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 The KDD Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vii



viii Contents

2.4 Basic Data Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Basic Data Cleaning Operations . . . . . . . . . . . . . . . . . . . 22

2.4.2 Basic Data Transformation Operations . . . . . . . . . . . . . . . 23

2.5 Exploratory Data Analysis versus Data Mining . . . . . . . . . . . . . . 25

2.5.1 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . . 25

2.5.2 Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Self-Organizing Feature Maps 28

3.1 Overview of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Physiological Basis . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 Algorithmic Overview . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 SOM Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Stochastic SOM Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Weight Adjustments . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.3 Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.4 Handling Classification Attributes . . . . . . . . . . . . . . . . . . 44

3.4 Emergence in SOMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Emergent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 Non-Emergent Feature Maps . . . . . . . . . . . . . . . . . . . . . 45

3.4.3 Emergent Feature Maps . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.4 Interpolating Units . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Training Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.1 Map Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.2 Learning Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.3 Neighborhood Radius . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Factors Affecting SOM Model Accuracy . . . . . . . . . . . . . . . . . . 50

3.7 Variations on the Stochastic SOM . . . . . . . . . . . . . . . . . . . . . . 51

3.7.1 Neural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7.2 Batch Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7.3 Growing Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



Contents ix

3.7.4 Neighborhood Clipping . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7.5 Optimized BMU Searches . . . . . . . . . . . . . . . . . . . . . . 56

3.7.6 Competitive Learning . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7.7 Hardware Implementations . . . . . . . . . . . . . . . . . . . . . . 57

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 SOM-Based Visualization and Exploratory Data Analysis 59

4.1 Traditional Data Visualization . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 The Philosophy of SOM-Based Visualization . . . . . . . . . . . . . . . . 60

4.3 Grid-Based Map Representations . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 Weight Vector Similarity Encoded Augmentations . . . . . . . . . 65

4.3.2 Weight Vector Encoded Augmentations . . . . . . . . . . . . . . . 68

4.3.3 Data Mapping Encoded Augmentations . . . . . . . . . . . . . . . 73

4.4 Irregular Map Representations . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.1 Weight Vector Projections . . . . . . . . . . . . . . . . . . . . . . 76

4.4.2 Map-Based Information Visualizations . . . . . . . . . . . . . . . 81

4.5 SOM-Based Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . 83

4.5.1 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.4 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.5 Trend Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Emergent Neuron Cluster Discovery 89

5.1 An Overview of Emergent Cluster Discovery . . . . . . . . . . . . . . . . 89

5.2 Cluster Quality Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Algorithmic Cluster Discovery . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.1 Hierarchical Clustering Algorithms . . . . . . . . . . . . . . . . . 93

5.3.2 Partitional Clustering Algorithms . . . . . . . . . . . . . . . . . . 96

5.3.3 Miscellaneous Clustering Algorithms . . . . . . . . . . . . . . . . 97

5.4 Exploratory Cluster Discovery . . . . . . . . . . . . . . . . . . . . . . . . 99



x Contents

5.5 Hybrid Cluster Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.6 Cluster Stability and SOMs . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Map Neuron Labeling 106

6.1 An Overview of Neuron Labeling . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Supervised Neuron Labeling . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.1 Example-Centric Neuron Labeling . . . . . . . . . . . . . . . . . . 108

6.2.2 Example-Centric Cluster Labeling . . . . . . . . . . . . . . . . . . 112

6.2.3 Weight-Centric Neuron Labeling . . . . . . . . . . . . . . . . . . . 114

6.2.4 Supervised Labeling using Multiple Label Mappings . . . . . . . . 116

6.3 Unsupervised Neuron Labeling . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.1 Exploratory Labeling . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.2 Unique Cluster Labeling . . . . . . . . . . . . . . . . . . . . . . . 119

6.3.3 Unsupervised Weight-Based Labeling . . . . . . . . . . . . . . . . 120

6.3.4 Unsupervised Example-Based Labeling . . . . . . . . . . . . . . . 132

6.4 Applying Neuron Labeling to SOMs . . . . . . . . . . . . . . . . . . . . . 145

6.4.1 Neuron Labeling for Purely Unsupervised SOMs . . . . . . . . . . 145

6.4.2 Neuron Labeling for Supervised SOMs . . . . . . . . . . . . . . . 145

6.4.3 Neuron Labeling for Semi-Supervised SOMs . . . . . . . . . . . . 146

6.5 Neuron Labeling and High-Dimensional Data . . . . . . . . . . . . . . . . 146

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7 SOM-Based Data Mining 149

7.1 The Philosophy of SOM-Based Data Mining . . . . . . . . . . . . . . . . 149

7.2 Boundary-Based Rule Extraction . . . . . . . . . . . . . . . . . . . . . . 151

7.2.1 An Overview of the Approach . . . . . . . . . . . . . . . . . . . . 151

7.2.2 The Rule Extraction Procedure . . . . . . . . . . . . . . . . . . . 152

7.2.3 A Critique of the Approach . . . . . . . . . . . . . . . . . . . . . 156

7.3 The SIG* Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.3.1 An Overview of the Approach . . . . . . . . . . . . . . . . . . . . 157

7.3.2 Characterizing Rule Construction Procedure . . . . . . . . . . . . 159



Contents xi

7.3.3 Differentiating Condition Construction Procedure . . . . . . . . . 167

7.3.4 Converting SIG* Rules into Production Rules . . . . . . . . . . . 172

7.3.5 A Critique of the Approach . . . . . . . . . . . . . . . . . . . . . 174

7.4 The HybridSOM Framework . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.4.1 An Overview of the Approach . . . . . . . . . . . . . . . . . . . . 176

7.4.2 The Rule Extraction Procedure . . . . . . . . . . . . . . . . . . . 176

7.4.3 A Critique of the Approach . . . . . . . . . . . . . . . . . . . . . 178

7.5 Miscellaneous Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.6 The Viability of SOM-based Data Mining . . . . . . . . . . . . . . . . . . 180

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8 Experimental Results 183

8.1 General Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . 183

8.1.1 Cross-Validation Procedure . . . . . . . . . . . . . . . . . . . . . 184

8.1.2 Algorithmic Performance Comparison Procedure . . . . . . . . . . 185

8.2 Experimental Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.2.1 Iris Plants Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.2.2 Ionosphere Data Set . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.2.3 The Monk’s Problems Data Sets . . . . . . . . . . . . . . . . . . . 190

8.2.4 Pima Indians diabetes Data Set . . . . . . . . . . . . . . . . . . . 194

8.3 Analysis of Supervised Labeling Techniques . . . . . . . . . . . . . . . . 196

8.3.1 Objectives of the Analysis . . . . . . . . . . . . . . . . . . . . . . 196

8.3.2 Implementations of the Algorithms . . . . . . . . . . . . . . . . . 197

8.3.3 Algorithmic Performance Measures . . . . . . . . . . . . . . . . . 199

8.3.4 Parameter Optimization Procedure . . . . . . . . . . . . . . . . . 200

8.3.5 Results of Parameter Optimization . . . . . . . . . . . . . . . . . 204

8.3.6 Comparison of Algorithmic Performance . . . . . . . . . . . . . . 206

8.3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

8.4 Analysis of SOM-Based Data Mining Techniques . . . . . . . . . . . . . . 237

8.4.1 Objectives of the Analysis . . . . . . . . . . . . . . . . . . . . . . 238

8.4.2 Implementations of the Algorithms . . . . . . . . . . . . . . . . . 239

8.4.3 Algorithmic Performance Measures . . . . . . . . . . . . . . . . . 240



xii Contents

8.4.4 Parameter Optimization Procedure . . . . . . . . . . . . . . . . . 242

8.4.5 Results of Parameter Optimization . . . . . . . . . . . . . . . . . 244

8.4.6 Comparison of Algorithmic Performance . . . . . . . . . . . . . . 250

8.4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

9 Conclusions 303

9.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

9.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

9.3 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 304

9.4 Summary of Experimental Findings . . . . . . . . . . . . . . . . . . . . . 306

9.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Bibliography 309

A The CN2 Algorithm 346

A.1 Implementation Availability . . . . . . . . . . . . . . . . . . . . . . . . . 346

A.2 Rule Set Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

A.2.1 Basic Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

A.2.2 Beam Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

A.2.3 Additional Features . . . . . . . . . . . . . . . . . . . . . . . . . . 352

A.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

B The C4.5 Algorithm 355

B.1 Implementation Availability . . . . . . . . . . . . . . . . . . . . . . . . . 355

B.2 Decision Tree Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

B.2.1 Attribute Test Evaluation . . . . . . . . . . . . . . . . . . . . . . 356

B.2.2 Attribute Test Selection . . . . . . . . . . . . . . . . . . . . . . . 360

B.2.3 Recursive Divide and Conquer . . . . . . . . . . . . . . . . . . . . 361

B.2.4 Additional Features . . . . . . . . . . . . . . . . . . . . . . . . . . 363

B.3 Generating a Rule Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

B.3.1 Initial Rule Extraction and Condition Pruning . . . . . . . . . . . 364

B.3.2 Pruning of Redundant Rules . . . . . . . . . . . . . . . . . . . . . 367



Contents xiii

B.3.3 Rule Ordering and Default Rule Definition . . . . . . . . . . . . . 371

B.3.4 Final Rule Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . 371

B.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

C Derived Work 373

C.1 Accepted Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

C.2 Work in Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

D Symbol Definitions 377

D.1 Foundations of EDA and DM . . . . . . . . . . . . . . . . . . . . . . . . 377

D.2 Self-Organizing Feature Maps . . . . . . . . . . . . . . . . . . . . . . . . 378

D.3 SOM-Based Visualization and EDA . . . . . . . . . . . . . . . . . . . . . 380

D.4 Emergent Neuron Cluster Discovery . . . . . . . . . . . . . . . . . . . . . 380

D.5 Map Neuron Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

D.6 SOM-Based Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

D.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

D.8 The CN2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

D.9 The C4.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

E Acronym Definitions 387

Index 389



xiv Contents



List of Figures

2.1 A hypothetical relational database . . . . . . . . . . . . . . . . . . . . . 11

2.2 The relationship between an environment and its model . . . . . . . . . 13

2.3 An example set of production rules . . . . . . . . . . . . . . . . . . . . . 15

2.4 An example of a decision tree . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 An overview of the KDD process . . . . . . . . . . . . . . . . . . . . . . 21

2.6 An overview of the EDA process . . . . . . . . . . . . . . . . . . . . . . 26

2.7 An overview of the DM process . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 The basic architecture of a typical SOM . . . . . . . . . . . . . . . . . . 31

3.2 The most common map lattice structures . . . . . . . . . . . . . . . . . . 31

3.3 Examples of random and hypercube weight initializations . . . . . . . . . 34

3.4 The effect of a single weight update . . . . . . . . . . . . . . . . . . . . . 36

3.5 A three-dimensional visualization of a smooth Gaussian kernel . . . . . . 39

3.6 Typical change in training error measures over time . . . . . . . . . . . . 40

3.7 The effect of parameter values on a smooth Gaussian kernel . . . . . . . 49

3.8 Exponential decay functions for learning rate and kernel width . . . . . . 50

3.9 The NBISOM 25 hardware-based SOM chip . . . . . . . . . . . . . . . . 58

4.1 The raw weight vectors of a SOM trained on the Iris data set . . . . . . 62

4.2 A taxonomy of map representation frameworks . . . . . . . . . . . . . . 62

4.3 A taxonomy of visual map representation augmentations . . . . . . . . . 62

4.4 Non-augmented grid-based map representation structures . . . . . . . . . 64

xv



xvi List of Figures

4.5 Examples of map grids with local similarity encodings . . . . . . . . . . 67

4.6 Examples of map grids with global similarity encodings . . . . . . . . . . 69

4.7 Examples of map grids with single weight encodings . . . . . . . . . . . . 70

4.8 Examples of map grids with weight vector glyph encodings . . . . . . . . 72

4.9 Examples of map grids with single data example mapping encodings . . . 75

4.10 Examples of map grids with data subset mapping encodings . . . . . . . 75

4.11 Examples of weight vector projections . . . . . . . . . . . . . . . . . . . 80

4.12 Examples of simple scatter plot map information visualizations . . . . . 82

4.13 An example of a map information visualization showing map meta-data . 83

4.14 A taxonomy of SOM-based EDA categories . . . . . . . . . . . . . . . . 84

5.1 A taxonomy of SOM cluster discovery techniques . . . . . . . . . . . . . 90

5.2 An example of a hierarchical clustering algorithm’s dendrogram . . . . . 94

5.3 The procedure for the exploratory clustering process . . . . . . . . . . . 100

5.4 The procedure for manual clustering algorithm operation modification . . 103

5.5 The procedure for manual clustering algorithm output modification . . . 103

6.1 An overview of supervised and unsupervised neuron labeling methods . . 108

6.2 A taxonomy of SOM-based supervised neuron labeling techniques . . . . 109

6.3 Supervised labeling of an example SOM . . . . . . . . . . . . . . . . . . 111

6.4 A taxonomy of SOM-based unsupervised neuron labeling techniques . . . 119

6.5 The procedure for the exploratory neuron labeling process . . . . . . . . 119

6.6 Unsupervised weight-based neuron labeling of an example SOM . . . . . 124

6.7 Unsupervised weight-based cluster labeling of an example SOM . . . . . 130

6.8 Unsupervised example-based neuron labeling of an example SOM . . . . 136

6.9 Unsupervised example-based cluster labeling of an example SOM . . . . 141

7.1 An overview of supervised and unsupervised SOM-based DM methods . 151

7.2 The procedure for the boundary-based rule extraction algorithm . . . . . 152

7.3 The overall component interactions within the SIG* algorithm . . . . . . 158

7.4 The condition governing when SIG* builds differentiating conditions . . . 160

7.5 Populating initial values in a SIG* characterizing significance matrix . . 163

7.6 Marking cells in a SIG* characterizing significance matrix . . . . . . . . 164



List of Figures xvii

7.7 Normalizing values in a SIG* characterizing significance matrix . . . . . 165

7.8 Selecting attributes from a SIG* characterizing significance matrix . . . . 166

7.9 Building SIG* characterizing rules from characterizing attributes . . . . 167

7.10 Selecting differentiating attributes for the SIG* algorithm . . . . . . . . 171

7.11 Adding differentiating conditions to SIG* characterizing rules . . . . . . 173

7.12 The component interactions within the HybridSOM framework . . . . . 177

8.1 An example parameter optimization for a neuron labeling algorithm . . . 205

8.2 An example parameter optimization for the CN2 algorithm . . . . . . . . 248

8.3 An example parameter optimization for the C4.5 algorithm . . . . . . . . 248

8.4 An example parameter optimization for CN2-based HybridSOM . . . . . 249

8.5 An example parameter optimization for C4.5-based HybridSOM . . . . . 249

8.6 An example parameter optimization for the SIG* algorithm . . . . . . . 250

B.1 An example of the recursive tree building performed by C4.5 . . . . . . . 364

B.2 An example of the initial conversion of a C4.5 tree into a rule set . . . . 365

B.3 The format of the contingency tables for Fisher’s exact significance test . 366



xviii List of Figures



List of Algorithms

3.1 The stochastic SOM training algorithm . . . . . . . . . . . . . . . . . . . 33

3.2 The hypercube weight initialization algorithm . . . . . . . . . . . . . . . 34

4.1 The Sammon’s mapping projection algorithm . . . . . . . . . . . . . . . 78

4.2 The original Sammon’s mapping error optimization method . . . . . . . 78

5.1 The two generic classes of greedy hierarchical clustering algorithms . . . 94

5.2 The k-means partitional clustering algorithm . . . . . . . . . . . . . . . . 97

6.1 The example-centric neuron labeling algorithm . . . . . . . . . . . . . . . 109

6.2 The example-centric cluster labeling algorithm . . . . . . . . . . . . . . . 113

6.3 The weight-centric neuron labeling algorithm . . . . . . . . . . . . . . . 116

6.4 The unique cluster labeling algorithm . . . . . . . . . . . . . . . . . . . . 120

6.5 The unsupervised weight-based neuron labeling algorithm . . . . . . . . 121

6.6 The unsupervised weight-based cluster labeling algorithm . . . . . . . . . 126

6.7 The unsupervised example-based neuron labeling algorithm . . . . . . . 134

6.8 The unsupervised example-based cluster labeling algorithm . . . . . . . . 138

7.1 The boundary-based rule extraction algorithm . . . . . . . . . . . . . . . 153

7.2 The SIG* algorithm’s overall structure . . . . . . . . . . . . . . . . . . . 159

7.3 The SIG* algorithm’s procedure for building characterizing rules . . . . . 161

7.4 The SIG* algorithm’s procedure for building differentiating conditions . . 169

7.5 The HybridSOM rule extraction DM framework . . . . . . . . . . . . . . 177

xix



xx List of Algorithms

A.1 The CN2 rule set building algorithm . . . . . . . . . . . . . . . . . . . . 350

A.2 The CN2 function for finding the best complex . . . . . . . . . . . . . . 351

B.1 The C4.5 tree building sub-algorithm . . . . . . . . . . . . . . . . . . . . 362

B.2 The C4.5 rule set building sub-algorithm . . . . . . . . . . . . . . . . . . 368

B.3 The C4.5 rule set refining sub-algorithm . . . . . . . . . . . . . . . . . . 370



List of Tables

8.1 Attribute characteristics of the Iris plants data set . . . . . . . . . . . . . 189

8.2 Class distribution of the Iris plants data set . . . . . . . . . . . . . . . . 189

8.3 Cross-validation data subsets for the Iris plants data set . . . . . . . . . 189

8.4 Attribute characteristics of the ionosphere data set . . . . . . . . . . . . 191

8.5 Class distribution of the ionosphere data set . . . . . . . . . . . . . . . . 191

8.6 Cross-validation data subsets for the ionosphere data set . . . . . . . . . 191

8.7 Attribute characteristics of the monk’s problems data sets . . . . . . . . 192

8.8 Class distribution of the monk’s problem 1 data set . . . . . . . . . . . . 193

8.9 Class distribution of the monk’s problem 2 data set . . . . . . . . . . . . 193

8.10 Class distribution of the monk’s problem 3 data set . . . . . . . . . . . . 193

8.11 Cross-validation data subsets for the monk’s problems data sets . . . . . 194

8.12 Attribute characteristics of the Pima Indians diabetes data set . . . . . . 195

8.13 Class distribution of the Pima Indians diabetes data set . . . . . . . . . 196

8.14 Cross-validation data subsets for the Pima Indians diabetes data set . . . 196

8.15 Parameter value ranges for supervised neuron labeling . . . . . . . . . . 205

8.16 Parameters for example-centric neuron labeling . . . . . . . . . . . . . . 207

8.17 Parameters for example-centric cluster labeling with Ward clustering . . 207

8.18 Parameters for example-centric cluster labeling with k-means clustering . 207

8.19 Parameters for weight-centric neuron labeling . . . . . . . . . . . . . . . 208

8.20 Comparison of the overall training set error for supervised neuron labeling

on the Iris plants data set . . . . . . . . . . . . . . . . . . . . . . . . . . 209

xxi



xxii List of Tables

8.21 Comparison of the overall training set error for supervised neuron labeling

on the ionosphere data set . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.22 Comparison of the overall training set error for supervised neuron labeling

on the monk’s problem 1 data set . . . . . . . . . . . . . . . . . . . . . . 210

8.23 Comparison of the overall training set error for supervised neuron labeling

on the monk’s problem 2 data set . . . . . . . . . . . . . . . . . . . . . . 210

8.24 Comparison of the overall training set error for supervised neuron labeling

on the monk’s problem 3 data set . . . . . . . . . . . . . . . . . . . . . . 211

8.25 Comparison of the overall training set error for supervised neuron labeling

on the Pima Indians diabetes data set . . . . . . . . . . . . . . . . . . . 211

8.26 Comparison of the training set error due to misclassified data examples

for supervised neuron labeling on the Iris plants data set . . . . . . . . . 213

8.27 Comparison of the training set error due to misclassified data examples

for supervised neuron labeling on the ionosphere data set . . . . . . . . . 213

8.28 Comparison of the training set error due to misclassified data examples

for supervised neuron labeling on the monk’s problem 1 data set . . . . . 214

8.29 Comparison of the training set error due to misclassified data examples

for supervised neuron labeling on the monk’s problem 2 data set . . . . . 214

8.30 Comparison of the training set error due to misclassified data examples

for supervised neuron labeling on the monk’s problem 3 data set . . . . . 215

8.31 Comparison of the training set error due to misclassified data examples

for supervised neuron labeling on the Pima Indians diabetes data set . . 215

8.32 Comparison of the training set error due to unclassified data examples for

supervised neuron labeling on the Iris plants data set . . . . . . . . . . . 217

8.33 Comparison of the training set error due to unclassified data examples for

supervised neuron labeling on the ionosphere data set . . . . . . . . . . . 217

8.34 Comparison of the training set error due to unclassified data examples for

supervised neuron labeling on the monk’s problem 1 data set . . . . . . . 218

8.35 Comparison of the training set error due to unclassified data examples for

supervised neuron labeling on the monk’s problem 2 data set . . . . . . . 218



List of Tables xxiii

8.36 Comparison of the training set error due to unclassified data examples for

supervised neuron labeling on the monk’s problem 3 data set . . . . . . . 219

8.37 Comparison of the training set error due to unclassified data examples for

supervised neuron labeling on the Pima Indians diabetes data set . . . . 219

8.38 Comparison of the overall test set error for supervised neuron labeling on

the Iris plants data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

8.39 Comparison of the overall test set error for supervised neuron labeling on

the ionosphere data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

8.40 Comparison of the overall test set error for supervised neuron labeling on

the monk’s problem 1 data set . . . . . . . . . . . . . . . . . . . . . . . . 222

8.41 Comparison of the overall test set error for supervised neuron labeling on

the monk’s problem 2 data set . . . . . . . . . . . . . . . . . . . . . . . . 222

8.42 Comparison of the overall test set error for supervised neuron labeling on

the monk’s problem 3 data set . . . . . . . . . . . . . . . . . . . . . . . . 223

8.43 Comparison of the overall test set error for supervised neuron labeling on

the Pima Indians diabetes data set . . . . . . . . . . . . . . . . . . . . . 223

8.44 Comparison of the test set error due to misclassified data examples for

supervised neuron labeling on the Iris plants data set . . . . . . . . . . . 225

8.45 Comparison of the test set error due to misclassified data examples for

supervised neuron labeling on the ionosphere data set . . . . . . . . . . . 225

8.46 Comparison of the test set error due to misclassified data examples for

supervised neuron labeling on the monk’s problem 1 data set . . . . . . . 226

8.47 Comparison of the test set error due to misclassified data examples for

supervised neuron labeling on the monk’s problem 2 data set . . . . . . . 226

8.48 Comparison of the test set error due to misclassified data examples for

supervised neuron labeling on the monk’s problem 3 data set . . . . . . . 227

8.49 Comparison of the test set error due to misclassified data examples for

supervised neuron labeling on the Pima Indians diabetes data set . . . . 227

8.50 Comparison of the test set error due to unclassified data examples for

supervised neuron labeling on the Iris plants data set . . . . . . . . . . . 229



xxiv List of Tables

8.51 Comparison of the test set error due to unclassified data examples for

supervised neuron labeling on the ionosphere data set . . . . . . . . . . . 229

8.52 Comparison of the test set error due to unclassified data examples for

supervised neuron labeling on the monk’s problem 1 data set . . . . . . . 230

8.53 Comparison of the test set error due to unclassified data examples for

supervised neuron labeling on the monk’s problem 2 data set . . . . . . . 230

8.54 Comparison of the test set error due to unclassified data examples for

supervised neuron labeling on the monk’s problem 3 data set . . . . . . . 231

8.55 Comparison of the test set error due to unclassified data examples for

supervised neuron labeling on the Pima Indians diabetes data set . . . . 231

8.56 Comparison of the percentage of unlabeled neurons for supervised neuron

labeling on the Iris plants data set . . . . . . . . . . . . . . . . . . . . . 233

8.57 Comparison of the percentage of unlabeled neurons for supervised neuron

labeling on the ionosphere data set . . . . . . . . . . . . . . . . . . . . . 233

8.58 Comparison of the percentage of unlabeled neurons for supervised neuron

labeling on the monk’s problem 1 data set . . . . . . . . . . . . . . . . . 234

8.59 Comparison of the percentage of unlabeled neurons for supervised neuron

labeling on the monk’s problem 2 data set . . . . . . . . . . . . . . . . . 234

8.60 Comparison of the percentage of unlabeled neurons for supervised neuron

labeling on the monk’s problem 3 data set . . . . . . . . . . . . . . . . . 235

8.61 Comparison of the percentage of unlabeled neurons for supervised neuron

labeling on the Pima Indians diabetes data set . . . . . . . . . . . . . . . 235

8.62 Parameter value ranges for the CN2 rule extraction algorithm . . . . . . 245

8.63 Parameter value ranges for the C4.5 rule extraction algorithm . . . . . . 245

8.64 Parameter value ranges for the HybridSOM framework using CN2 . . . . 245

8.65 Parameter value ranges for the HybridSOM framework using C4.5 . . . . 246

8.66 Parameter value ranges for the SIG* rule extraction algorithm . . . . . . 246

8.67 Parameters for the CN2 rule extraction algorithm . . . . . . . . . . . . . 251

8.68 Parameters for the C4.5 rule extraction algorithm . . . . . . . . . . . . . 251

8.69 Parameters for the HybridSOM framework configured with CN2 . . . . . 251

8.70 Parameters for the HybridSOM framework configured with C4.5 . . . . . 252



List of Tables xxv

8.71 Parameters for the SIG* rule extraction algorithm . . . . . . . . . . . . . 252

8.72 Comparison of the overall training set error for rule extraction on the Iris

plants data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

8.73 Comparison of the overall training set error for rule extraction on the

ionosphere data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

8.74 Comparison of the overall training set error for rule extraction on the

monk’s problem 1 data set . . . . . . . . . . . . . . . . . . . . . . . . . . 255

8.75 Comparison of the overall training set error for rule extraction on the

monk’s problem 2 data set . . . . . . . . . . . . . . . . . . . . . . . . . . 255

8.76 Comparison of the overall training set error for rule extraction on the

monk’s problem 3 data set . . . . . . . . . . . . . . . . . . . . . . . . . . 256

8.77 Comparison of the overall training set error for rule extraction on the

Pima Indians diabetes data set . . . . . . . . . . . . . . . . . . . . . . . 256

8.78 Comparison of the training set error due to misclassified data examples

for rule extraction on the Iris plants data set . . . . . . . . . . . . . . . . 259

8.79 Comparison of the training set error due to misclassified data examples

for rule extraction on the ionosphere data set . . . . . . . . . . . . . . . 259

8.80 Comparison of the training set error due to misclassified data examples

for rule extraction on the monk’s problem 1 data set . . . . . . . . . . . 260

8.81 Comparison of the training set error due to misclassified data examples

for rule extraction on the monk’s problem 2 data set . . . . . . . . . . . 260

8.82 Comparison of the training set error due to misclassified data examples

for rule extraction on the monk’s problem 3 data set . . . . . . . . . . . 261

8.83 Comparison of the training set error due to misclassified data examples

for rule extraction on the Pima Indians diabetes data set . . . . . . . . . 261

8.84 Comparison of the training set error due to unclassified data examples for

rule extraction on the Iris plants data set . . . . . . . . . . . . . . . . . . 265

8.85 Comparison of the training set error due to unclassified data examples for

rule extraction on the ionosphere data set . . . . . . . . . . . . . . . . . 265

8.86 Comparison of the training set error due to unclassified data examples for

rule extraction on the monk’s problem 1 data set . . . . . . . . . . . . . 266



xxvi List of Tables

8.87 Comparison of the training set error due to unclassified data examples for

rule extraction on the monk’s problem 2 data set . . . . . . . . . . . . . 266

8.88 Comparison of the training set error due to unclassified data examples for

rule extraction on the monk’s problem 3 data set . . . . . . . . . . . . . 267

8.89 Comparison of the training set error due to unclassified data examples for

rule extraction on the Pima Indians diabetes data set . . . . . . . . . . . 267

8.90 Comparison of the overall test set error for rule extraction on the Iris

plants data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

8.91 Comparison of the overall test set error for rule extraction on the iono-

sphere data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

8.92 Comparison of the overall test set error for rule extraction on the monk’s

problem 1 data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

8.93 Comparison of the overall test set error for rule extraction on the monk’s

problem 2 data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

8.94 Comparison of the overall test set error for rule extraction on the monk’s

problem 3 data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

8.95 Comparison of the overall test set error for rule extraction on the Pima

Indians diabetes data set . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

8.96 Comparison of the test set error due to misclassified data examples for

rule extraction on the Iris plants data set . . . . . . . . . . . . . . . . . . 274

8.97 Comparison of the test set error due to misclassified data examples for

rule extraction on the ionosphere data set . . . . . . . . . . . . . . . . . 274

8.98 Comparison of the test set error due to misclassified data examples for

rule extraction on the monk’s problem 1 data set . . . . . . . . . . . . . 275

8.99 Comparison of the test set error due to misclassified data examples for

rule extraction on the monk’s problem 2 data set . . . . . . . . . . . . . 275

8.100 Comparison of the test set error due to misclassified data examples for

rule extraction on the monk’s problem 3 data set . . . . . . . . . . . . . 276

8.101 Comparison of the test set error due to misclassified data examples for

rule extraction on the Pima Indians diabetes data set . . . . . . . . . . . 276



List of Tables xxvii

8.102 Comparison of the test set error due to unclassified data examples for rule

extraction on the Iris plants data set . . . . . . . . . . . . . . . . . . . . 280

8.103 Comparison of the test set error due to unclassified data examples for rule

extraction on the ionosphere data set . . . . . . . . . . . . . . . . . . . . 280

8.104 Comparison of the test set error due to unclassified data examples for rule

extraction on the monk’s problem 1 data set . . . . . . . . . . . . . . . . 281

8.105 Comparison of the test set error due to unclassified data examples for rule

extraction on the monk’s problem 2 data set . . . . . . . . . . . . . . . . 281

8.106 Comparison of the test set error due to unclassified data examples for rule

extraction on the monk’s problem 3 data set . . . . . . . . . . . . . . . . 282

8.107 Comparison of the test set error due to unclassified data examples for rule

extraction on the Pima Indians diabetes data set . . . . . . . . . . . . . 282

8.108 Comparison of the total number of conditions per rule set for rule extrac-

tion on the Iris plants data set . . . . . . . . . . . . . . . . . . . . . . . . 284

8.109 Comparison of the total number of conditions per rule set for rule extrac-

tion on the ionosphere data set . . . . . . . . . . . . . . . . . . . . . . . 284

8.110 Comparison of the total number of conditions per rule set for rule extrac-

tion on the monk’s problem 1 data set . . . . . . . . . . . . . . . . . . . 285

8.111 Comparison of the total number of conditions per rule set for rule extrac-

tion on the monk’s problem 2 data set . . . . . . . . . . . . . . . . . . . 285

8.112 Comparison of the total number of conditions per rule set for rule extrac-

tion on the monk’s problem 3 data set . . . . . . . . . . . . . . . . . . . 286

8.113 Comparison of the total number of conditions per rule set for rule extrac-

tion on the Pima Indians diabetes data set . . . . . . . . . . . . . . . . . 286

8.114 Comparison of the number of rules per rule set for rule extraction on the

Iris plants data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

8.115 Comparison of the number of rules per rule set for rule extraction on the

ionosphere data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

8.116 Comparison of the number of rules per rule set for rule extraction on the

monk’s problem 1 data set . . . . . . . . . . . . . . . . . . . . . . . . . . 290



xxviii List of Tables

8.117 Comparison of the number of rules per rule set for rule extraction on the

monk’s problem 2 data set . . . . . . . . . . . . . . . . . . . . . . . . . . 290

8.118 Comparison of the number of rules per rule set for rule extraction on the

monk’s problem 3 data set . . . . . . . . . . . . . . . . . . . . . . . . . . 291

8.119 Comparison of the number of rules per rule set for rule extraction on the

Pima Indians diabetes data set . . . . . . . . . . . . . . . . . . . . . . . 291

8.120 Comparison of the average number of conditions per rule for rule extrac-

tion on the Iris plants data set . . . . . . . . . . . . . . . . . . . . . . . . 294

8.121 Comparison of the average number of conditions per rule for rule extrac-

tion on the ionosphere data set . . . . . . . . . . . . . . . . . . . . . . . 294

8.122 Comparison of the average number of conditions per rule for rule extrac-

tion on the monk’s problem 1 data set . . . . . . . . . . . . . . . . . . . 295

8.123 Comparison of the average number of conditions per rule for rule extrac-

tion on the monk’s problem 2 data set . . . . . . . . . . . . . . . . . . . 295

8.124 Comparison of the average number of conditions per rule for rule extrac-

tion on the monk’s problem 3 data set . . . . . . . . . . . . . . . . . . . 296

8.125 Comparison of the average number of conditions per rule for rule extrac-

tion on the Pima Indians diabetes data set . . . . . . . . . . . . . . . . . 296



Chapter 1

Introduction

Worldwide, trillions of information transactions take place every day. Banks

move their clients’ funds around. Retail outlets buy, sell and re-sell thou-

sands of items. Hospitals receive pathologists’ reports on many hundreds of

patients. The figures of the stock exchange fluctuate on an hourly basis, re-

flecting the rising and falling fortunes of hundreds of companies. Genetic re-

search produces countless gene sequences and experimental results in a search

for effective therapies. This “information age” has given us vast stores of

data that record reality, and hide patterns and interconnections more complex

than anyone can imagine. What mysteries might these vast stores of data

hold? What great rewards might we glean from exploring them?

The field of artificial intelligence (AI) [45, 177] has become quite active in recent years,

and attempts to model “intelligent” behavior algorithmically. More specifically, compu-

tational intelligence (CI) [68], a sub-discipline of AI, attempts to develop such systems

that are capable of adaptive behavior within changing environments [60, 64]. The most

notable algorithms have been based on a variety of natural systems, ranging from the

human neurological and immune systems, to ant colonies and bird flocks.

While many AI and CI approaches have become highly refined, they have traditionally

been used to solve theoretical engineering and scientific problems. Most of these problems

have been strictly laboratory-based, with relatively few practical benefits. As such, AI

has developed a reputation for being a somewhat abstract discipline.

1



2 1.1. Motivation

In the past, computer science research focused on the effective storage and processing

of data. In recent years, however, the emphasis has largely shifted towards the useful

exploitation of these stored resources. The fields of exploratory data analysis (EDA) and

data mining (DM) attempt to derive useful meaning from data stores, and encouraging

results have been shown [8, 9, 29]. More recently, EDA and DM have achieved their aim

by adapting and applying AI and CI paradigms within a practical realm. These advances

promise to offer great value to businesses and other organizations.

The rest of this introduction is organized as follows: Section 1.1 elaborates on the

motivation for this work. The objectives that this work set out to achieve are listed under

Section 1.2, while Section 1.3 outlines the broad methodology used in order to realize

these objectives. Section 1.4 lists the novel contributions made by this dissertation.

Finally, an outline for the remainder of the report is given in Section 1.5.

1.1 Motivation

The self-organizing feature map (SOM) [142, 146] is a CI approach developed by Tuevo

Kohonen at the Helsinki University of Technology (now part of Aalto University). Due

to an extensive body of work, SOMs are now well understood. An extensive bibliography

of SOM research between 1981 and 2005 has been published [130, 178, 184]1.

SOMs offer a number of very useful advantages to data clustering and analysis, par-

ticularly in terms of their powerful visualization abilities. Practical applications have

been demonstrated in areas as diverse as engineering [150], medicine [234], and financial

analysis [52]. Several SOM-based tools, such as Viscovery SOMine [51], SOM PAK [148]

and SOM Toolbox [147, 248, 254, 258], have also been developed and put to effective

use. These factors all point towards the rise of the SOM as a mature technology.

In light of the above discussion, it is clear that SOMs may be very usefully employed

for EDA or DM purposes. While a great deal of work has been done in the field of SOM-

based EDA, no summarizing survey of existing EDA techniques has been published. In

addition, the literature has focused very little attention on DM based on SOMs.

1 A consolidated BibTEX database of this bibliography is available from the Adaptive Informatics

Research Centre within Aalto University, at http://www.cis.hut.fi/research/som-bibl/.

http://www.cis.hut.fi/research/som-bibl/
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Furthermore, neuron labeling methods are often used during SOM-based EDA, and

are required by all SOM-based DM techniques. Several labeling methods have been

proposed, but no critical discussions or relative performance analyses exist.

The primary motivation behind this dissertation is thus to provide an overview of ex-

isting SOM-based EDA techniques, and to investigate SOM-based DM in greater detail.

The secondary motivation is to investigate SOM-based neuron labeling more thoroughly.

1.2 Objectives

The research objectives of this dissertation are summarized as follows:

• To contextualize the use of the SOM algorithm within the realm of EDA and DM,

in a generic practical setting within the real world.

• To describe the most common types of SOM-based data visualization techniques,

and the main classes of EDA that are possible using SOMs.

• To investigate techniques for labeling SOM neurons, because neuron labeling is an

important component of many SOM-based EDA and DM methods.

• To investigate SOM-based DM approaches that have been described in the litera-

ture, and investigate novel approaches to DM using the SOM as basis.

1.3 Methodology

The methodology used by this dissertation incorporates the following components:

• A detailed literature survey related to SOMs, EDA and DM techniques that are

based on SOMs, and SOM-based neuron labeling.

• Prototypes and algorithms of the novel SOM-based neuron labeling and DM tech-

niques that are proposed within this dissertation.

• Experimental investigations into the performance characteristics associated with

the existing and proposed SOM-based neuron labeling and DM techniques.
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1.4 Contributions

This research makes several novel contributions to knowledge in the SOM and DM

domains. These contributions are summarized below:

• A broad taxonomy, which describes the general types of EDA that are possible

when using a trained SOM as a basis for the analysis task, is outlined.

• A survey of existing neuron labeling techniques for trained SOMs is presented. The

approaches are critically discussed and compared to one another.

• A novel neuron labeling algorithm, named unsupervised weight-based cluster label-

ing, is described and discussed critically in relation to existing labeling approaches.

• A detailed survey, which describes DM methodologies that are based upon SOMs

and have previously been described in the literature, is presented.

• A novel framework, named HybridSOM, is proposed for SOM-based rule extraction

in a DM context. The framework is described and critically discussed.

• The performance characteristics of several existing supervised neuron labeling

methods are experimentally compared to one another.

• Several general conclusions and recommendations, related to the advantages and

drawbacks linked to each supervised and unsupervised neuron labeling method,

and how appropriate each approach is within a practical setting, are presented.

• The performance of HybridSOM is empirically compared to several classical DM

methods, as well as one established SOM-based DM algorithm known as SIG*.

• Conclusions that elucidate the advantages and drawbacks that are associated with

the various SOM-based DM approaches are presented.

• A number of observations, related to the overall feasibility of SOM-based rule

extraction approaches, are presented and discussed. These observations lead to

conclusions on the types of settings within which SOM-based DM should be used,

and conversely, when alternatives to SOM-based methods should be favored.
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1.5 Dissertation Outline

The list below presents the organization of the remaining chapters making up this dis-

sertation, as well as a brief description of the topics that each deals with:

• Chapter 2 focuses on the definition and delineation of EDA and DM. Several

important concepts directly related to these fields are also defined and discussed.

• Chapter 3 covers the theoretical background relating to the primary focus of this

work, namely the SOM. The general operation of the learning algorithm, specific

implementation details, and variations on the algorithm are all discussed.

• Chapter 4 broadly outlines the most commonly used SOM-based visualization

techniques, which indirectly visualize the underlying data. The broad categories

of SOM-based EDA, which use such map visualizations, are also taxonomized.

• Chapter 5 describes a variety of techniques that exist for discovering structures

of emergent neuron clusters within trained SOMs. The described techniques are

critically discussed in the context of practical EDA and DM applications.

• Chapter 6 discusses methods for labeling map neurons, which is often an impor-

tant component for both SOM-based EDA and DM. Techniques are taxonomized,

novel approaches are suggested, and the methods are critically discussed.

• Chapter 7 focuses on DM techniques. Existing techniques are identified, and a

new hybrid approach is described. All these approaches are described and theoret-

ically compared, in order to highlight potential flaws in their respective designs.

• Chapter 8 presents the results and discusses the conclusions of two experimental

comparisons. Firstly, the performance characteristics of unsupervised neuron label-

ing methods are analyzed. Secondly, the performance characteristics of SOM-based

DM algorithms and several classical DM algorithms are compared.

• Chapter 9 gives a summary of the general conclusions that this dissertation work

has arrived at. The chapter also provides details relating to several potential future

research avenues emanating from the work presented in this dissertation.
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All references cited within this dissertation are listed in a bibliography on pages 309

to 345. References are ordered alphabetically, according to the family names of authors.

Publication information is as complete as possible at the time of writing.

A digital object identifier (DOI)2 is provided whenever one is available, both for

scholarly publications3 and archives of digitally published experimental data sets4. The

identifiers in the PDF version of this document link to the digital resources.

Publications that are maintained only in the ArXiv repository5 at the time of pub-

lication are presented with all available information (this is typically limited to the

relevant author information, title of the document, and date of publication). For each

such reference, the ArXiv identifier and category6 for the document are provided.

A reference to a non-permanent uniform resource locator (URL) is only provided

when a document’s primary publication method is via that URL (for example, in the

case of an electronic journal, or a manual published online). The full details of a physical

publication of a source are also provided, should such a document be available. The URL

text in the PDF version of this dissertation also links to the source in question.

In a few cases, the seminal publications in which concepts were introduced are un-

available. In such instances the original reference is provided for the sake of completeness,

with a note citing a reliable source that is available and quotes the original publication.

2 A DOI is a unique alphanumeric string, which provides a permanent link to a digital object, even

if the location of the object, such as a URL, changes. A DOI takes the form of doi:10.1234/5678,

which is resolved manually at http://www.doi.org/, or directly via http://doi.org/10.1234/5678.

Additional information that is relevant to the DOI standard is available at http://www.doi.org/.

3 The CrossRef association provides DOIs for the electronic documents of participating publishers

and organizations. Further information on CrossRef is available at http://www.crossref.org/.

4 The DataCite organization allows participating organizations to assign DOIs to electronic data sets

available via the Internet. Further information on DataCite is provided at http://www.datacite.org/.

5 ArXiv is an electronic repository maintained by the Cornell University Library. The repository

makes electronic preprints of academic papers available for free access (these documents are referred to

as e-prints). Additional information related to the ArXiv service is available at http://arxiv.org/.

6 An ArXiv document reference usually takes the form of 1206.12345v1 [math.FA], where the

identifier of the document is 1206.12345v1 and the category of the document is math.FA. Identifiers

are resolved manually at http://arxiv.org/, or directly via https://arxiv.org/abs/1212.12345v1.

http://www.doi.org/
http://doi.org/10.1234/5678
http://www.doi.org/
http://www.crossref.org/
http://www.datacite.org/
http://arxiv.org/
http://arxiv.org/
https://arxiv.org/abs/1212.12345v1
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The following appendices are included after the bibliography. They contain discus-

sions of background details related to the main text, as well as quick reference lists:

• Appendix A describes a rule induction algorithm, namely Clark and Niblett’s

CN2. This algorithm was used in the experiments reported in Chapter 8.

• Appendix B outlines the C4.5 algorithm, by J. Ross Quinlan, which extracts rules

by building decision trees. Like CN2, the C4.5 algorithm was used experimentally.

• Appendix C lists the publications derived from this work, including full biblio-

graphic information and a short description of the contributions made by each.

• Appendix D lists and defines the mathematical symbols used in this work, cate-

gorized according to the relevant chapter in which they first appear.

• Appendix E provides a list of important acronyms and associated definitions,

both for existing terms and new concepts defined through the course of this work.



Chapter 2

Foundations of Exploratory Data

Analysis and Data Mining

This dissertation focuses on the application of SOMs to the fields of EDA and DM.

Before attention can be given to the various concrete applications, the scope of these

fields must be defined. Both EDA and DM are defined in terms of several concepts.

Firstly, the concepts of data and knowledge are defined under Section 2.1. Knowledge

extraction concepts are discussed in Section 2.2. Knowledge discovery in databases is

outlined in Section 2.3. Section 2.4 covers data pre-processing operations important for

SOMs. Section 2.5 differentiates EDA and DM. A summary is given in Section 2.6.

For the purpose of illustration, a single example is used throughout this discussion:

a store of recorded statistics relating to the characteristics and the business performance

of various companies. Of course, the concepts discussed in this chapter are broadly

applicable to any other field, whether the focus is commercial, scientific, or otherwise.

2.1 Data versus Knowledge

The terms data and knowledge are fairly poorly defined and thus often misunderstood. To

make matters worse, several conflicting definitions and perspectives have been proposed

by various authors. Sections 2.1.1 and 2.1.2 present the viewpoint on the nature of data

and knowledge, respectively, that has been taken by this dissertation.

8
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2.1.1 Data

An environment denotes a system (i.e., the real world, or an aspect of the real world).

At a moment in time, t, an environment’s state is denoted by Ŝt. State encapsulates

an environment’s objects and their associated properties [112]. Objects are observations

that may represent actual concrete entities, or entail more abstract concepts.

Data is thus defined, in this work’s context, as: a representation of the state of an

environment. The exact nature of the representation remains unspecified at this point.

2.1.1.1 Categories of Data

Data must take some form. However, the term is used to refer to any of a fairly broad

range of artifacts. Nevertheless, two general categories of data may be defined [92]:

• Unstructured and semi-structured data, which may take the form of raw text, image,

audio, or video in any physical or machine-readable storage format. Such data is

contained within documents, with either no structure at all (unstructured) or an

arbitrary structure that varies between documents (semi-structured).

• Structured data, which is data that has been organized according to a data model

(e.g., relational or object-oriented) so as to give it a well-defined structure. Such

data encoded into a machine-readable form is called a data set (interchangeably, a

database). In some other contexts, structured data is termed information.

In the current context, only structured, text-based data will be considered. The

inherent complexities involved in the processing of unstructured data and multimedia

elements are beyond the scope of the research presented in this dissertation.

2.1.1.2 Structured Data Representation

A wide variety of different storage and representation paradigms for structured data have

become available. These range from simple flat text file representations to more com-

plex database management systems (DBMSs) such as object-oriented DBMSs, object-

relational DBMSs, or even data warehouses. The focus of this research is not on these

systems, but the reader is referred to the literature [67, 199, 221, 236] for more details.
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Most commercially available DBMSs, however, are based on a relational data model,

as described by Elmasri [67]. A relational database is represented by several inter-related

tables consisting of rows and columns. DM and EDA applications generally use a simpli-

fication of the relational model, called a table-based data model [255], which is assumed

for the remainder of this dissertation. In this model, the database consists of a single

table, thus providing a more readily usable (but possibly less efficient) interface. A table-

based model can be applied to all database schemata and queries, as long as null values

are allowed [236] (null values are discussed in more detail below). Figure 2.1 shows a

hypothetical example of a relational DBMS using the table-based model.

Both the relational and table-based data models are based on the concept of a relation

schema, which is denoted by H(A1, A2, . . . , Añ). A relation schema consists of the name

of the relation, denoted H, and a set of attributes, denoted A = A1, A2, . . . , Añ. The

degree of the relation is denoted by ñ. Each attribute Al also has a name and is associated

with a domain, denoted dom(Al). A domain describes a set of valid atomic values for an

attribute in terms of the data type and the format that the data may take. In summary,

a relation (consisting of attributes and associated domains) describes a template for the

form that objects with certain properties can take within an environment.

The data type of a domain is either continuous or nominal. Continuous attribute

values fall within a continuous range, and are usually represented as floating-point nu-

meric values. Nominal values are chosen from a discrete set of values. Integers are also

nominal values, and integer encoding is often used to represent nominal values. Boolean

attributes have a special nominal data type, with only a true or false value.

Associated with a relational schema is a relation, which consists of a set of m̃ tuples,

denoted {tup1, tup2, . . . , tupm̃}. Each tuple, denoted tup t̄, is an ordered list of ñ values,

such that tup t̄ = 〈f1, f2, . . . , fñ〉. Each value, fl, is an element that must either be

selected from dom(Al), or have a null value that indicates the value is unknown (or a

missing value). A tuple is therefore effectively a representation of a single object, obj ,

within an environment, while the tuple’s values represent the properties of obj .

In Figure 2.1, company is the name of the relation, while the column headings (i.e.,

name, turnover, avg_remun, ISO9000, size and status) represent the relation’s at-

tributes. The degree of the relation is 6 (thus, ñ = 6). The domains of turnover and
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company name turnover avg_remun ISO9000 size status

Weyland-Yutani 50 000 000.00 6 400.00 T large successful
UAC 90 000.00 8 150.00 T medium unsuccessful

Tyrell Corp 20 000 000.00 6 200.00 F small unsuccessful
OmniCorp 25 000 000.00 5 120.00 T small mediocre

?

Relation
Name

? ? ? ? ? ?

Attributes

 Tuples

Figure 2.1: A hypothetical relational database representing company details.

avg_remun are continuous values between 0 and some maximum value defined for each

domain. The domain of size is the nominal value set {small, medium, large}, while for

ISO9000 the domain is the Boolean set {T, F}. The example also highlights four tuples.

Each row below the column headings is a single tuple, made up of values associated with

the attribute of the column in which they appear. Finally, the example illustrates that

the values are chosen from the domains associated with each attribute.

2.1.2 Knowledge

In light of the above discussion, this dissertation defines knowledge as: some form of

insight into an environment that is represented by a set of data. Typically, when given

only a raw data set, this insight is not obvious to the casual human observer.

2.1.2.1 Types of Knowledge

While the insight that knowledge represents can take many forms, and often has many

representations, the following two broad divisions are identifiable:

• Logical consequences of a data set. These are based on deductions from the contents

of the data set through the application of formal logic.

• Generalizations that exploit identifiable regularities within a data set. These types

of generalizations are represented by means of a model.

This dissertation focuses on the latter type of knowledge. In fact, many basic logical

consequences arguably represent a weaker form of insight than generalizations do.
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2.1.2.2 Models

A model, in the context of this dissertation, is a generalization of a data-represented

environment. The discussion presented within this section is primarily based on the

work of Holsheimer et al [112]. The relevant concepts are illustrated by Figure 2.2,

which shows how a model of an environment relates to the environment itself.

The definition of data implies that a dynamic environment, with a time-variant state,

is possible. Thus an environment can be viewed as a state transition system, where V is

the set of all possible states. Given any state, Ŝt, a state transition function, F : V → V ,

defines the following state Ŝt+1. State Ŝt+1 could represent a different number of objects,

each with different properties and interrelationships, than those of Ŝt.

A model contains a set of classes, denoted C, which are aggregations of objects. Each

class, Cm, has a class condition, denoted Bm, that defines object membership to a class.

In the context of models, objects are often referred to as examples. The class condition

separates positive examples of Cm (objects that satisfy class condition Bm, and are thus

members of class Cm) from negative examples of Cm (objects that do not satisfy Bm).

The nature of the class condition is discussed in relation to rules, below.

Essentially, a model is characterized by two functions, namely a classification function

and a model transition function. A classification function, denoted P : Ŝt → C, maps

each object, obj , in state Ŝt to a corresponding class, Cm ∈ C, only if obj satisfies an

appropriate class description, Dm. The form of Dm is discussed in terms of rules, below.

The classification function often maps several objects to one class. A model transition

function, F ′, models F in dynamic environments, by representing how the classes of an

environmental state, Ŝt, transition to classes of the subsequent state, Ŝt+1.

A model is considered correct if, at any time t, the representation of the next state

is identical to the representation predicted by the model. This is expressed as:

P
(
F(Ŝt)

)
= F ′

(
P(Ŝt)

)

This equation illustrates that if a model of an environment is correct, the representation

that is shown in Figure 2.2 must also be commutative. While SOMs have been used for

temporal data analysis [32, 263, 96, 98, 140, 144, 152, 230], this work focuses on static

environments and only briefly considers state and model transitions in Section 4.5.5.
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Model

Environment

Object

F

P P
V V

Ŝt+1

Ŝt

Ct,i
Ct+1,j

CC

F ′

Figure 2.2: The relationship between an environment and a model that represents this envi-

ronment. Figure adapted from the work of Holsheimer et al [112].

2.1.2.3 Rules

The term symbolic knowledge refers to knowledge that is represented in a formal way,

such that an interpreter with the necessary competence is able to utilize it [237]. In

this dissertation’s context, the knowledge being represented is embodied in a model. For

symbolic knowledge to exist, a knowledge representation scheme is required. In the most

general sense, any such scheme takes the form of a set of rules [54, 112].

To define a rule, a data set is assumed, with a set, A, of associated attributes. A

subset of attributes, here denoted Acls , is called the classification attribute set. All class

conditions are expressed in terms of value ranges for one or more classification attributes,

using equalities (that is, =) or inequalities ( 6=, >, ≥, <, and ≤). In Figure 2.1, {status}
is the set of classification attributes, and status = solvent is a class condition.

The remaining attributes of A, that are not in Acls , are in the set of descriptive at-

tributes, denotedAdes . The class description, Dm, is expressed as conditions on the values

for one or more of these attributes, again using equalities or inequalities. In Figure 2.1,

the set of descriptive attributes is {company, turnover, avg_remun, ISO9000, size}. Ex-

amples of conditions on these are turnover > 50, 000 and size = large.

A rule relates a class description to the class associated with a class condition. If

an example from the data set satisfies the description of a rule, it is said to be covered

by that rule. This means that the rule predicts that the example belongs to the class

denoted by the class condition. Thus a rule predicts class membership (and consequently

the values of the classification attributes) based on the values of descriptive attributes.



14 2.1. Data versus Knowledge

2.1.2.4 Knowledge Representation Techniques

The rules discussed above can be expressed in a variety of ways. The simplest approach

is to use informal natural language to describe either class characteristics, or correlations

between the values of descriptive attributes and classification attributes.

Propositional logic structures provide a formal representation. An overview of propo-

sitional logic is given by Huth and Ryan [118]. Using propositional logic, class descrip-

tions are represented as formulas that relate attribute value conditions to one another

using the standard logical connectives ∧ and ∨. A rule is then an implication between a

class description and a class symbol that is associated with a class condition.

Research has identified a number of other approaches, collectively known as knowledge

representation techniques [36, 205]. While exotic methods such as semantic networks and

frames exist, this dissertation only focuses on the following two approaches:

• Production rules represent rule sets of if-then rules, each with an antecedent and a

consequent. The antecedent is usually a conjunctive normal form (CNF) proposi-

tional expression, which is a single term or a conjunction of terms, and each term

is an attribute value condition or a disjunction of conditions. The consequent is a

class condition. The antecedent and consequent are related as follows:

IF antecedent THEN consequent

New examples are compared to each rule in order, receiving the classification of

the first matching antecedent’s consequent. Usually, one default rule exists, with

a consequent that classifies any examples matching none of the previous rules.

• Decision trees, which are tree-like representations of rule sets. Each non-leaf node

represents an attribute test checking equality or inequality. Node branches corre-

spond to the possible outcomes of a test. Leaf nodes represent class conditions.

New examples are classified by starting at the root node and performing node tests

in sequence, following the appropriate outcome branch for each test, and stopping

once a leaf node provides a specific classification for the example.

Figure 2.3 shows a production rule set, while Figure 2.4 illustrates a decision tree, both

of which represent one possible model of the example data set shown in Figure 2.1.
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IF size = small AND ISO9000 = true THEN status = acceptable

IF size = medium AND turnover >= 100 000 THEN status = successful

IF size = large THEN status = successful

DEFAULT status = unsuccessful

Figure 2.3: An example set of production rules, based on the data set of Figure 2.1. The rule

antecedents are all in CNF, and a default rule is included at the end of the rule set.

T

size

F < 100 000>= 100 000

turnover

largemediumsmall

ISO9000

successfulacceptable unsuccessfulunsuccessful

successful

Figure 2.4: An example of a decision tree, equivalent to the production rules in Figure 2.3.

Rounded rectangles are attribute tests, and underlined labels are data example classifications.

2.2 Knowledge Extraction

The nature of knowledge has been thoroughly discussed in the previous section. The

process by which knowledge is created has, however, been ignored until this point. This

section focuses on the broader aspects of this knowledge extraction process.

In a general sense, learning is simply the process by which knowledge is derived [56].

Within the context of DM and EDA tasks, the learning process must extract knowl-

edge from a source of data. Section 2.2.1 discusses general learning approaches, while

Section 2.2.2 describes learning that is specifically machine-based in nature.

2.2.1 Learning Approaches

Two types of knowledge were described in Section 2.1.2.1, namely logical consequences

and generalizations. Two corresponding categories of learning approaches are conse-
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quently identifiable. Each of the general learning approaches is defined according to the

class of knowledge that is produced during the knowledge creation process, as follows:

• Deductive learning derives knowledge based on logical consequences. This uses a

variety of technologies, such as Structured Query Language (SQL) [67, 199, 221],

Data Mining Query Language (DMQL) [102, 103], deductive databases [46], online

analytical processing (OLAP) [103, 220] or data cubes [95, 103].

• Inductive learning [111, 112] attempts to identify generalizations applicable to an

environment. This is done by building a model based on environmental observa-

tions, and translating it into symbolic knowledge using an appropriate knowledge

representation technique, as discussed in the previous section.

Because the focus of this research is on knowledge embodied in the form of general-

izations, inductive learning is assumed for the remainder of this dissertation. Inductive

learning aims to build a model by performing two general tasks [112]:

• Firstly, an appropriate internal representation for the data set must be constructed.

This representation takes the form of classes and descriptions for these classes.

• Secondly, in dynamic environments, an appropriate state transition function must

be represented. This is achieved by building a model transition function.

As previously mentioned, this research generally considers only static environments. As

a consequence, the first task of inductive learning is primarily focused upon, while the

second task is largely ignored for the remainder of this dissertation.

2.2.2 Machine Learning

The field of machine learning encompasses automated, algorithmic approaches to the

inductive learning process [56, 63]. This means that the environmental observations on

which the built model is based should be encoded in some sort of suitable machine-

readable format. Typically, the machine-readable environmental observations are repre-

sented using some sort of database, as described in Section 2.1.1.2. Some form of learning

algorithm must also be employed, in order to extract usable knowledge.
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Obviously, different means by which this model construction is achieved are possible,

depending on the specific learning algorithm being employed. It is possible to divide all

current machine learning algorithms into the following general categories [68]:

• Supervised learning uses a set of data examples, where each example has a pre-

associated class. The learning algorithm builds either mutually distinguishing de-

scriptions of the classes, or a regression model describing continuous attributes.

• Unsupervised learning uses a set of examples with no prior classification. The

learning algorithm finds patterns in the provided examples, typically by modeling

the distribution of the examples, and then builds a description for each pattern.

• Reinforcement learning rewards a learning algorithm’s correct outcomes, and pun-

ishes poor outcomes. The learning algorithm aims to discover which actions max-

imize the overall reward, without any prior knowledge of which actions to take.

Many machine learning approaches only address the first task of learning (i.e., the

construction of an internal representation). Model transition functions are derived using

special temporal learning techniques [69, 88, 214], which are beyond this work’s scope.

2.3 Knowledge Discovery in Databases

The focus now shifts towards the practical means through which it is possible to facilitate

learning, based upon a real-world set of examples. These examples are usually stored in

the form of a database, which is maintained by some sort of organization.

In the following discussion, the nature of the setting within which learning must take

place is firstly considered in Section 2.3.1. This leads directly to a justification for the

existence of the knowledge discovery in databases (KDD) process, which incorporates

either EDA or DM as a component, and is described within Section 2.3.2.

2.3.1 Data-Centric Organizations

Over time, organizations have become progressively more data driven. A modern orga-

nization processes and works with more data than was typical in the past, and many are
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today considered to be data-centric in nature. Any data-centric organization is affected

by a variety of unique factors. Most notable amongst these are the following:

• Modern data capturing tools are used to acquire real-time data relating to trans-

actions as they happen. This means that it is possible to collect a vast quantity of

relevant data with almost no disruption to the operation of the organization.

• Modern relational database storage allows for the efficient storage of complex data

entities, as well as interrelationships between these entities. Thus it is possible to

store a large number of related data objects with ease.

• Modern storage media allow for the compact storage of huge quantities of data for

an indefinite time. Thus it is possible to archive the huge quantity of acquired data

with little or no degradation, over a very long period of time.

These combined factors result in a situation in which it is possible for even small

organizations to be in possession of a huge amount of data. The potential advantage

this provides is obvious: the information in the possession of an organization is bound to

hide much useful knowledge. The more data that is available, the more potential there

is to find useful knowledge. Also, if the information recorded spans a long period, it will

be easier to uncover interesting patterns (or trends) that are dependent on time.

There are, however, also drawbacks to this proliferation of data. Firstly, the sheer

volumes involved present an overwhelming obstacle. For knowledge to accurately reflect

reality, it should encompass all available data. Clearly, the search for knowledge becomes

increasingly computationally expensive as more records need to be examined.

Secondly, a typical relation in a database often consists of many different attributes,

where the domains of these attributes have a variety of data types. In simple environ-

ments it would be possible for a human expert to relatively easily analyze a database

consisting entirely of numeric attribute values, but when string-based nominal values

and Boolean values are added, sensible analysis becomes more difficult.

In the third place, dimensionality begins to present a problem. Within a typical

database relation, consisting of a number of attributes, a generalization is often described

using a combination of attribute values. For example, the status of a company could be

dependent on the turnover, in conjunction with the size of the company. This means that
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the knowledge extraction task may be thought of as a form of search process through an

ñ-dimensional space, where ñ represents the number of attributes making up a record.

It should be obvious that, in the presence of a large number of records (as is usually the

case in practice), this search becomes exponentially more time complex.

2.3.2 The KDD Process

The most obvious approach to extracting knowledge from a data set would be for a human

expert to manually inspect the entire data set, devise an appropriate model through

the combination of their observations with appropriate domain knowledge, and finally

represent the salient details of this model in some way. This is sometimes referred to as

manual data mining [71]. However, due to the drawbacks mentioned in Section 2.3.1, it

quickly becomes apparent that this approach is usually overwhelming. Even a team of

several experts would have difficulty coordinating their efforts.

This sets the stage for the introduction of some form of automation to the process of

knowledge extraction. The purpose of KDD is to extract new knowledge from databases

in which the volume, complexity and dimensionality of the stored data has proved pro-

hibitively large for human analysts [222]. It is clear from the above discussion that

machine learning is an ideal candidate for providing this automation.

It is not possible to simply apply machine learning approaches directly to a real-world

database. This is because machine learning approaches operate on a largely consistent,

machine-encoded environment. Conversely, KDD views its environment through an op-

erational database, which is subject to a wide variety of problems and inconsistencies.

These problems often include noisy data, incomplete data, redundant data, and the

possibility of multiple heterogeneous data sources. These and other problems have been

discussed in great detail elsewhere in the literature [54]. The KDD process must therefore

overcome these issues through a series of pre-processing phases.

Because the aim of the KDD process is the extraction of useful knowledge, the model

produced by a machine learning approach must be converted into a usable form. This

becomes the task of several post-processing phases of the KDD process.

KDD therefore encompasses the entire process of knowledge extraction, which be-

gins with an unprocessed database, and finally produces a useful representation of the
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resulting knowledge. This dissertation divides the KDD process into the following seven

distinct steps, which are based on the work of Han and Kamber [103]:

1. Data cleaning, which is the process whereby any noise and inconsistencies that are

present in the data source are removed or dealt with in some way.

2. Data integration, which involves the process of combining various (often heteroge-

neous) data sources into a single, consolidated store [271, 273].

3. Data selection, which is the task of selecting only the parts of the data source that

are relevant to the KDD task, and using only this data for knowledge extraction.

4. Data transformation, where summary or aggregation tasks are performed to trans-

form data into a form appropriate for the knowledge extraction process.

5. Knowledge extraction1, which represents the application of machine learning ap-

proaches in order to extract knowledge from the pre-processed data source.

6. Pattern evaluation, which employs some kind of measure to identify and select the

truly interesting, non-trivial generalizations and patterns identified.

7. Knowledge presentation, where the selected patterns are presented by means of one

or more visualization and/or knowledge representation techniques.

The KDD process, broken down into the above sequential steps, is illustrated in Fig-

ure 2.5. The figure also shows the end-product generated by each step.

The pre-processing phase of KDD is encompassed in steps 1 to 4, while the post-

processing phase includes steps 6 and 7. The focus of this work is on the knowledge

extraction of step 5, which is where it is proposed to employ the SOM algorithm. Post-

processing is not discussed, but the data cleaning and transformation operations that

are most important in the context of SOMs are covered in Section 2.4.

The current trend is to combine data cleaning and integration into a single phase,

which stores the output of both these steps in a data warehouse. It is not uncommon

1 Step 5 is called “data mining” by Han and Kamber [103]. Section 2.5.2 of this work uses a more

specific definition for this term, necessitating the use of the term “knowledge extraction” in its place.
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phases, with related phases combined for simplicity. Rectangles are inputs, outputs and entities.

to perform data transformation prior to selection, especially when data warehouses are

used. It is also possible to generate additional data from the insight gained from the

final knowledge output. This data is usable as input for another KDD iteration, and

thus has the potential to refine the knowledge generated by the process.

The knowledge that is produced by the KDD process is often used directly by human

domain experts for decision-making tasks. Such a context often requires the generation

of reports for stakeholders who are not well versed in EDA or DM. This necessarily raises

concerns surrounding the clear representation of the extracted knowledge in an easily

understandable manner. Alternatively, knowledge integration into an expert system is

also possible, in order to automate a recurring decision-making process.
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2.4 Basic Data Pre-Processing

As discussed in the previous section, data pre-processing includes data cleaning, integra-

tion, selection, and transformation. These are broad topics, thus Sections 2.4.1 and 2.4.2

only briefly touch on some of the more important and commonly performed operations

within the phases of data cleaning and data transformation.

2.4.1 Basic Data Cleaning Operations

Data cleaning addresses the fact that real-world data sets are often noisy, incomplete,

and contain inconsistencies. The most common data cleaning operations are missing

value replacement, noise reduction, and inconsistency cleaning, and are discussed below:

2.4.1.1 Missing Value Replacement

Examples with null attribute values interfere with knowledge extraction. While a näıve

option simply removes such examples, replacement strategies are preferable. There are

many approaches for replacing null items with valid values [25, 84, 192]. Commonly used

methods include the manual replacement of missing values, replacing missing values with

the mean for the attribute in question (computed across all examples, or only over the

relevant class), and inferring the most probable value using statistical techniques.

2.4.1.2 Noise Reduction

Noise reduction is necessary when random errors or variances are present in a data set.

Again, there are many ways to smooth out noise [103]. The most prevalent approaches for

dealing with data set noise include smoothing attribute values within bins of examples,

clustering examples to detect and remove outliers, and the use of regression techniques.

2.4.1.3 Inconsistency Cleaning

Inconsistent data usually results from human error amongst data capturers, or a poor

data gathering system. Correcting such problems is typically quite manual, although

some algorithmic approaches use attribute dependencies to help correct inconsistencies.
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2.4.2 Basic Data Transformation Operations

Data transformation is a very important data pre-processing procedure encompassing

all the operations that are required to convert data into a form more appropriate to

a specific machine learning approach. In the context of this research work, this data

transformation conversion must take the SOM algorithm into consideration.

As Section 3.2 describes, the SOM algorithm bases its model on continuous values. All

learning algorithms that are based on continuous values require two data transformations:

attribute value normalization and binary encoding of nominal attributes. Of course, all

SOM-based DM and EDA methods implicitly require these transformations. Attribute

value normalization and binary encoding are both discussed in more detail, below:

2.4.2.1 Attribute Value Normalization

The SOM’s input is a relational schema of continuous-valued attributes. In a practical

setting, these attributes often have ranges that differ significantly from one another.

Because SOM training is based on distances calculated within the space defined by the

attribute values, attributes that have significantly larger value ranges (such as turnover
in the example of Figure 2.1) will outweigh and dominate over attributes with smaller

ranges (such as avg_remun in the example). This effect biases the learning process, but

is addressable with attribute value normalization (which is also called scaling).

Min-max, z-score, and decimal scaling normalization are some of the techniques that

have been developed to address the above-mentioned problem [103]. Each normalization

method has particular advantages and drawbacks under different conditions [189].

Min-max normalization is one of the most widely used data normalization techniques,

and is often used in the context of SOMs. Using min-max normalization, each original

attribute value, fl, is adapted to a normalized value, f ′l , as follows:

f ′l =
fl − fl,min

fl,max − fl,min

· (f ′l,max − f ′l,min) + f ′l,min (2.1)

where fl,min and fl,max respectively denote the minimum and maximum possible values

that fl can take; and f ′l,min and f ′l,max respectively indicate the minimum and maximum

possible values that f ′l should be able to take. This normalization method preserves the

relationships that are present between attribute values within the original data set.
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If a machine learning algorithm is based on data that contains normalized attributes,

its model will also be normalized with respect to these attributes. In order for such

a model to be interpreted, the appropriate values should be de-normalized. The de-

normalization process returns normalized values to their original range, and allows for

the model’s interpretation in the context of the original data source. The nature of

de-normalization depends on the normalization method that was used on the original

training data, and is essentially the complement of this original process.

The de-normalization process that is appropriate for min-max normalization, is de-

rived from Equation (2.1). The procedure converts a min-max normalized value, f ′l , to

its corresponding de-normalized value, fl, and is based on the following equation:

fl =
f ′l − f ′l,min

f ′l,max − f ′l,min

· (fl,max − fl,min) + fl,min (2.2)

It is, of course, necessary to use the original fl,min and fl,max values that attribute value

fl could take prior to the data normalization. This naturally requires that these values

be stored accurately whenever de-normalization might need to be performed.

2.4.2.2 Binary Encoding of Nominal Attributes

Binary attribute encoding is required when an attribute’s domain is of a nominal type.

An example of such a nominal attribute in Figure 2.1 is size. Typically, an integer

encoding is used to represent such values. A possible value encoding for the example’s

size attribute is 0 = small, 1 = medium, and 2 = large. Such a representation is not

ideal, because a SOM requires continuous-valued attributes. A SOM will thus interpret

each discretely encoded nominal attribute value as a single continuous value. In the

example, size would be interpreted as a continuous value in the range [0, 2].

Such an attribute should be replaced by a separate attribute for each allowable nom-

inal value. For the example in Figure 2.1, a data analyst might create three attributes

in place of the single size attribute, called size_small, size_medium and size_large.

To indicate the value of the original attribute, a continuous value of 1.0 is given for the

corresponding new attribute, and 0.0 for the others. Because the tuple for the com-

pany name UAC in Figure 2.1 has a size value of medium, the values for size_small,

size_medium and size_large for this tuple would be 0.0, 1.0 and 0.0, respectively.
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2.5 Exploratory Data Analysis versus Data Mining

The fields of EDA (exploratory data analysis) and DM (data mining) are closely re-

lated, and must thus be differentiated in the context of this work. Either EDA or DM

are substitutable within the knowledge extraction phase of the KDD cycle identified in

Section 2.3.2. Section 2.5.1 discusses EDA, while Section 2.5.2 covers DM.

2.5.1 Exploratory Data Analysis

The field of EDA [235, 250] uses various techniques to augment a human analyst’s ex-

pertise. The type of augmentation differs, depending on the level of assistance offered

to the analyst. Some EDA tools simply represent the most important aspects of the

examined data set in a particularly clear and concise way. It is also possible for EDA

tools to perform very complex analysis on relationships within the data, and present a

set of results in a form that can be easily understood and assimilated by a user.

Common to most EDA approaches, however, is some kind of visual representation

based on one or more of the many information visualization techniques [109, 110] that

have been developed. Such visualizations represent the data set in an understandable

form, while still preserving key aspects of the data’s essential meaning [131].

It is important to note, however, that the aim of EDA is not to provide some kind of

interpretation to the data, but simply to aid the task of a human expert during knowledge

extraction. EDA systems are thus typically interactive, and the actual “intelligence” of

the knowledge extraction task still lies in human hands. As such, tools for EDA need

not necessarily utilize any AI or CI paradigms (although this dissertation focuses only

on applications that do). In fact, in many practical situations, only the application of

comparatively simple statistical or OLAP systems is sufficient. Figure 2.6 presents an

overview of the component interactions within a generic EDA system.

EDA can be appropriately used in two contexts. Firstly, EDA can be used when an

analyst has no clear idea of what knowledge is being searched for. In this case, EDA

is used as a tool to allow the analyst to explore the data in a roughly trial-and-error

manner, searching for any knowledge that seems to be of interest. Alternatively, EDA

is also appropriate if an analyst has a clear idea of what knowledge is being searched
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Figure 2.6: An overview of the EDA process.

for, what questions need to be answered, or what hypotheses must be validated by the

exploratory exercise. This focus can quickly guide the exploration process to an outcome.

2.5.2 Data Mining

In contrast to EDA, the field of DM attempts to fully automate the extraction of knowl-

edge from data, using machine learning methods. Typically a DM application simply

generates a rule set, given an input data set. There is no human intervention, except for

the evaluation and presentation of the rule sets after knowledge extraction, and the use

of the extracted knowledge or its integration into an expert system.

Many DM algorithms have been developed. While many older techniques, for example

CN2 [23, 37, 38] and C4.5 [193, 194, 195, 197], use statistical and information theoretic

measures to build rule sets, the current trend is towards using CI paradigms.

Amongst many CI-based techniques, feedforward neural networks [213], evolutionary

algorithms [18, 83], ant colony optimizers [179], support vector machines [265], and fuzzy

systems [74] have been used as an algorithmic basis for rule extraction in a DM setting.

Such CI-based rule extraction is the field that is focused upon within this dissertation.

Figure 2.7 provides a broad schematic overview of the DM process.

In contrast to EDA approaches, DM is typically employed when the nature of the

knowledge that is desired from the mining process is not clearly defined, or cannot be

defined. It is usual for there to be no fixed questions that have to be answered, and no

set hypotheses that require validation. DM is appropriate in this type of context because

the DM tool simply generates a representation of the knowledge that can be extracted

from the data, without the need for direct guidance from a human analyst.
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Figure 2.7: An overview of the DM process.

Furthermore, DM is often appropriate when extracted knowledge must be integrated

into an expert system. This type of integration is facilitated by the fact that the knowl-

edge generated by a DM approach is already in a machine-readable format that can

usually be directly integrated into an automated system. If this is not the case, it is

usually simple to modify the extracted knowledge so that it can be integrated.

2.6 Summary

This chapter focused on the delineation of the fields of EDA (exploratory data analysis)

and DM (data mining). Section 2.1 defined data as a representation of the state of an

environment, and knowledge as some form of insight into the environment as represented

by a set of data. These concepts were theoretically expanded upon. Section 2.2 defined

learning as the process by which knowledge can be derived, and considered deductive

and inductive learning, and also defined machine learning as the algorithmic automa-

tion of inductive learning. Section 2.3 defined the field of KDD (knowledge discovery

in databases) as the entire process of extracting useful, presentable knowledge from a

real-world data set. Section 2.4 briefly outlined a few important data pre-processing op-

erations. In particular, the need for attribute value normalization and binary encoding

were justified. Finally, Section 2.5 defined the fields of EDA and DM as steps in the KDD

process, both of which utilize machine learning approaches. KDD was defined as the use

of machine learning to augment the expertise of a human expert. DM was defined as

the complete automation of the knowledge extraction process using data mining.

The following chapter considers the more important aspects relating to the architec-

ture, training, parameter settings and evaluation of the CI approach under consideration,

namely the SOM. In addition, the concepts surrounding emergent behavior in SOMs are

discussed. Finally, variations on the basic theme of the SOM are considered.
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Self-Organizing Feature Maps

The previous chapter discussed the fields of EDA and DM, in which the SOM algorithm

has been applied. This chapter provides an overview of SOM theory as well as recent

research on SOMs. The basic algorithm was developed in 1982 by Teuvo Kohonen [142].

Most of this chapter is based on Kohonen’s summarizing work on the topic [146].

Section 3.1 gives an overview of the approach, while Section 3.2 discusses the map

architecture. Section 3.3 describes the classical training algorithm. Section 3.4 discusses

emergence in SOMs, Section 3.5 covers the parameters affecting a SOM’s training, and

Section 3.6 considers factors affecting SOM model accuracy. Variations on the basic

SOM are discussed under Section 3.7. Finally, Section 3.8 summarizes the chapter.

3.1 Overview of the Approach

Like many CI approaches, the SOM algorithm is based on a system that exists in na-

ture. This biological basis is discussed in Section 3.1.1. Following this background,

Section 3.1.2 briefly outlines how this basis is modeled by the SOM approach.

3.1.1 Physiological Basis

The physiological underpinnings of the algorithm are the self-organizing nature of asso-

ciative memory and the human cerebral cortex (particularly the motor, somatosensory,

visual and auditory cortices) [142, 145]. These cortices form in such a way as to represent

28
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similar sensory inputs within localized cortex areas. This structuring allows, for exam-

ple, images of trees to be differentiated from images of faces, and previously unseen trees

to be recognized as trees, because the visual similarity of trees causes neural responses

in similar cortex areas. The structure of these regions of the brain can be represented by

topological feature maps. It is this representation that the SOM models algorithmically.

3.1.2 Algorithmic Overview

Broadly speaking, the SOM is a type of artificial neural network (ANN). ANNs constitute

a class of machine learning approaches inspired by the structures of biological nervous

systems, and build a model by using a set of provided data examples [68, 122].

Supervised learning ANNs, given input examples, iteratively adjust their produced

outputs to desired outputs. Unsupervised learning ANNs model input data, thus finding

patterns without using desired classifications. The SOM is an unsupervised ANN.

A SOM performs a multidimensional scaling of a set of I-dimensional input examples

to a discrete output space, called the map structure, which consists of neurons (also

known as map units). In general, the map structure is less complex than the set of input

examples for two reasons. Firstly, the map’s neurons are usually arranged in a structure

with a lower dimensionality than that of the input examples [133]. Secondly, the map is

typically made up of fewer neurons than the number of input examples [68].

The SOM thus aggregates (or compresses) the input space using neurons to form an

approximate model of the input data, where the model has two important characteristics:

• It approximates the probability density function of the input space by means of

neurons that cluster similar and frequently occurring input examples together.

This means that neurons tend to model dense areas in the input space.

• It maintains the local topological structure (or local order) of the input space. This

means that if two input examples are close to one another in the I-dimensional

input space, they will be close to one another in the SOM’s output space.

This form of mapping differs from the models created by other unsupervised approaches

(such as the learning vector quantizer, or LVQ [143]), which typically take the approach

of only sub-dividing the data into clusters, with no topological arrangement.
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3.2 SOM Architecture

Figure 3.1 illustrates a SOM’s architecture. SOM learning is based on a training set, DT ,

which is a subset of a master data set, D. The training set consists of PT object exam-

ples, called training examples, each represented by an I-dimensional training vector, ~zs,

such that DT = {~z1, ~z2, . . . , ~zPT }. Each training vector consists of I continuous-valued

components, each denoted zsŵ, called input parameters, such that ~zs = (zs1, zs2, . . . , zsI).

Within an EDA or DM context, D is usually a structured database, as defined in Sec-

tion 2.1.1.2. In this case, each ~zs is a tuple, and every zsŵ is an attribute value.

The map normally takes the form of a two-dimensional, rectangular grid of Y × X
neurons, where Y is the total number of rows, and X is the total number of columns in

the map. Neurons are arranged in a lattice structure, which defines the neighborhood

structure around each neuron. The lattice topology therefore determines the spatial

relationships of neurons to one other, within the grid’s map space.

Two general lattice topologies, namely rectangular and hexagonal lattices [148], are

the most common within the SOM literature. A rectangular lattice considers neighboring

neurons to be those located adjacently above, below, and to either side of one another.

Consequently, this structure arranges neurons in regular rows and columns, as shown in

Figure 3.2 (a). A hexagonal lattice defines a neighborhood of six neurons, requiring a

tessellated arrangement, which is shown in Figure 3.2 (b). From Figure 3.2, it is also

clear that both lattices result in smaller neighborhoods for neurons at the corners and

sides of the map grid. In the literature, the most widely-used topology is the hexagonal

lattice, which is assumed for the remainder of the dissertation.

It should, however, be noted that arbitrary lattice structures are also possible, such as

hypercubical [15], irregular [4, 7, 20, 85, 87, 100, 127, 167, 169] and cyclic [159, 207, 215]

lattices. Such lattices introduce complexities, and are beyond this work’s scope.

The training procedure of the SOM is based on the positions of neurons relative

to one another in map space. The lattice structure is thus used during training to

define the spatial positions of neurons in map space, and allows for the calculation of

distances between the neurons. However, the structure of the lattice typically only

becomes apparent when the SOM’s map grid is visually represented. This concept is

investigated in Chapter 4, which deals with SOM visualization in some detail.
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Figure 3.1: The basic architecture of a typical SOM. Circles represent neurons arranged in a

rectangular map structure. The lines connected to neuron yx are weight vector components.

Weights are connected to all the other neurons in the same way, but are not shown. Rectangles

represent input parameters, which are adjacently connected into training vectors.
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Figure 3.2: The two most common map lattice structures: (a) shows the simple rectangular

lattice; (b) shows the more commonly used hexagonal lattice. In both diagrams, circles repre-

sent neurons, while lines link neighboring neurons. The first integer within a circle denotes the

row coordinate of the neuron in question, while the second signifies the column coordinate.
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Each neuron, nyx, on the map is connected to a weight vector (or codebook vector),

denoted ~wyx, where y is the row coordinate, and x is the column coordinate of the neuron.

Row and column coordinates both start at one. Each weight vector represents the cen-

troid of a cluster associated with its neuron. Each ~wyx is also I-dimensional (where I cor-

responds to the dimensionality of the map’s training vectors), and consists of continuous-

valued weight values, each denoted wyxv, such that ~wyx = (wyx1, wyx2, . . . , wyxI).

3.3 Stochastic SOM Training

Map training is the process whereby the weight vector values of every neuron on the

map are adjusted, so that the weights eventually approximate the distribution of the

input examples. The training process is iterative in nature, updating the weight vector

components that make up the map structure by means of a series of adjustments.

The standard SOM training algorithm performs a weight adjustment for each training

example. A single example presentation is called a training iteration. The current

iteration, t, takes on an initial value of 0, and increases by one after each training

vector triggers a weight update. Usually, training requires several passes through the

entire training set (called epochs). To avoid any bias based on example order, the set is

randomly shuffled before each epoch, making the algorithm stochastic in nature.

The process can be roughly categorized into three general tasks, namely initializa-

tion, weight adjustment and the evaluation of stopping criteria. Each of these tasks is

elaborated upon under Sections 3.3.1, 3.3.2, and 3.3.3, respectively. Section 3.3.4 briefly

discusses the possible approaches for handling data set classification attributes. Algo-

rithm 3.1 outlines the general training procedure of a SOM, in the form of pseudocode.

3.3.1 Initialization

Several training parameters, all of which are discussed in greater detail under Section 3.5,

affect the operation of the training process that is followed by the SOM. Therefore, as

a preparatory step performed before training commences, initialization of the SOM first

requires user-selected values to be assigned to each of these training parameters.
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Initialize a map of Y ×X neurons, and initialize the algorithmic training parameters

Set the current training iteration, t = 0

Begin the first training epoch, and randomly shuffle DT
repeat:

Select the next training vector, ~zs ∈ DT , where ~zs is unselected in the current epoch

Find the best matching unit (BMU) for ~zs, according to Equation (3.2)

for all weight vectors, ~wyx, in the map do

Update ~wyx according to Equation (3.3)

end for

Update the current training iteration, t = t+ 1

Update all parameter values that are dependent on t

If all ~zs ∈ DT have been selected during the current epoch, randomly shuffle DT
until at least one stopping criterion is met

Algorithm 3.1: Pseudocode of the standard stochastic SOM training algorithm.

Next, each weight vector’s constituent weights must be given initial values. There

are various possible methods for selecting these weight values, which include:

• The simplest approach gives each weight a uniform random value [146], constrained

to the corresponding attribute range [68]. Such weights do not resemble the training

data’s distribution, and require many adjustments, thus causing slow training.

• Another simple method sets weight vectors to uniformly randomly selected training

example values. Training is biased towards these data examples, and often converge

prematurely. Weights should thus be perturbed with small random values [68].

• It is possible to initialize weight vectors in an orderly fashion, relative to the prin-

cipal components that account for most of the training data variance [11, 146].

• Su et al devised an initialization technique that defines a weight hypercube large

enough to uniformly cover most of the training examples in the training set [231].

Algorithm 3.2 shows hypercube initialization, which was used in the experiments of

Chapter 8. Examples of hypercube and random initialization are compared in Figure 3.3.
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Set ~wY 1 = ~zs1 and ~w1X = ~zs2, where ‖~zs1 − ~zs2‖2 is maximal over DT
Set ~w11 = ~zs3, where ‖~zs1 − ~zs3‖2 + ‖~zs2 − ~zs3‖2 is maximal over DT
Set ~wYX = ~zs4, where ‖~zs1 − ~zs4‖2 + ‖~zs2 − ~zs4‖2 + ‖~zs3 − ~zs4‖2 is maximal over DT
for all column indices x ∈ {2, 3, . . . , X − 1} in the map do

Set ~w1x =
~w1X−~w11

X−1
· (x− 1) + ~w11 and ~wYx =

~wYX−~wY 1

X−1
· (x− 1) + ~wY 1

end for

for all row indices y ∈ {2, 3, . . . , Y − 1} in the map do

Set ~wy1 =
~wY 1−~w11

Y−1
· (y − 1) + ~w11 and ~wyX =

~wYX−~w1X

Y−1
· (y − 1) + ~w1X

for all column indices x ∈ {2, 3, . . . , X − 1} in the map do

Set ~wyx =
~wyX−~wy1
X−1

· (x− 1) + ~wy1

end for

end for

Algorithm 3.2: Pseudocode of the hypercube weight initialization algorithm.
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Figure 3.3: Weight initialization for two-dimensional data: (a) shows random initialization;

(b) shows hypercube initialization. Crosses show data, and dashes link adjacent weight vectors.

Both initializations are performed for the same randomly generated two-dimensional

data set. Figure 3.3 (a) shows random weight initialization, which clearly produces an

unordered initial map that will take longer to optimize. Figure 3.3 (b) shows the result

of the hypercube initialization, which is ordered and uniformly covers most of the data.
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3.3.2 Weight Adjustments

Each training example generates a series of adjustments to the weight vector components

associated with the neurons making up the map structure. The process followed during

each series of weight adjustments consists of two general steps, as follows:

Step 1: Determine the Best Matching Unit

Many of the operations related to a SOM, including training, are heavily based on a

distance measure. Although any feasible measure may be utilized, the Euclidean distance

is the most commonly used in practice, and is assumed throughout this dissertation. The

notation ‖·‖2 denotes the Euclidean norm. The Euclidean distance between two arbitrary

V -dimensional vectors is defined, using Euclidean norm notation, as follows:

‖~q1 − ~q2 ‖2 =

√√√√
V∑

p̂=1

(q1p̂ − q2p̂)2 (3.1)

where ~q1 and ~q2 are the two vectors, q1p̂ and q2p̂ are respectively the components at

position p̂ in vectors ~q1 and ~q2, and both ~q1 and ~q2 must contain V components.

The best matching unit (BMU) represents the neuron whose weight vector most

closely matches the current training vector in terms of Euclidean distance, as follows:

‖~zs − ~wba‖2 = min
∀yx

{
‖~zs − ~wyx‖2

}
(3.2)

where ~zs denotes the training vector, ~wba denotes the weight vector of the BMU at row

b and column a, and ~wyx denotes an arbitrary weight vector at row y and column x.

In the presence of missing attribute values, the distances are calculated using only the

available vector components in ~zs, and their corresponding weights in ~wyx.

Step 2: Update Weight Vectors

Once a BMU has been established for the current training example, a series of weight

adjustments must take place across the entire map. The intended effect of a single weight

adjustment is to move the weight vectors of the BMU and its neighboring neurons in

lattice space closer to the current training example, as illustrated in Figure 3.4. The
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x

BMU

Figure 3.4: The effect of a weight update on the best matching unit (BMU) and its neighbors

given a training example, denoted by x. Black and grey dots show weight vector positions

before and after the update, respectively. Figure adapted from the work of Simula et al [222].

weight adjustments are relative to the BMU, with the largest adjustment applied to the

BMU itself. Progressively smaller modifications take place the further neurons are from

the BMU on the map lattice, until the adjustments eventually become negligible.

Two important processes are observable during an iterative sequence of updates to

the weight vectors, which are performed during the training of a SOM:

• The area-based neuron updates create a smoothing effect on the map’s weight vec-

tors. This helps establish a locally ordered topological structure for the mapping,

where neighboring neurons adapt to have similar weight vector values.

• In a locally ordered topology, neighboring neurons have similar weight vectors.

These similar weights tend to result in the selection of neighboring BMUs for

training examples that are close to one another in the input space, resulting in

numerous similar updates in the same map area. These repeated updates further

aid the formation of local topological order, and will draw weight vectors into dense

groupings that mimic the probability density of the input space.

These two processes interact with one another, in order to preserve the two crucial

characteristics of the model built by a SOM, which were discussed in Section 3.1.2. The

overall effect is that of an “elastic net” of weight vectors that is stretched to fit over,

and approximately model, the data space [68]. It has been shown that, when allowed

sufficient training cycles, a SOM’s map structure will become locally ordered [146].
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It should be noted that the local ordering effect does not necessarily imply the exis-

tence of only single areas of homogeneous weight vectors within a map structure. It is

possible for several areas that contain similar BMUs to be formed during training.

In a globally ordered (or continuous) map, groups of similar weight vectors are local-

ized within only single areas of the map. Global order can be expected, given sufficient

training iterations and a globally ordered initial map (the hypercubical and principal

eigenvector methods mentioned in Section 3.3.1 produce such maps). Conversely, poor

initialization or premature training termination may produce an unordered map.

The magnitude of every update, at training iteration t, to the weight vectors associ-

ated with each neuron across the entire map, is expressed by the following:

~wyx(t+ 1) = ~wyx(t) + ∆~wyx(t) (3.3)

where ~wyx(t) denotes an arbitrary weight vector that is located at row y and column x of

the map at training iteration t, and ∆~wyx(t) is the change applied to this weight vector

at iteration t. The change to weight vector ~wyx is, in turn, defined as:

∆~wyx(t) =
(
∆wyx1(t),∆wyx2(t), . . . ,∆wyxI(t)

)
(3.4)

where ∆wyxv(t) denotes the update that is applied at training iteration t to wyxv, which

is weight component v of weight vector ~wyx. Finally, the change that is calculated for

an individual weight component is defined according to the equation:

∆wyxv(t) = hba,yx(t) ·
(
zsŵ − wyxv(t)

)
(3.5)

where zsŵ denotes the corresponding input parameter ŵ of ~zs (the training vector cur-

rently under consideration), and hba,yx is the so-called neighborhood function. The neigh-

borhood function determines the magnitude of the adjustment applied to each wyxv that

makes up ~wyx, and is relative to the BMU at row b and column a of the map.

In order to achieve the local topological weight vector grouping that Figure 3.4 il-

lustrates, hba,yx must be a function of the Euclidean distance, ‖cba − cyx‖2, between the

two-dimensional lattice coordinates of the BMU and the weight vector being updated

(respectively, cba and cyx). As the magnitude of ‖cba− cyx‖2 increases to a maximum for

the map dimensions (in other words, ~wyx is further from the BMU), hba,yx → 0.
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Any form of the neighborhood function is possible, as long as the above-mentioned

condition is maintained. Examples include the square or hexagonal “bubble” neighbor-

hoods [148]. Most often, however, a smooth Gaussian kernel is used, defined as:

hba,yx(t) = η(t) · exp

(
−‖cba − cyx‖

2
2

2 ·
(
σ(t)

)2

)
(3.6)

where η(t) denotes the so-called learning rate factor and σ(t) denotes the kernel width,

both at training iteration t. The nature of η(t) and σ(t) are discussed in detail under

Sections 3.5.2 and 3.5.3, respectively. Figure 3.5 visualizes a Gaussian kernel.

Weights can still be adapted in the presence of missing attribute values [210, 246], if

the values of all ∆wyxv that correspond to any missing zsŵ values are assumed to be 0.0.

Naturally, training becomes less accurate in the presence of many missing values.

Several attempts have been made to describe the dynamics of SOM training mathe-

matically [42, 44, 81], highlighting that SOMs pose many challenges to theoretical anal-

ysis. SOM dynamics is not a focus of this dissertation, and is not discussed further.

3.3.3 Stopping Criteria

A condition is required to indicate that SOM training is to terminate. Convergence is the

point where the learning process stabilizes, and the map’s structure ceases to improve.

Because SOM performance is dictated by the map structure, performance also stabilizes

at this point. Stopping criteria should thus indicate when a SOM has converged.

The stopping criteria for stochastic training that are identified by this dissertation

are broadly categorized as being based on either the number of training iterations, the

network training error, the network weight changes, or the network’s topological error.

Each category is elaborated upon under a separate heading within this section.

While every SOM must have at least one stopping criterion, implementations typi-

cally combine several criteria using Boolean connectives. Such combinations allow, for

example, training to stop upon the satisfaction of only one of several criteria, thus en-

suring timely termination if any criterion has been specified too strictly. In a similar

fashion, it is possible to terminate training only when multiple criteria are satisfied, thus

ensuring that a map has a combination of several characteristics upon the termination of

training (for example, both an optimal training and topological error can be enforced).
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Figure 3.5: A three-dimensional visualization of a smooth Gaussian kernel. The height of the

graph denotes the magnitude of the weight adjustment at varying distances from the BMU.

The highest point, at the center of the graph, is the location of the BMU.

3.3.3.1 Training Iteration Limit

Training may cease after a maximum number of training iterations has been exceeded.

However, convergence occurs at varying rates for different problems, meaning that this

criterion is not normally sufficient on its own. Therefore, an iteration limit is typically

used in combination with other criteria. Such a limit ensures algorithm termination in

the event that the SOM does not converge in a reasonable number of iterations.

3.3.3.2 Training Error

It is possible to use a measure of a map’s training accuracy to decide when to terminate

the algorithm. Usually average training quantization error is used (although a weighted

variant [148] is less frequently employed). The average training quantization error is

defined in terms of the Euclidean distances between each training vector and the BMU

that is associated with that training vector, and is calculated as follows:

QT (t) =
1

PT
·
PT∑

p=1

‖~zs − ~wba(t)‖2 (3.7)

where ~wba is the weight vector of the BMU calculated for the training vector ~zs, and t is

the training iteration for which the training quantization error is calculated.

The average quantization error typically starts at a relatively high level, and asymp-

totically approaches a problem-dependent convergence level as training continues. Fig-

ure 3.6 (a) shows an example of training error variations over several training iterations.
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Figure 3.6: A typical change in training quantization error measures as training iterations

progress: (a) compares the raw training error and its moving average over a 30-iteration window;

(b) shows the training error’s sample standard deviation, also over a 30-iteration window.

Three ways of using the training quantization error as a stopping criterion exist: the

first using the level of the training error itself, the second using the decrease in training

error, and the third utilizing the sample standard deviation of the training error.

A SOM achieving a minimal quantization error indicates that all the weight vectors

represent optimal centroids for their respective clusters of training examples. Training

can stop once QT is sufficiently small. Unfortunately, because the error becomes asymp-

totic at varying levels depending on the nature of the modeled data, it is very difficult

(if not impossible) to specify a good generic threshold value for such a condition.

A minimum decrease in quantization error from the previous training iteration to the

current one indicates that training is not improving the network appreciably. However,

training error fluctuations (with temporary plateaus or increases) may prematurely sat-

isfy this criterion. To solve this problem, a training error moving average at iteration t,

over a sliding window of the last W measurements, smooths these fluctuations:

QT (t) =
1

W
·
W−1∑

t̂=0

QT ( t− t̂ ) if t ≥ W− 1 (3.8)

where t̂ is an offset from the end of the sliding window and QT ( t− t̂ ) is the average train-

ing quantization error at iteration t− t̂. At least W training iterations must be completed

before calculating the moving average. Once QT (t− 1)−QT (t) ≈ 0, training stops. The
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fluctuation level of QT determines the appropriate W value, where less severe fluctuations

use a smaller W, and more drastic fluctuations need a larger W. Figure 3.6 (a) illustrates

the smoothing effect produced by the moving average of the training error.

The sample standard deviation of the training quantization error, which is also calcu-

lated over a sliding window of the previous W training iterations, indicates the degree of

fluctuation in training error over time. As the learning process begins to stagnate, and

the network’s structure begins to change less, this fluctuation decreases. The sample

standard deviation of the training quantization error, at iteration t, is calculated as:

dT (t) =

√√√√ 1

W− 1
·
W−1∑

t̂=0

(
QT ( t− t̂ )−QT (t)

)2

if t ≥ W− 1 (3.9)

where QT ( t− t̂ ) is the average training quantization error at iteration t− t̂, and QT (t)

is the moving average of QT . The moving average is calculated over the same sliding

window size that was selected for the standard deviation, using Equation (3.8). As is

the case for the training error moving average, at least W training iterations must have

passed. The network is considered to have converged when dT (t) ≈ 0, meaning that map

training should cease. An example of this convergence effect is shown in Figure 3.6 (b).

3.3.3.3 Weight Change

The average component weight change indicates to what overall degree the weight vectors

across the map have been adapted during a specific training iteration. The measure

represents the mean of the change applied during a training iteration to each weight

vector component across every neuron making up a map, and is computed as follows:

∆wave(t) =
1

Y ×X × I ·
K,J∑

k,j=1

I∑

i=1

|∆wyxv(t)| (3.10)

where |∆wyxv(t)| is the absolute value of the update to vector component v of weight

vector ~wyx, at training iteration t. When small weight modifications occur across the

map, it indicates that the map structure is not being changed a great deal, and that

training has stagnated. Therefore, when ∆wave(t) ≈ 0, the SOM has converged.
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3.3.3.4 Topological Error

Finally, it is possible to use a measure of the error in map topology as an indicator for

training termination. Such a measure sets out to quantify how well a map preserves

the topological structure of the input space. The definition of topological error is still

open to debate [146], and a very large number of topological error measures exist [183].

Topological error is thus not a focus of this work. Due to the proliferation of measures

in this category, this section only briefly overviews the most common approaches.

The topographic product [14], tests how well the distances between neighboring neu-

rons in map space and weight space correlate. For a neuron, nyx, the ratio of ‖cyx−c ′yx‖2

to ‖cyx − c ′′yx‖2 is computed, where c ′yx is the map coordinate of the ôth closest neuron

to nyx in map space, and c ′′yx is the map coordinate of the ôth closest neuron to nyx in

weight space. The ratio of ‖~wyx − ~w ′yx‖2 to ‖~wyx − ~w ′′yx‖2 is also computed, where ~w ′yx

is the weight vector of the ôth closest neuron to nyx in map space, and ~w ′′yx is the weight

vector of the ôth closest neuron to nyx in weight space. The ratios are calculated per

neuron for a specified value of ô, and combined into a normalized value that is averaged

over all neurons. Values closer to 1.0 indicate better topological structure.

The geometrical organization measure [277] considers every pair of neighboring neu-

rons. A neuron’s Voronoi region is the portion of weight space that is closer to the

neuron’s weight vector than to any other weight vector. For a pair of neighboring neu-

rons, an “intruder” is defined as any neuron with a Voronoi region that intersects with a

straight line between the pair. The final measure is the total of the number of intruders

across all pairs of neighboring neurons on the map, where higher values indicate a poorer

preservation of topological structure. This measure can also be normalized according to

the size and topology of the SOM’s grid, to facilitate comparisons between maps.

The topographic error [138] is another measure, which calculates the number of local

topographic errors for every training vector, ~zs, in a data set. To identify local topo-

graphic errors, the BMU and second best matching neuron are determined for each ~zs.

If these two neurons are not adjacent, a local topographic error has occurred. The final

topographic error is the total number of local topographic errors over every example in

the training set, normalized by the number of training vectors in the set. A higher value

denotes poor topology, while a lower value indicates better topographical structure.
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Villman et al [262] propose the topographic function. For each neuron, the measure

determines a receptive field, which is the set of training examples that are closer to the

neuron’s weight vector than to all other weight vectors. For every neuron, nyx, a term

is calculated in relation to a specified threshold value. For positive threshold values, the

term is the number of neurons that have receptive fields directly adjacent to the receptive

field of nyx, while being separated from nyx in map space by more than the threshold. For

negative threshold values, the term is the number of neurons that are directly adjacent

to nyx in map space, with receptive fields separated by more than the absolute value of

the threshold. The value of the topographic function for positive or negative thresholds

is the mean value of the terms for all neurons on the map. For a threshold value of 1.0,

the topographic function is the sum of the term’s value for a threshold of 1.0 and −1.0,

respectively. The topographic function is then computed for a range of threshold values.

The largest absolute value of a threshold that produces a topographic function value not

equal to 0.0 gives the degree of topographical disorganization in the map.

Polani [183] overviews a large number of alternate topological error measures devel-

oped before 2002, although the above-mentioned approaches remain the most commonly

cited and used. Many measures have been proposed since Polani’s work. A small sample

includes measures proposed by De Bodt et al [49], Vesanto et al [261], Hetel et al [106],

Vegas-Azcárate et al [249], Molle and Claussen [173], and Zhang [272]. These measures

are not widely cited in the literature and are thus not described in detail.

It should be noted that topological error alone is unsuitable for use as a stopping

condition. This is because topological order does not necessarily imply an accurate data

model. For instance, an untrained map that has been initialized in an ordered fashion (for

example, using the principal component or hypercube initialization approaches discussed

in Section 3.3.1) is generally not yet an accurate model of the training data, but has a

well ordered structure. As a consequence, a stopping condition based on the previously

described topological error measures should always be paired with at least one condition

that represents either the map’s training error, or weight change stagnation.

Another approach to basing a stopping condition on both topological error and quan-

tization error is to combine the two into a unified measure. One such measure, proposed

by Kaski and Lagus [132], iterates through every training vector, ~zs, and computes the
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distance of a two-part path. The first part of the path runs from ~zs directly to the BMU

of ~zs. The second part of the path connects the BMU of ~zs to the weight vector that is

the second closest to ~zs, taking the shortest route that only transits through the weight

vectors of neighboring neurons. The final value of the error measure is the sum of this

distance for all ~zs in the training set, where lower values indicate either better training

error or topological structure. Because it is impossible to determine whether high errors

are as a result of training error or topological error, a separate stopping condition for

each type of error would be preferred when more detailed feedback is desired.

Unfortunately, it is unclear which topological error measure is the best suited in

practice [146]. Each measure will also vary differently as training progresses, which

means that stopping conditions based on different measures would have to be customized.

Topological error measures are thus less commonly used as SOM stopping conditions.

3.3.4 Handling Classification Attributes

Although the stochastic SOM algorithm described above is unsupervised in nature, the

literature identifies three ways in which the algorithm can handle classification attributes:

• A purely unsupervised SOM [146] uses no example classifications at all in its struc-

ture, or during training. All ~zs and ~wyx include only descriptive attributes. Classi-

fication attributes are only used to add meaning through post-processing (e.g., map

visualization or neuron labeling, covered in Chapters 4 and 6, respectively).

• A supervised SOM [146] includes classification attributes in each ~zs and ~wyx, and

uses these attributes throughout training. This approach is named somewhat mis-

leadingly, because such SOMs only treat example classification as an additional

data dimension to be approximated, and are not true supervised ANNs.

• Semi-supervised SOMs [139] include classification attributes in every ~zs and ~wyx.

However, these attributes are not used in Equation (3.2) to find the BMU, but are

used for the weight vector update of Equation (3.4). The SOM thus learns the

classification attribute distribution, without biasing the learning process.

The purely unsupervised method is more common within the literature, while the two

last-mentioned approaches are less prevalent, and thus not focused on within this work.
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3.4 Emergence in SOMs

In situations where sufficient neurons constitute a map, a SOM may exhibit emergent

characteristics [241]. The general concept of emergence is discussed in Section 3.4.1,

while the requirements for, and characteristics of non-emergent and emergent SOMs are

elaborated upon within Sections 3.4.2 and 3.4.3, respectively. Section 3.4.4 discusses the

notion of interpolating units, which are closely associated with emergent SOMs.

3.4.1 Emergent Systems

Various complex systems exist, which consist of many elementary processes interacting

with one another. While the behavior of these elementary processes is not very complex,

new higher level phenomena may become visible. The appearance of such phenomena is

termed emergence [126, 232]. Emergent systems may be natural (e.g., cloud formations,

bacterial colonies, and even crowds of people) or man-made (e.g., lasers and masers).

3.4.2 Non-Emergent Feature Maps

Because each neuron’s weight vector is the centroid for a group of input examples, there

is a lower bound on the number of map neurons. This bound is the number of linearly

independent training set examples, which is an expression of the number of clusters in the

data set. SOMs with this minimum number of neurons are called non-emergent feature

maps, and their clustering behavior is similar to that of k-means clustering [80, 240].

3.4.3 Emergent Feature Maps

SOMs that display emergent behavior are referred to as emergent feature maps [80, 241],

and require many more neurons than the number of expected clusters (the implied lower

bound on the number of neurons). An implied upper bound on the number of neurons is

PT , the number of training examples. A greater number guarantees neurons that cluster

no examples, and negates some of the complexity reduction discussed in Section 3.1.2.

This particularly hampers SOM-based DM, which is discussed in Chapter 7. Generally,

a problem dependent optimal upper bound, βPT , exists [68], where β ∈ (0, 1].
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In emergent feature maps, dense macro-level groups of neurons (called emergent

clusters) may form. Emergent clusters have the following general characteristics:

• Weight vectors within clusters tend to be mutually similar, while weight vectors

from different clusters tend to vary. Therefore, inter-vector distances within clus-

ters tend to be smaller, while those between clusters are typically larger [244].

• A high absolute number of data examples from the training data set, or a set with

similar characteristics, tend to have BMUs within emergent clusters. Very few

examples tend to fall in the boundaries between clusters [274].

• Data examples with similar characteristics, which usually also have similar classi-

fications, tend to have BMUs within the same clusters. Data examples that have

BMUs in different clusters tend to have dissimilar characteristics.

Emergent clusters have characteristics that differ from, and are often superior to,

classical clustering methods [240]. Advantages offered by emergent SOMs include:

• The shapes of emergent clusters are often relatively complex in contrast to the

often convex clusters that are discovered by classical clustering algorithms [222].

• Emergent clusters represent a faithful model of the input data, because no biased

domain knowledge (such as the number of desired clusters) is required.

• They tend to be robust in the face of noisy data. Their performance degradation

due to such noise is typically more graceful than that of other CI algorithms.

• Typically, outliers (noisy training examples differing greatly from the overall data

distribution) affect very few neurons, not changing the map’s overall model.

• Emergent SOMs even tend to perform adequately when trained on incomplete data

sets, within which attribute values are missing from training set examples.

These characteristics are all very advantageous in the context of EDA and DM exercises,

and emergent feature maps are almost exclusively used in practical settings. As a result,

emergent feature maps are assumed for the remainder of this dissertation.
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Global ordering of a trained SOM was discussed in Section 3.1.2. In emergent feature

maps, global ordering is observable when each set of homogeneous weight vectors occupies

only a single emergent cluster. Such emergent clusters make map interpretation easier.

3.4.4 Interpolating Units

Another phenomenon that is associated with emergent feature maps is the presence of

interpolating units [185]. Interpolating units constitute a special category of map neuron,

where the associated weight vector of each interpolating unit is positioned far from all

the other neurons making up the map grid, including other interpolating units.

Interpolating units usually do not constitute the BMU of any data examples contained

within the training data set. This is also generally the case for any other data examples

that are selected from the same distribution as the original training data. Interpolating

units are typically located between emergent clusters, and are responsible for producing

a smooth transition between emergent clusters. As a result of these characteristics,

interpolating units also delineate boundaries that surround emergent clusters.

It is also important to note that interpolating units do not model any part of the

original training data distribution. In this sense, therefore, interpolating units constitute

a type of noise that is introduced into the data model represented by a SOM grid.

3.5 Training Parameters

Given the SOM’s structure and training, several parameters affect performance. The

relevant parameters can be grouped into those affecting map dimensions, those related

to the learning rate, and those that affect the neighborhood radius. All parameters must

be optimally set before training, and are elaborated on under Sections 3.5.1 to 3.5.3.

3.5.1 Map Dimensions

The number of rows, Y , and columns, X, of the SOM clearly affect the map shape.

For example, a rectangular map is often preferable for visual interpretation [146]. More

importantly, however, these parameters change the number of neurons in the map.
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The number of neurons has implications for SOM training [68, 200]. Too few neurons

produce poorly performing maps, with high inter-neuron variance within emergent clus-

ters. Maps with too many neurons are highly time complex, and have many redundant

neurons that do not model the training data, and to which no data examples map.

Section 3.4.3 introduced theoretical upper and lower bounds on the number of map

neurons, and thus Y and X. However, optimal values are normally found by means of

trial and error or an exhaustive search. It is also possible to use one of the growing SOM

techniques discussed in Section 3.7, in order to adaptively find a good balance.

3.5.2 Learning Rate

Assuming that the neighborhood function is a Gaussian kernel, the learning rate, η(t),

adjusts the height of the kernel, and thus the size of the weight adjustments across the

map. If a SOM is thought of as performing an optimization within an error space as it

trains, η(t) is proportional to the size of “jumps” taken through the error space.

A large value for η(t) results in a higher kernel, and thus larger weight adjustments

per iteration. Conversely, a lower η(t) value produces a shallower kernel, and a smaller

weight adjustment each iteration. This is shown comparatively in Figure 3.7 (a) and (b).

It should be noted that the area of the map affected by an update is not changed.

A high η(t) value causes rapid learning as weight vectors are quickly pulled into

a crude approximation of input data’s form, but finer map structure adjustments are

not made, and an optimally performing map may be “overshot”. A lower η(t) causes

less drastic adjustments, thus fine-tuning the map structure. Training will take many

iterations, however, because the size of each weight adjustment is small.

For the SOM to converge, it is necessary that hba,yx → 0 as t→∞ [146]. It is clear

that η(t) affects the magnitude of hba,yx. This means that η(t) should be a monotonically

decreasing function of t, resulting in a map that trains quickly initially, but is refined

once an initial structure is found. An exponential decay function [211] may be used:

η(t) = η(0) · e−t/τ1 (3.11)

where η(0) denotes an initial learning rate which a large value, t denotes the current

training iteration of the weight optimization procedure, and τ1 is a positive constant.
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(a) (b) (c)

Figure 3.7: The general effect of parameter values on the shape of the smooth Gaussian

kernel: (a) shows the original kernel; (b) shows the original kernel with a reduced learning

rate; (c) shows the original kernel with a reduced kernel width.

The value taken on by τ1 constitutes yet another parameter value that must be set before

training commences. A larger value for τ1 results in a slower rate of decay for the learning

rate, while a smaller value conversely causes a faster decay rate. The form of this decay

function, and the effect of a modification to τ1, are shown in Figure 3.8 (a).

3.5.3 Neighborhood Radius

When a smooth Gaussian kernel is used as a neighborhood function, the value of the

kernel width, σ(t), modifies the radius of the neighborhood. The kernel width affects the

area around the BMU over which a weight vector update is effective, and consequently

the number of weight vectors that are modified with each training step.

A higher value for σ(t) results in a wider kernel. This causes a larger number of

weight vectors to be affected by a weight update step. Conversely, a lower σ(t) value

results in a narrower kernel, and a tighter area of effect on fewer map weight vectors.

Figure 3.7 (a) and (c) illustrate the comparative effect this value has. It is important to

note that the extent of the map area affected by an update is not adapted.

A larger σ(t) value causes many weight vectors to be pulled into a rough cluster

grouping. As a result, clustering takes place quickly as training progresses, but forms

groupings that are relatively unrefined in structure. A smaller value for σ(t) conversely

causes the effect of a weight update to be localized to a very small part of a larger cluster,

therefore modifying the finer structure of the map. These finer-grained updates are not

ideal for the formation of initial clusters, however, because the overall cluster structure

would appear only after a large number of weight adjustments have taken place.
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Figure 3.8: Exponential training parameter decay functions: (a) shows learning rate decay,

with varying τ1 values; (b) shows kernel width decay, with varying τ2 values.

As was the case for the learning rate discussed in the previous section, σ(t) must

also be a monotonically decreasing function of t, in order to ensure convergence of the

map. This results in the quick formation of rough clusters, before their finer structure

is refined over time. It is possible to use the following decay function [211]:

σ(t) = σ(0) · e−t/τ2 (3.12)

where σ(0) is a large initial kernel width, t is the current training iteration, and τ2

is a positive constant. The value of τ2 is also a parameter that is specified prior to

training, where a larger τ2 value gives a slower decay. Equation (3.12) is an exponential

decay function, with the same general form as Equation (3.11). The kernel width decay

function’s shape, and the effect of a τ2 modification, are shown in Figure 3.8 (b).

3.6 Factors Affecting SOM Model Accuracy

The data model embodied in a trained SOM is considered accurate if the weight vectors

making up the map structure closely mimic the characteristics of the underlying training

data. It is possible to measure aspects of model accuracy in two ways: firstly by means of

the training quantization error defined in Equation (3.7), and secondly using one of the

topological error measures discussed in Section 3.3.3.4. This section focuses on several

factors that have an influence on the final accuracy of a SOM-based data model.



Chapter 3. Self-Organizing Feature Maps 51

The first factor affecting SOM model accuracy is the configuration of the parameters

outlined in the previous section, namely the map dimensions, the initial learning rate and

neighborhood radius, and the decay constants for the learning rate and neighborhood

radius. The optimal settings for these parameters are problem dependent, and must

therefore be optimized prior to using the SOM model in any way. Several approaches to

parameter optimization are possible, all of which require repeated simulations on either

the full training data set or a representative subset thereof. Section 8.3.4 outlines the

parameter optimization procedure that was followed during the reported experimental

work, and which involved all the previously discussed SOM parameters.

The map size has a particularly important effect on SOM model accuracy. This

is because a map that is too small for the training data set has fewer neurons, which

requires each weight vector to serve as a centroid for a larger number of data examples.

Because these data example sets will be less homogeneous, they will be less accurately

represented by their BMUs, and map quantization error will increase.

Finally, the “curse of dimensionality” [16, 19, 216] poses several problems for high-

dimensional data. For a fixed training set size, the predictive power of a learned model

drops as data dimensions increase [115]. The characteristics of low-dimensional and very

high-dimensional data spaces also often differ [59]. Many distance measures (particularly

Euclidean distance) behave unexpectedly when used in a variety of very high-dimensional

data distributions [2]. In such cases, the ratio of the distances between a point and its

nearest and furthest neighbors approaches unity, and the differences between inter-point

distances becomes less meaningful. Algorithms based on inter-point distance measures

(such as the SOM) suffer when distance measures become impaired in this way.

3.7 Variations on the Stochastic SOM

While this dissertation focuses on the basic stochastic SOM, a number of variations and

improvements to the algorithm have been proposed. This section elaborates on the most

important of these variations. Each of these approaches is based on the premise and

architecture of the stochastic SOM, but modifies or extends an aspect of the approach in

some way. Section 3.7.1 discusses the neural gas algorithm, while Section 3.7.2 describes
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batch training of maps. Growing map implementations are covered in Section 3.7.3, while

Section 3.7.4 outlines clipping of the neighborhood function. Section 3.7.5 investigates

optimized BMU searches, and Section 3.7.6 describes competitive learning using multiple

SOMs. Finally, Section 3.7.7 overviews hardware-based SOM implementations.

3.7.1 Neural Gas

The neural gas method [165] is closely related to the stochastic SOM, but training is

not constrained by the lattice topology. The weight update equations are very similar to

those in Section 3.3. However, while the standard neighborhood function is computed

using the distance between cyx and cba in map space, the neural gas neighborhood is a

function of the number of weight vectors closer to ~zs than ~wyx. The map topology also

develops during training, with neighborhoods of adjacent neurons adaptively forming

and breaking down. This is achieved by connecting the two weight vectors closest to the

current ~zs, and progressively weakening the connections that are not renewed.

3.7.2 Batch Training

A batch map [146] differs from a stochastic map in that weight values are not updated

after every learning iteration, but are instead updated only after all training examples

have been presented. This results in much faster training, because the cost of complex

weight updates at the end of each iteration is reduced to a single update every epoch.

Additionally, it has been observed that it is possible for a stochastic SOM to repeatedly

un-learn and re-learn useful data set characteristics. These counter-productive weight

vector adjustments are subsumed into a single update step by the batch map.

3.7.3 Growing Maps

One of the major problems when training a SOM is that the optimal size of the map,

described in terms of the Y and X parameters, is not known a priori. A growing map

implementation solves this problem by using an initially small map, and incrementally

increasing the map size. The simplest approach adds entire rows or columns of neurons to

a rectangular map, thus maintaining the regularity of the map structure. More complex
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approaches add individual neurons, which lead to irregular map topologies. Finally, it is

also possible for maps to grow in complex hierarchical structures, where parts of maps

are expanded into sub-maps. In the last-mentioned case, it is naturally possible for the

sub-maps to take on either regular or irregular topological structures.

The most common growing approach that maintains a regular grid structure is the

growing grid [86]. The technique maintains a count per neuron, which represents the

number of times the neuron has been a BMU. After a number of training iterations

proportional to the number of neurons in the map grid, the neuron with the highest

count is chosen. The neighboring neuron with a weight vector furthest from the weight

vector of the neuron with the highest count is chosen, and a row or column is inserted

between the two neurons. The newly inserted row or column weight vector values are

interpolated from their neighboring row or column weight vectors, respectively. The

map grid continues to grow until either a maximum number of neurons is reached, or

the number of training examples per neuron drops below a certain threshold.

The growing hierarchical SOM [203] maintains a regular lattice structure, but builds a

hierarchical structure of connected sub-maps. A top-level neuron, initialized to the mean

of the training data set, is the root of the recursively defined hierarchy of sub-maps. A

new sub-map of 2× 2 neurons is created under the root neuron. Normal SOM training

proceeds in cycles of a fixed number of iterations on all sub-maps in which the mean

quantization error over all BMU neurons is at least a chosen fraction of the quantization

error of the sub-map’s parent neuron. After a training cycle, the neuron with the highest

quantization error in relation to its mapped training examples is selected, and a new row

or column (with weights interpolated from neighboring rows or columns, respectively) is

grown between the selected neuron and its most distant neighbor in weight space. Once

training and growing has ceased for a sub-map, new sub-maps are created as children

of any neurons for which the quantization error is at least a pre-defined fraction of the

quantization error of the root neuron. Sub-maps are initialized relative to the neighbors

of the parent neuron, and train on the data examples mapped to the parent.

Several more complex approaches exist for growing irregular two-dimensional maps

through the addition of individual neurons to map lattices. Such maps are still relatively

straightforward to represent and understand, but the connections in the lattices tend to
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directly represent emergent clusters in the training data space. The most commonly

used techniques that fall within this category include the following:

• Incremental grid growing [20] begins with four neurons connected in a rectangular

lattice. Each neuron has an error value that is updated whenever the neuron is

a BMU, by the square of the distance between the BMU weight vector and the

training example under consideration. After a fixed number of training iterations,

the border neuron with the highest error value grows neurons in all unoccupied

neighboring lattice positions. Connections are created between non-neighboring

neurons that are sufficiently close to one another in weight space. Neurons that

are connected, but are far from one another in weight space, are disconnected.

• The growing SOM [4] begins with a four-neuron square grid. The neighborhood is

clipped to only the BMU and directly adjacent neurons, and the learning rate is

linked to the number of neurons in the map. An error value is associated with each

neuron, to which the difference between the current training example and the neu-

ron weight vector is added each time the neuron is a BMU. When a neuron error

value exceeds a growth threshold and the neuron is on the grid boundary, neurons

are added in every available neighboring position, otherwise the neuron weights are

distributed to the neighbors of the neuron. New neuron weight vectors are initial-

ized to maintain the local order of the weight vectors around their parent neuron.

Periodically during map growing, the learning rate must be reset and redundant

neurons must be pruned. After a period of map growing, a smoothing phase is

entered, during which no additional neurons are added and the map stabilizes.

• The high-dimensional growing self-organizing map [7] extends the growing SOM

method. Growth is preceded by a calibration phase of several epochs, in which

only BMUs are trained. Training continues during the map growing phase, with

the neighborhood including only the BMU and BMU neighbors (as in the growing

SOM). A modified growth threshold, which decreases over time to the highest

neuron error value recorded in the calibration phase, avoids growth inhibitions or

map structure anomalies intrinsic to the growing SOM. Two smoothing phases are

used, the first with larger learning rate and kernel width values than the second.
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Adaptive hierarchical incremental grid growing [169] is similar to the previously dis-

cussed growing hierarchical SOM technique, but uses incremental grid growing to train

irregular sub-map lattices. Sub-map weight vectors are random perturbations of the par-

ent neuron weight vector. The neighborhood function uses connectivity between neurons,

rather than simple map space Euclidean distance. Furthermore, there is a fine-tuning

phase of training after map grid growing has ceased and before sub-trees are generated.

During the fine-tuning phase the neighborhood only includes the BMU.

It is also possible to grow irregular lattices that are multi-dimensional. Such maps

are intrinsically difficult to represent and interpret, and are therefore less commonly used

(particularly for EDA purposes). Techniques in this category include the following:

• The growing cell structures method [85] initializes a simplex of neurons in a cho-

sen dimensionality. Neurons have continuous valued counters, indicating either

how many times each neuron has been a BMU during training, or the cumulative

quantization error of BMU matches. Counters decay after each training iteration,

and are normalized in relation to all counters across the map. Periodic neuron

insertions ensure that the network topology still consists of only simplices with the

initially chosen dimensionality. An insertion occurs between the neuron with the

highest normalized counter and that neuron’s furthest neighbor in weight space.

The counters of the three neurons involved in the insertion are then re-computed.

Local estimates of the data space probability density function around weight vec-

tors are made at intervals, and neurons with low estimates are pruned.

• The hypercubical growing SOM [15] starts with two neighboring neurons, and

periodically either adds a neuron in one of the existing lattice dimensions, or adds

neurons to form a new lattice dimension. For each neuron, the reconstruction error

of the receptive field is computed, given the neuron’s weight vector, and the error is

decomposed along the possible dimensions of growth. Growth then takes place in

the dimension with the largest average normalized error coefficient over all training

examples. Growing ends once the map contains a specified number of neurons.

Finally, it is also possible to apply similar concepts of network growing to the neural

gas algorithm that was discussed in Section 3.7.1. The growing neural gas technique [87]
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extends the neural gas algorithm, by allowing the number of neurons in the network to

increases as training progresses. The growing neural gas and growing hierarchical SOM

approaches have also been combined to form the dynamic adaptive self-organizing hybrid

model [117], which allows hierarchical growing of neural gas networks. This model was

developed for text clustering, but is general enough for broader application.

3.7.4 Neighborhood Clipping

Another optimization that can be applied to the SOM training procedure is based on

clipping the Gaussian neighborhood at a certain deviation from the mean of the neighbor-

hood’s kernel [68]. This optimization is possible because, while weight vector updates

occur across the entire map, only those in the vicinity of the BMU have an impor-

tant effect. Conversely, weight vector adjustments that occur very far from the BMU

tend to be minor, and have a negligible effect. Neighborhood clipping will result in no

weight adjustments beyond a certain threshold distance from each BMU, and improves

performance because of the elimination of unimportant updates to weight vectors.

3.7.5 Optimized BMU Searches

Variations on the search for the BMU are also possible. Shortcut BMU search approaches

aim to reduce the computational complexity of the SOM training algorithm by eliminat-

ing a number of the distance comparisons that are used to find a BMU.

Kohonen et al [149] propose limiting the search to the neighborhood of the previous

BMU for the training example in question. This approach affects the weight updates

only slightly, because a SOM maintains the topological structure of the input space,

thus increasing the likelihood that the current BMU of a training example will be in the

general vicinity of the previous BMU for the same training data example.

Another BMU search optimization, developed by Kaski [129], divides the map neu-

rons into nested subsets. A tree-like search is performed when a BMU must be deter-

mined, starting with the largest sets and focusing on successively smaller contained sets.

This approach is still guaranteed to find the correct BMU, but eliminates a large number

of distance comparisons that are likely to be fruitless, thus speeding the search up.
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3.7.6 Competitive Learning

It is possible to use multiple SOMs in conjunction with one another [33]. In such a

case the learning procedure becomes a competitive process between the SOM networks,

and each map approximates a subset of the training data. As a result of the complex

interactions between such networks, interpretation becomes more difficult.

3.7.7 Hardware Implementations

In addition to the above basic variations, the reader’s attention should be drawn to a

number of hardware-based implementations of the SOM. Figure 3.9 shows an example

of such a hardware-based SOM implementation, namely the NBISOM 25 chip [208].

Hardware-based solutions are usually intended for application in very high-performance,

real-time environments, which are not typical within an EDA or DM setting. Such

implementations are thus of little interest in the context of this research, although a

good overview of related work is given in Kohonen’s summarizing text [146].

3.8 Summary

This chapter examined a variety of important aspects relating to the SOM (or self-

organizing feature map) algorithm. Section 3.1 gave a brief overview of the conceptual

underpinnings of the algorithm, namely the self-organizing structures of the human brain.

Section 3.2 laid out the data structure architecture that is required by the algorithm. Sec-

tion 3.3 discussed the phases of the stochastic training algorithm, namely initialization,

weight adjustment and training termination. Section 3.4 outlined the basic concept un-

derlying emergent systems, and described the characteristics of emergent feature maps,

as well as the requirements for the formation of emergent feature maps. Section 3.5

looked at the parameters of the stochastic algorithm, which include the dimensions of

the map structure, the learning rate, the neighborhood radius, and decay constants for

the learning rate and neighborhood radius. Section 3.6 investigated factors that affect

the final accuracy of a trained SOM. Finally, Section 3.7 discussed some of the most

important variations on the standard stochastic SOM algorithm and architecture.
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Figure 3.9: The NBISOM 25 chip, an example of a hardware-based implementation of the

SOM algorithm. Image and permission for reproduction provided by Dr. Mario Porrmann.

The following chapter considers the most important classes of techniques that are

available for visualizing a SOM’s map structure. These methods visualize the data

model represented by a trained SOM and, by implication, also represent the training

data set that the visualized SOM is based on. Examples of specific techniques are also

discussed. In addition, an outline is provided of the general types of SOM-based EDA.



Chapter 4

SOM-Based Visualization and

Exploratory Data Analysis

The previous chapter discussed the SOM algorithm in detail. This chapter focuses on

methods for visualizing SOM structure. Because EDA focus on visual representation

and interpretation, the main categories of SOM-based EDA are also outlined.

Because SOMs are widely used for visual data exploration, there are a vast number

of SOM-based visualization and EDA methods. This chapter therefore covers only very

common techniques and those related to the discussions in Chapters 5, 6, and 7.

Section 4.1 outlines traditional data visualization. Section 4.2 introduces the phi-

losophy underlying SOM-based visualization. Sections 4.3 and 4.4 respectively discuss

grid-based and irregular representations for SOM maps. Section 4.5 briefly considers

SOM-based EDA. Finally, Section 4.6 provides a summary of the chapter.

4.1 Traditional Data Visualization

Data visualization aims to provide mechanisms for the accurate visual representation of

data sets. Due to unstructured data’s complexity, data visualization usually assumes

table-based structured data sets, which are described in Section 2.1.1.2.

Traditionally, the field of data visualization uses information visualization techniques,

each of which is a computer-based method of visually representing abstract data [27]. In

59
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general, these methods represent each tuple as a mark on a visual display. Each mark,

in turn, has several visual dimensions. A visual dimension is any visual feature that can

be mapped to an attribute value’s numeric magnitude. Possible visual features include

textual labels, color or grayscale values, point size, and shape. Some common traditional

information visualizations are scatter plots, line charts, and bar graphs.

As database volume and dimensionality has increased, information visualization has

focused more on managing data set complexity. Data sets with huge numbers of tuples

or tuple dimensions cause several problems for traditional visualization methods:

• The computational complexity of the visualization can become problematic. Some

complex techniques may even become unusable if they exceed the available com-

putational resources, such as primary memory.

• Visualizations of many tuples can become too dense to interpret easily, due to the

resultant proliferation of visual marks that can overlap and obscure one another.

This is particularly problematic if the visualization’s space is limited.

• High dimensional tuples can be problematic, because most traditional data visual-

izations can represent only a limited number of dimensions. Multiple visualizations

may therefore be needed to represent an entire data set.

Some contemporary information visualizations, such as RadVis [110], attempt to solve

one or more of these problems in various ways. However, a more general solution is

to reduce the overall complexity of the represented data. Visualizations using nonlinear

dimensionality reduction methods, including SOM-based visualizations, achieve this goal.

While alternate nonlinear dimensionality reduction visualizations are not the focus of this

research, Gisbrecht and Hammer provide a thorough survey of these methods [94].

4.2 The Philosophy of SOM-Based Visualization

The remainder of this dissertation illustrates examples using a purely unsupervised SOM

with a hexagonal lattice, trained on the Iris flowers data set [3]. Section 8.2.1 describes

the data set and its pre-processing in detail, and only the most pertinent aspects are
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mentioned here. The data set describes plants and has four continuous attributes, namely

sepal_length in the range [4.3, 7.9], sepal_width in the range [2.0, 4.4], petal_length
in the range [1.0, 6.9], and petal_width in the range [0.1, 2.5]. Nominal data example

classifications are either Iris_Setosa, Iris_Versicolor, or Iris_Virginica.

As Section 3.1.2 described, a SOM models a high-dimensional data set using a grid

with fewer dimensions. A SOM’s training data is approximated by a map structure that

is essentially characterized by a set of weight vectors. However, as Figure 4.1 illustrates

using the Iris data set SOM, raw weights are usually difficult to interpret.

Because a SOM models its training data, the map structure of an adequately trained

SOM (that is locally and globally ordered) should have overall characteristics that are

similar to the characteristics of the training data. Therefore, a visualization of a trained

map should provide insight into the modeled data. Because a SOM is defined by its

constituent weight vectors, most SOM visualizations are based on these vectors.

A general discussion on SOM-based visualization is difficult, due to the sheer number

of applicable techniques. Therefore, in order to organize this discussion, this research

work proposes a two-level approach to understanding visualization techniques:

• Firstly, visualizations are based on map representation frameworks, of which there

are two broad categories. The most common map representations are grid-based,

and are discussed in Section 4.3. A variety of less commonly used representations

are characterized as irregular, and are investigated in Section 4.4. As is the case for

all information visualizations, map representations consist of visual marks. This

taxonomy of map representation frameworks is illustrated in Figure 4.2.

• Secondly, visual augmentations can be added to a map representation. An aug-

mentation links a map characteristic to a visual dimension of all marks on the map

representation. To reduce complexity, thresholds may be represented (e.g., “high”

or “low” values). Several augmentations may be combined by linking each to a dif-

ferent visual dimension [99]. While all augmentations are not sensible in every map

representation’s context, Figure 4.3 shows a general taxonomy of augmentations.

Visual augmentations are an almost essential addition to grid-based map representations.

Consequently, Sections 4.3.1 to 4.3.3 discuss augmentations in the specific context of
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Figure 4.1: The raw weight vectors making up an 11×11 neuron grid of a purely unsupervised

SOM trained on the Iris data set [3]. While not shown, the map’s lattice topology is hexagonal.
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grid-based representations. However, the majority of these visual augmentations are

also applicable to the irregular map representations that are described in Section 4.4.

4.3 Grid-Based Map Representations

Grid-based map representations simply denote each neuron as a cell within a regular

grid, which has the same number of rows and columns as the SOM’s map structure does.

It is also possible for a grid-based representation to include intermediary cells between

the cells that directly represent neurons. A grid-based representation thus depicts an

actual entity, which classifies these representations as scientific visualizations [27].

Figure 4.4 shows two possible grid representations of the example SOM of Figure 4.1.

The first representation shows no topology information, simply representing the grid

with uniform rows and columns. The second grid depicts the map’s hexagonal lattice

structure, where the neighbors of each neuron are more clearly identifiable.

The following advantages are inherent to grid-based map representations, and con-

tribute to making such representations fairly versatile and commonly used in practice:

• Grid-based representations are general-purpose visualizations. Irregular represen-

tations are often designed for a special purpose, which may limit their wider use.

• Grids are compact, unlike many irregular map representations. Grid-based repre-

sentations are thus easy to display and scale according to an analyst’s needs.

• Grids always have a sensible layout. Non-deterministic irregular visualizations, like

Sammon’s mapping, do not always generate a good structure [128].

• Because their layouts are consistent, different grid visualizations of the same map

can be compared easily [131]. This is often not the case for irregular visualizations.

• The uniform grid layout allows arbitrarily complex visual augmentations to be

added to the neuron cells, without the risk of overlap between the augmentations.

• It is computationally negligible to display a grid. Irregular representations (par-

ticularly weight projections) are often computationally expensive [128].
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(a) (b)

Figure 4.4: Examples of non-augmented grid-based map representations with no intermediary

cells, based on the example SOM of Figure 4.1: (a) shows a grid without topology information;

(b) shows the map’s hexagonal topology. In both representations, circles represent neurons.

Of course, despite the numerous previously mentioned advantages, grid-based repre-

sentations are not without several associated disadvantages. The most important draw-

backs that are intrinsic to grid-based visualizations are each elaborated upon, below:

• The regularity of the grid does not intrinsically represent any information about

the map, other than its width and height. Thus, for these representations to be

useful, further information must be added via one or more visual augmentations.

• Due to their regular structure, grid-based map representations cannot display a

subset of the map’s neurons. Because irregular map representations have no con-

strained structure, they are free to depict any number of a map’s neurons.

• No clear interpretation can be attached to either the axes of a map [253], or the

relative sizes of map areas. However, due to the regular proportions of a map

representation, analysts may be tempted to make such interpretations

For the sake of consistency, the visual arrangement of neurons in a grid-based rep-

resentation should mimic the lattice topology used during training (discussed in Sec-

tion 3.2). Figure 4.4 shows two grid-based representations, the first with a rectangular

lattice and the second with a hexagonal lattice. These visualizations also reiterate that
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the only useful information a non-augmented grid shows is the map’s dimensions. This

chapter’s remaining grid-based visualization examples assume a hexagonal lattice.

Some of the more widely used visual augmentations are discussed in more detail in the

following sections: Section 4.3.1 covers weight vector similarity encodings, Section 4.3.2

deals with weight vector encodings, and Section 4.3.3 introduces data mapping encodings.

Figure 4.3 depicts these augmentations in the form of a taxonomy.

4.3.1 Weight Vector Similarity Encoded Augmentations

Visual augmentations that show a weight vector similarity encoding attempt to visually

represent areas that have similar weight vectors. Such areas are, as noted in Section 3.4.3,

considered to be emergent clusters. Traditionally, these types of augmentations use color

to denote similarity [120], although any other visual dimension may also be used [99].

4.3.1.1 Local Similarity Encoding

According to Section 3.4.3, emergent clusters may be characterized by inter-weight-

vector distances. Inter-vector distances within emergent clusters are usually small, while

between emergent clusters inter-vector distances are typically large. This characteristic

of emergent maps is exploited by local weight vector similarity encodings, which represent

the distances between topologically adjacent neuron weight vectors.

While local similarity encodings may use any distance measure, it is typical to use the

same distance measure that was used during training (see Section 3.3.2). Consequently,

the majority of local similarity encodings use Euclidean distance, which is used by most

SOMs during training. The remainder of this dissertation therefore assumes Euclidean

distance as a basis for all local similarity encoded visual augmentations.

Every local similarity encoding augmentation requires a local similarity matrix, which

stores distance values computed from the map grid’s weight vectors. A local similarity

matrix differs in form, depending on the exact nature of the augmentation, but always

stores at least one value for each neuron. In addition, a local similarity matrix may also

contain several intermediary distance values that fall between the neuron values.

After computing a local similarity matrix, its constituent values must be linked to

any appropriate visual dimension [99]. It is, however, typical to map each local similarity
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value to a color continuum, with most augmentations using grayscale [120]. Grayscale

encodings are easy to understand and less prone to ambiguity of interpretation.

It is also possible to produce a summarizing view on local distance similarities, by

augmenting visualizations using distance thresholds [170], rather than raw distance val-

ues. Such augmentations have less detail, but may be easier for a human to interpret.

The two most common local similarity encoding augmentations are considered below.

Both are illustrated in Figure 4.5, using examples based on the SOM of Figure 4.1:

• An aggregate distance matrix uses a local similarity matrix to represent only one

distance value per neuron. A neuron’s distance value is an aggregate of all the

inter-vector distances between the neuron and its direct neighbors (as defined by

the map’s lattice topology). A neuron’s aggregate is usually the mean [246], me-

dian, maximum [153], or minimum of the neuron’s inter-neighbor distances. The

advantages of these augmentations are that they are simple to implement and com-

pactly visualize only a single piece of information per neuron. However, two major

drawbacks are that much detail is lost (because no inter-neighbor distances are rep-

resented), and that the aggregate similarity values can be sensitive to extremely

large or small distances (especially near emergent cluster boundaries).

• The unified distance matrix (U-matrix) [244] technique is the most prevalent local

similarity encoding scheme, and extends the idea underlying aggregate distance

matrices. As in an aggregate distance matrix, aggregate values are usually stored

for each neuron cell. Intermediate cells are also placed between neighboring pairs of

neuron cells, according to the map’s lattice topology. Each intermediate cell stores

the inter-weight-vector distance between the neurons that it separates. An advan-

tage of U-matrices is that they hide no local similarity detail (aggregate values are

not the focus of the augmentation, and mainly serve to smooth the visualization).

Minor drawbacks are that U-matrices are more complex to implement, and more

visually complex than aggregate distance matrices due to the intermediate cells.

Both the aggregate distance matrix and U-matrix in Figure 4.5 use grayscale encod-

ings, where darker shades denote larger distances and lighter shades are smaller distances.

Both maps show two areas characterized by small inter-vector distances, which consti-
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(a) (b)

Figure 4.5: Two grid-based map representations of the example SOM in Figure 4.1, with local

similarity encodings: (a) shows an aggregate distance matrix, representing mean distances to

neighboring neurons; (b) shows a U-matrix, where cells containing dots represent neurons

encoded with the mean of the distances to direct neighbors. In both cases, darker shades of

gray denote larger distances, and lighter shades indicate smaller distances.

tute emergent clusters (one in the upper right of the map, and another to the left and

bottom). The clusters are separated by a band of large inter-vector distances.

Because both aggregate distance matrices and U-matrices compute the same neigh-

borhood structure to calculate their similarity values, neither approach is to be sig-

nificantly preferred in terms computational complexity. However, due to the above-

mentioned major drawbacks associated with aggregate distance matrices, this research

recommends that U-matrices should be preferred for local similarity encoding purposes.

4.3.1.2 Global Similarity Encoding

Whereas local similarity encoded maps represent the distances between topologically

adjacent neuron weight vectors, global similarity representations uniformly encode sets

of neurons that are deemed to be similar to one another in some way.

The most common global similarity encoding approach visualizes neuron labels pro-

duced by any of the neuron labeling methodologies discussed in Chapter 6. Within the

context of this chapter, it is simply sufficient to understand that neuron labels are textual

characterizations that somehow describe the characteristics of each neuron.
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For visualization, all map neurons with equivalent labels must be augmented in the

same way. An easy approach simply augments each neuron cell with a textual description

that is equivalent to the neuron label. It may, however, ease human interpretation of a

map if each set of equivalently-labeled neurons instead receives a unique color.

A relatively simple neuron labeling method, discussed in more detail within Sec-

tion 6.3.2, algorithmically discovers emergent cluster groupings of neurons, and then

uniquely labels neurons belonging to each cluster. Commonly used techniques for dis-

covering emergent SOM map clusters include the k-means [161] and SOM-Ward [176]

clustering algorithms. It is fairly common for SOM-based EDA tools (such as Viscovery

SOMine [51]) to map a visual dimension to these types of cluster-based labels.

Figure 4.6 shows two visualizations of the SOM represented in Figure 4.1, each with

color-encoded emergent neuron clusters. Each example used the SOM-Ward algorithm

to discover different numbers of emergent clusters. Figure 4.6 (a) shows two clusters,

correlating to the structure suggested by the local similarity visualizations shown in

Figure 4.5. Figure 4.6 (b) illustrates four cluster groupings, which reveal sub-structures

within the larger map cluster. In addition, the two visualizations illustrate that it is

possible for different label assignments to produce very different visual representations.

4.3.2 Weight Vector Encoded Augmentations

While the weight vector similarity encoded augmentations of the previous section rep-

resent the relationships between the weight vectors of a map, weight vector encodings

depict the actual weight components of each neuron’s weight vector. In other words,

weight vector encodings represent the actual underlying structure of the map.

4.3.2.1 Single Weight Encoding

It is possible to provide useful insight into the data model of a SOM by visualizing the

distribution of a single weight value across the entirety of a map structure. The most

common single weight encoding is the component plane [131], which uses the same weight

component within each weight vector to visually encode the neuron cell associated with

the weight. Therefore, in essence, a component plane provides a human analyst with a

“sliced” view of a SOM’s structure, showing one attribute’s probability distribution.
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(a) (b)

Figure 4.6: Two grid-based map representations of the example SOM in Figure 4.1, with

global similarity encodings using grayscale to represent clusters found using the SOM-Ward

algorithm of Section 5.3.1: (a) visualizes two clusters; (b) visualizes four clusters.

Figure 4.7 illustrates four grayscale-encoded component planes derived from the ex-

ample SOM shown in Figure 4.1. One component plane is shown for each of the attributes

that define examples from the Iris data set. In the visualizations, higher component val-

ues are encoded as lighter shades of gray, while darker shades denote lower values. There

are a variety of characteristics, which are illustrated by these visualizations:

• Firstly, each display shows a component’s overall distribution across the SOM’s

data model (e.g., the sepal_length and sepal_width components have relatively

uniform distributions, given the relatively uniform coloring of these planes).

• Secondly, correlations between data components are easily discernible (e.g., the

component planes for petal_length and petal_width are similar, suggesting that

these components have similar distributions, and are thus strongly correlated).

• Finally, correlations between components and the map structure can be highlighted

(e.g., both petal_length and petal_width have very low values in the vicinity of

the smaller cluster in the upper right corner of Figures 4.5 and 4.6).

As the above interpretations suggest, a drawback of single weight encodings is that

they must typically be compared to other visualizations to be useful. Very large numbers
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(a) (b)

(c) (d)

Figure 4.7: Four grid-based map representations of the example SOM in Figure 4.1, each aug-

mented with one weight, where lighter gray shades denote higher values, and darker shades are

lower values: (a) shows the sepal_length component; (b) shows the sepal_width component;

(c) shows the petal_length component; (d) shows the petal_width component.

of attributes produce many component planes, which tend to become unmanageable.

Another drawback is that a map’s structure depends on each neuron’s entire weight

vector, meaning that component planes are fairly limited forms of representation.

Of course, there are also a number of advantages that are associated with compo-

nent plane visualizations. The technique is relatively straightforward and simple to

implement, the visualizations are very computationally inexpensive to generate, and the

planes are typically fairly easy to interpret when visually analyzed independently.
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4.3.2.2 Multi-Weight Encoding

While a visualization of the distribution for a single component is often of interest, such

a representation usually provides a fairly limited view on the map’s data model. As a

consequence, it frequently proves very useful to instead represent several components for

every map neuron. This is the aim of multi-weight encoding augmentations.

The most intuitive and widely utilized method for visually encoding multiple weights

is referred to as the glyph map [99], which augments each neuron cell with a weight

vector glyph. In general, glyphs are very compact information visualizations, one glyph

representing each data point, which form parts of a larger information visualization [110].

Glyph maps simply employ the same type of glyph, in order to represent a uniform set

of weights within each neuron’s weight vector in exactly the same manner.

Figure 4.8 illustrates examples of two common glyph maps: Figure 4.8 (a) uses bar

graphs [256] to augment each neuron cell of the example SOM from Figure 4.1, while

Figure 4.8 (b) employs star plots [31] for the same purpose. In the former case, each

bar represents a weight value, where bar height shows a value’s magnitude. In the latter

case, each ray indicates a weight’s value, and ray length indicates value magnitude. Both

glyph maps show the overall characteristics of the map’s model. It is clear that the weight

vectors to the right of the map (particularly those in the upper right area of the map)

differ somewhat in structure from those making up the remainder of the map.

Beyond simply bar graphs and star plots, many more exotic glyphs also exist. Each

possible glyph has varying associated advantages and drawbacks [110]. For instance,

Chernoff faces [34] depict simple human faces, where weight values are mapped to facial

feature characteristics (e.g., nose width and length). Chernoff faces exploit the well-

known natural human ability to quickly identify and compare faces, but do not facilitate

intuitively and exact comparisons of features and relative feature importance.

When the weight vector dimensionality is not too large, it is possible for each glyph to

simply represent the entire weight vector of the glyph’s associated neuron. If too many

weights are present, which will result in the representation of the entire weight vector

being difficult or unclear, it becomes necessary to represent only a subset of weights.

Of course, deciding which specific weights to include in this type of subset becomes an

added complexity for a human analyst to deal with, often requiring additional analysis.
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Figure 4.8: Two grid-based map representations of the example SOM in Figure 4.1, each

augmented with weight vector glyphs: (a) uses bar graph glyphs; (b) uses star plot glyphs.

Glyph maps have the principal advantage of presenting an easy-to grasp overview of

the differences between weight vectors across the map. Of course, due mostly to addi-

tional complexity, glyph maps also have some disadvantages, which include the following:

• Glyph maps are relatively complex visualizations to implement in comparison to

many of the other grid-based representations for maps.

• Some glyph maps are computationally complex to build. This is the case if the

glyphs themselves are complex, or many weights must be represented.

• If the individual glyphs are too visually complex, a compact and understandable

overall representation of the map is often difficult to achieve.

• Because glyph maps are dependent on the selected glyphs, the augmentation is

subject to any drawbacks associated with the chosen glyph representation.

• For complex glyphs or very high-dimensional weight vectors, it is difficult to discern

which specific visual dimension of a glyph maps to a particular weight.

• Because glyph maps are intended for overview map representations, it is often

difficult to get an idea of the actual weight value magnitudes that are represented.
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The above drawbacks suggest that analysts should be judicious when choosing glyph

representations, and should err on the side of simplicity. In general, legends should also

be provided, to clearly link each glyph’s visual dimension to a weight.

4.3.3 Data Mapping Encoded Augmentations

While the visualization augmentations discussed in Sections 4.3.1 and 4.3.2 represent an

aspect of the map’s weight vector structure, data mapping encodings visualize the ways

in which I-dimensional data examples, denoted ~zs, from a data set relate to the map

grid. This data set must have the same structure as the training data.

It is possible for the data vectors to be either data examples drawn from the training

set, or data examples that were not presented to the SOM during training. In the latter

case, it is typical for an analyst to be interested in the underlying characteristics of

new data in relation to the training data that has been modeled by the SOM. This

relationship is then determined by studying the characteristics of the map neurons that

produce the strongest response for the data example under examination.

Every data mapping encoding augmentation is based on the membership of a data

set example to one or more map neurons. This membership is a continuous magnitude

usually referred to as the response of the neuron to the example, and is typically measured

as a distance-based quantity, res(~zs, ~wyx), calculated as follows:

res(~zs, ~wyx) = ‖~zs − ~wyx‖2 (4.1)

where ~wyx is the weight vector of the neuron for which the response is calculated. A

smaller res(~zs, ~wyx) is interpreted as a stronger response, and a larger value indicates a

weaker response. The distance measure is usually the same one used during training, thus

Euclidean distance is typically used, and the response is called the Euclidean response.

4.3.3.1 Single Data Example Mapping

Single data example mapping augmentations depict the neuron response (or responses)

generated within a map by a single data example. The data example may be drawn from

the SOM’s training set or a data set not presented to the SOM during training.
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Two main approaches can be used for the representation of single data example

mappings to the SOM’s map structure. Examples of each are illustrated in Figure 4.9:

• A BMU mapping [146] marks the neuron with the strongest Euclidean response

(i.e., the example’s BMU). These visualizations are easy to interpret, but are often

simplistic, as several neurons may have strong responses to an example [217].

• Response surfaces [217, 259] visualize multiple responses, by encoding every map

neuron’s response to the example. Response surfaces can identify examples with

the characteristics of several emergent clusters, but may be difficult to interpret.

Figure 4.9 (a) shows the mapping of an example to the SOM of Figure 4.1. Figure 4.9 (b)

shows the response surface for the same example and map that Figure 4.9 (a) represents.

4.3.3.2 Data Subset Mapping

Data subset mapping visualizations simply extend single data example mapping visu-

alizations, by representing how multiple data examples map to the SOM’s neuron grid

structure. Once again, the mapped examples may be drawn from the training data set,

or a set of examples that was not previously presented during the training process.

Visualizations in this category are based on a data subset mapping matrix, which

must be computed prior to visualization. This matrix stores the unified mapping of

every example in the data subset to every neuron on the map surface. The simplest

and most common approach stores a matrix value for each neuron, which represents the

total number of data examples that produced the strongest Euclidean response in the

neuron, according to Equation (4.1) of the previous subsection [274]. In other words,

each neuron stores the total number of examples sharing that neuron as a BMU.

It is a trivial matter to represent a data subset mapping matrix by means of a visual

augmentation. This is achieved by linking any appropriate visual dimension (such as the

color attached to a cell) to the unified mapping value computed for each neuron.

A visual encoding of the SOM in Figure 4.1, using varying shades of gray to show the

total number of examples that map to each neuron, is shown in Figure 4.10 (a). This type

of visual representation is often called a data histogram. This sub-figure also illustrates

one of the main drawbacks associated with visualizations of data subset mappings: if the



Chapter 4. SOM-Based Visualization and Exploratory Data Analysis 75

(a) (b)

Figure 4.9: Two grid-based map representations of the example SOM in Figure 4.1, each

with single data example mapping encodings for an example of the Iris_Versicolor class:

(a) shows the BMU as a black cell; (b) shows a Euclidean response surface in grayscale, where

darker shades indicate stronger mappings, and lighter shades denote weaker mappings.

(a) (b)

Figure 4.10: Two grid-based map representations of the example SOM in Figure 4.1, with

data subset mapping encodings: (a) shows mappings for the entire training data set; (b) shows

mappings for training examples classified as Iris_Virginica. Darker shades of gray indicate

a higher number of mappings, while lighter shades indicate a lower number of mappings.
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mapped data examples are sparse in relation to the size of the map, the visualization may

highlight no useful examples within the distribution of examples across the map surface.

This problem will typically not occur if there are substantially more data examples than

the total number of neurons that make up the map’s grid structure.

Naturally, it is also possible to generate a data subset mapping visualization with

examples of only a particular type with common characteristics. For instance, if an

analyst has access to a classified data set, a visualization can be augmented with only

the mappings of examples belonging to a particular class. This approach is shown in

Figure 4.10 (b), where only examples of the Iris_Virginica class are mapped. This

example also illustrates that data subset mapping visualizations can be used to show

any localization that the mapped data examples have to a particular map area.

4.4 Irregular Map Representations

An irregular map representation is simply any SOM-based visual representation that does

not have a regular structure based on the layout of the map grid. There are two types

of irregular map representations: weight vector projections and map-based information

visualizations, respectively discussed in Sections 4.4.1 and 4.4.2 below.

4.4.1 Weight Vector Projections

Weight vector projections are somewhat more complex to generate and interpret than

their grid-based counterparts. SOM-based projections use a lower-dimensional projection

space to represent the map’s I-dimensional weight space. Each neuron’s I-dimensional

weight vector, ~wyx, is represented by a single two- or three-dimensional projection vector,

~ryx. Importantly, the projection vectors are positioned to visually represent the relative

weight-space distances between all of the corresponding weight vectors.

A projection algorithm post-processes a trained SOM, and arranges the projection

vectors for all neurons in projection space. Such a projection is sometimes referred to

as a vector quantization-projection (VQ-P) [253]. While many appropriate linear and

nonlinear projection methods exist [153], an approach known as Sammon’s mapping [212]

is one of the most commonly used in conjunction with trained SOM grids [148].
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The algorithm used by Sammon’s mapping is represented, in the form of pseudocode,

in Algorithm 4.1. In essence, the algorithm iteratively updates all the vectors making

up the projection, with the objective of optimizing an error function. The error func-

tion, which is denoted E(t), quantifies how well the projection models the weight vector

distribution of the SOM at iteration t of the projection optimization process.

The set of all weight weight vectors contained in the map being represented is denoted

weights . The error function for Sammon’s mapping depends on the set Y , which contains

all the subsets of unique weight vector pairs, and is defined as follows:

Y = {δ ⊆ weights} (4.2)

where δ is the set {~wyx, ~wy′x′} containing the pair of weight vectors ~wyx and ~wy′x′ , such

that ~wyx 6= ~wy′x′ . The error function computed at iteration t of the projection vector

update procedure, which is optimized by Sammon’s mapping, is then defined as:

E(t) =

(∑

δ∈Y

(
‖~wyx − ~wy′x′‖2 − ‖~ryx(t)− ~ry′x′(t)‖2

)2

‖~wyx − ~wy′x′‖2

)
÷
(∑

δ∈Y
‖~wyx − ~wy′x′‖2

)
(4.3)

where ~ryx(t) and ~ry′x′(t) are distinct projection vectors that respectively correspond to

~wyx and ~wy′x′ at iteration t of the optimization. While Euclidean distance is the most

commonly used distance metric in practice, any sensible measure is applicable.

The projection vectors of a Sammon’s mapping are often initialized by projecting the

weight vectors orthogonally onto a projection space spanned by the weight vectors with

the largest variance. This initialization ensures that the projection optimization starts

from a state that adequately covers the space occupied by the weight vectors.

Sammon’s mapping must optimize the E(t) function using an error minimization

technique. Although the original publication describes a gradient-based optimization

approach, outlined in Algorithm 4.2, a variety of alternative techniques are also feasible.

For example, optimization approaches based on particle swarm optimization [136, 219]

and evolutionary computation [65] are feasible for this error minimization.

Sammon’s mapping needs one or more stopping criteria in order to cease optimization.

The most common criteria include a limit on the number of optimization iterations, and

a minimum error threshold. These conditions are usually user-specified, and trade off

the projection’s accuracy against the time required to generate the visualization.



78 4.4. Irregular Map Representations

Train a SOM grid, which will form a basis for the projection

Initialize a low-dimensional projection vector, ~ryx, for each weight vector ~wyx

Set the current optimization iteration, t = 0

repeat:

for all weight vectors, ~wyx, making up the SOM grid do

Compute the error function, E(t), defined in Equation (4.3)

call function UpdateProjectionVector(~ryx) to optimize E(t)

Update the current optimization iteration, t = t+ 1

end for

until stopping criteria are met

Algorithm 4.1: Pseudocode of the Sammon’s mapping projection algorithm.

begin function UpdateProjectionVector(~ryx) :

for all projection components ryxê ∈ ~ryx do

∂E(t)

∂ ryxê(t)
=

−2∑
δ∈Y ‖~wyx − ~wy′x′‖2

×
∑

~w
y′x′ 6=~wyx

(‖~wyx − ~wy′x′‖2 − ‖~ryx − ~ry′x′‖2
‖~wyx − ~wy′x′‖2 · ‖~ryx − ~ry′x′‖2

)
× (ryxê − ry′x′ê)

∂2E(t)

∂ ryxê(t)2
=

−2∑
δ∈Y ‖~wyx − ~wy′x′‖2

×
∑

~w
y′x′ 6=~wyx

(
1

‖~wyx − ~wy′x′‖2 · ‖~ryx − ~ry′x′‖2

)

×
[
(
‖~wyx − ~wy′x′‖2 − ‖~ryx − ~ry′x′‖2

)
− (ryxê − py′x′ê)2

‖~ryx − ~ry′x′‖2

×
(

1 +
‖~wyx − ~wy′x′‖2 − ‖~ryx − ~ry′x′‖2

‖~ryx − ~ry′x′‖2

)]

∆ryxê(t) =
∂E(t)

∂ ryxê(t)
÷
∣∣∣∣
∂ 2E(t)

∂ ryxê(t)2

∣∣∣∣

Update ryxê(t+ 1) = ryxê(t)−
(
ϕ ·∆ryxê(t)

)
, where ϕ ≈ 0.3 or 0.4

done

end function

Algorithm 4.2: Pseudocode of the original Sammon’s mapping error optimization technique,

which optimizes the components making up the projection vector ~ryx.
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Once the projection vector positions have been optimized, the projection space is vi-

sualized, with a mark for each projection vector. The result is a map representation that

uses spatial positioning to represent the weight-space distribution of neurons. Because

the display typically bears no resemblance to the regular map grid, the correlation be-

tween the projection and the map grid is usually difficult to see [108]. A common solution

is to use line segments to link the projection vectors of neighboring neurons [253].

Projection algorithms were originally intended to be applied directly to a data set.

However, for many data examples, such projections become computationally too com-

plex. Because a map’s weight vectors approximate a data set’s distribution using fewer

weight vectors, applying projection methods to a SOM trained on a data set is more

computationally feasible than a direct projection [253]. However, SOM training is it-

self computationally complex, thus often negating this advantage. On the other hand,

if maps with fewer neurons than training examples are used, map projections are less

visually dense and easier to interpret than those based on raw training data [131].

Figure 4.11 shows two Sammon’s mapping projections of SOMs trained on the Iris

data set. Figure 4.11 (a) and (b) respectively illustrate the U-matrix and Sammon’s

projection of the example SOM from Figure 4.1, which is globally ordered. Within the

projection, dots represent neurons, where line segments connect the dots representing

neurons that are topologically adjacent to one another in the map structure. Both

representations of the ordered map show two fairly tightly grouped weight vector clusters:

one to the upper right, and another in the lower left, in both visualizations.

Figure 4.11 (c) and (d) show the U-matrix and Sammon’s map, respectively, of a

globally unordered map trained on the Iris data set. The U-matrix shows three weight

vector clusters: one in the map’s upper right corner, another occupying the center area,

and a third in the lower left. As is the case in Figure 4.11 (b), line segments in the pro-

jection connect adjacent neurons. The Sammon’s mapping indicates three topologically

separate weight vector groups: one in the projection’s lower left, and two in its upper

right part. However, the two groups in the upper right are spatially close to one another,

indicating that these groups are actually constituents of one emergent cluster.

The unordered map example depicted by Figure 4.11 (c) and (d) illustrates that

weight vector projections can be used to more accurately visually determine the number
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(a) (b)

(c) (d)

Figure 4.11: Two weight vector projections of SOMs trained on the Iris data set:

(a) and (b) respectively show a U-matrix and a Sammon’s mapping projection of the glob-

ally ordered example SOM in Figure 4.1; (c) and (d) respectively show a U-matrix and a

Sammon’s mapping projection of a SOM trained on the same data, which lacks global order.

of emergent map clusters than either the local or global weight vector similarity encodings

of Section 4.3.1. Projection-based visualizations can therefore be used to help determine

whether a map representation is globally ordered or unordered.

Of course, the individual projection vector marks making up a projection-based vi-

sualization can be augmented in a similar fashion to a regular grid-based map represen-

tation. Any of the techniques described in Sections 4.3.1 to 4.3.3 may be utilized. Once

again, any visual dimension (such as the size or color of the vector’s mark) may be used
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for the encoding. Of course, the weight vector similarity encodings of Section 4.3.1 are

less sensible in the context of weight vector projection methods, because this type of

similarity is implicitly represented by spatially arranged projection vectors.

4.4.2 Map-Based Information Visualizations

Map-based information visualizations are general in nature, and use any information

visualization to either represent the map structure, or meta-information in relation to

the map structure. As generic information visualization methods are not designed with

SOMs in mind, they are non-uniform and do not depict the map’s actual grid form.

The simplest approach based on information visualization involves the representation

of sub-aspects of the weight vectors across a subset of a map’s neurons. Examples of

this approach are shown in Figure 4.12, where scatter plots represent the distribution of

weight vector component pairs in relation to one another, for all the neurons of the exam-

ple SOM from Figure 4.1. Interpretation of the actual modeled attribute values requires

that the weight components in an information visualization should be de-normalized, as

described in Section 2.4.2.1. In the example, min-max normalization was performed on

the training data, thus requiring de-normalization according to Equation (2.2).

The examples of Figure 4.12 illustrate the primary advantage associated with map-

based information visualizations: map-based information visualizations are often very

good at highlighting specific aspects of interest in the structure of a map, depending on

the method used. For example, Figure 4.12 (a) shows no strong correlation between the

sepal_length and sepal_width components, while Figure 4.12 (b) clearly indicates a

strong positive correlation between petal_length and petal_width.

However, the main advantage of map-based information visualizations is also their

biggest drawback: their application may be limited if their specific focus is at the expense

of other map information. Any limitations that are intrinsic to the chosen information

visualization method may also detract from the final representation. For example, the

scatter plots of Figure 4.12 can only compare two weight vector components.

In a similar fashion to the projection-based approaches of Section 4.4.1, all informa-

tion visualizations may be applied directly to a map’s training data. As previously noted,

the weight vectors of a converged map should model the training data’s distribution, us-
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Figure 4.12: Two examples of scatter plot map information visualizations of the example

SOM in Figure 4.1: (a) shows a scatter plot comparing the sepal_length and sepal_width

components; (b) shows a scatter plot comparing the petal_length and petal_width compo-

nents. The components have been de-normalized to their original value ranges.

ing fewer representational vectors. Consequently, a map-based information visualization

should again offer a representation that is less visually dense than a raw data set visu-

alization, and is easier for an analyst to interpret. For some very complex information

visualization techniques, or on very large data sets, a SOM-based visualization may also

be more computationally feasible than a raw data set representation.

It is also possible for a map-based information visualization to represent meta-

information related to the map. The types of meta-information that can be represented

on a map-based information visualization are varied, and include groups of aggregated

neurons, discovered emergent clusters of neurons (see Chapter 5 for further details on

emergent cluster discovery), the raw number of data examples falling within a particular

map area or BMU, and the strength of a map response to a data example.

Figure 4.13 illustrates an example of a map meta-information visualization. Fig-

ure 4.13 (a) shows three arbitrary map areas, while Figure 4.13 (b) visualizes the raw

numbers of training examples from each of the three possible data classifications that fall

within each of the map areas. From this information visualization it is clear that map ar-

eas B and C respectively contain mostly Iris_Versicolor and Iris_Setosa examples,

while area A holds a mixture of Iris_Versicolor and Iris_Virginica examples.
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Figure 4.13: An example of a map information visualization that shows map meta-data,

based on the example SOM of Figure 4.1: (a) shows a map grid with three groups of neurons

respectively designated A, B and C; (b) shows a histogram that breaks down, per example

classification, the number of BMUs that fall within map areas A, B and C.

Of course, if data mapping information is represented, it is possible to use either

the training data set, or another disjoint set that was not presented during map train-

ing. Information visualizations showing map meta-information show information that

is specific to the SOM’s data model. Consequently, there are no analogous information

visualizations that can be generated entirely from the raw training data.

Naturally, any map-based information visualization can be augmented using any of

the methods described in Sections 4.3.1 to 4.3.3. For example, in Figure 4.12 each

scatter plot point can be encoded with the number of data examples mapping to its

corresponding neuron. Of course, not all augmentations are sensible for all information

visualizations. For example, the marks in Figure 4.12 (a) should not be encoded with

sepal_width weight values, as this information is intrinsic to the visualization.

4.5 SOM-Based Exploratory Data Analysis

SOMs have been widely applied to a variety of EDA tasks [52, 131, 150]. In the context

of an EDA exercise, a human typically uses a graphical SOM-based tool [51], where

multiple visualizations give different views of the modeled data. For optimal utility,
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Figure 4.14: A taxonomy of the categories of SOM-based EDA identified by this dissertation.

SOM-based tools should also be interactive. Such tools allow, for example, comparative

visualization linking [168], and map views with varying levels of granularity.

This work identifies five categories of SOM-based EDA, illustrated in Figure 4.14.

This research does not aim to provide an exhaustive discussion, instead presenting only

a broad overview of the general analytical methods that each EDA category encompasses.

4.5.1 Characterization

Visualizations of a trained SOM can provide general characterizing descriptions of a

training SOM, or portions thereof. These descriptions include the overall nature of a

map’s constituent emergent clusters, the attribute value distributions over map areas or

emergent clusters, and data example prevalence over map areas or clusters.

It is also possible to determine the characteristics of either training or unseen data

examples through the use of a SOM. This is achieved by visualizing data examples in

relation to a trained map or the emergent clusters within such a map. Because map

areas model different parts of a training data set, the characterizations of map areas or

emergent clusters are effectively characterizations for subsets of data examples. It is thus

possible to assign a characterization to a data example, which is taken from the map

area or emergent cluster within which the BMU of the data example falls.

Yet another use of a SOM involves the characterization of data examples as either

accurate or erroneous. Fessant and Midenet [75] propose storing a data example list

per neuron, which holds all the training data examples that share the same neuron as a

BMU. The mean distance between each data example in the list and the BMU’s weight
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vector, ~wba, is then found, and denoted ϑ(~wba). The following coefficient is computed

when an unseen data example, denoted ~zs, is presented to the map:

exp

(−‖~zs − ~wba‖2

2 · ϑ(~wba)

)

In the event that the value of this coefficient is lower than a user-defined threshold value,

the data example represented by ~zs should be considered to be erroneous.

4.5.2 Feature Selection

It is possible to use visualizations augmented with the weight vector encodings discussed

in Section 4.3.2, to find attributes with very specific values for one or more emergent

clusters. Such attributes are responsible for emergent cluster formation and data example

membership to clusters, and consequently help determine data classification.

Conversely, attributes with values that vary greatly over an emergent cluster are

not important to the formation of that cluster. In a case where specific values for an

attribute do not correlate to any particular cluster on the map, or when an attribute has

a generally uniform value over the entire map, it is an indication that the attribute is

unimportant, and can safely be discarded from any further exploratory analysis tasks.

4.5.3 Sensitivity Analysis

The sensitivity of a data example to specific attribute value changes can also be deter-

mined using a SOM. During this analysis, an expert observes the change in an example’s

mapping to a SOM as one or more of the example’s attributes are modified.

This approach to analysis answers “what-if” questions by determining which ranges

of attribute modifications affect the classification of an example. Conversely, the set of

attribute changes that will safely produce negligible effects can also be determined.

4.5.4 Interpolation

It is also possible to use a trained SOM to infer the probable values for missing at-

tributes within a data set example, where the data example in question has usually

not been presented during map training. The attribute value replacement is done by
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replacing missing data example values with the corresponding component value of the

example’s BMU [210]. The Euclidean distance between the example and the BMU, pos-

sibly weighted by the number of non-missing attribute values, serves as a confidence

measure for the missing values that have been replaced.

Fessant and Midenet [75] propose replacing missing values of a data example using

the example’s BMU, as well as the neurons neighboring the BMU. The BMU and its

neighbors are referred to as the activation group of the example. Missing values are then

replaced with the mean of the corresponding weight value within the activation group.

It is also possible to discard any neuron, nyx, from the BMU neighborhood when the

value of the following function exceeds a user-selected threshold:

‖~zs − ~wyx‖2 − ‖~zs − ~wba‖2

‖~zs − ~wba‖2

where ~zs is the data example for which missing values are being replaced, and ~wba

is the weight vector of the BMU for ~zs. This removal procedure aims to reduce the

neighborhood when the BMU is sufficient for missing value replacement. The lower the

selected threshold value, the more aggressive the removal of neurons will be.

Cottrell and Letrémy [43] suggest an approach that determines missing attribute

values using all the neurons across a trained SOM. First, the method computes the

probabilities with which the example in question is mapped to each neuron. The missing

value is predicted to be the mean of the weight value that corresponds to the missing

attribute, computed over all the map’s neurons. However, each neuron’s contribution to

this mean is weighted by the previously computed mapping probability of that neuron.

The approach also calculates the confidence levels for the replaced values.

Finally, an analyst is also able to interpolate the attribute modifications that are

required in order to migrate an example from one area of the map to another (for

example, from an “undesirable” emergent cluster to a more “desirable” cluster).

4.5.5 Trend Analysis

Finally, SOMs are capable of modeling time-series and historical data, in order to deter-

mine the nature of time-variant changes or the likely course of future changes. A very

simple and commonly used method [96, 144] utilizes a SOM trained on a time-series data
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set that represents a sequence of measurements or observations at regular intervals. The

BMUs of several related time-series observations (typically generated by a single entity)

are then marked on any grid-based visualization of the map, and the BMUs are linked

in sequence to form a trajectory. Such trajectories are used either to study data changes

over time, or to suggest emerging trends in data changes over time.

Other trend analysis approaches exist, but modify the SOM training procedure or

the map architecture from the basic stochastic method focused on in this work. These

methods are thus not discussed in great detail within this dissertation. The more notable

and commonly referenced examples of techniques in this category include the following:

• Trajectory maps [140] train a first-level SOM using observations of entities at

different time steps. BMU trajectories of entities on the first-level map are used

to train a second-level map, thus modeling the nature of time-dependent changes.

• The temporal Kohonen map [32] incorporates each neuron’s response for the previ-

ous training iteration into the neuron’s response computed for the current iteration

(thus affecting BMU determination), but otherwise uses normal stochastic training.

• The recurrent SOM [152] breaks down a neuron’s response into a vector of compo-

nents, one for each weight. Each component incorporates its value for the previous

iteration. BMUs and weight updates are then computed using these vectors.

• The recursive SOM [263] uses two maps. The first is updated using training exam-

ples, while the second is trained on vectors representing the first map’s responses in

the previous iteration. BMUs are determined using information from both maps.

• The SOM for structured data [98] is an approach developed for training maps on

directed acyclic graph data structures. Because temporal data is a special type of

directed acyclic graph, this approach is also appropriate for temporal learning.

• MergeSOM [230] is a technique that allows for the simulation and extraction of

finite state automata from SOMs. These finite state automata are able to model

time series characteristics that are present within a training data set.

The interested reader is referred to the work of Guimarães et al [96, 97], which provides

a taxonomy and extensive survey of SOM-based approaches for temporal learning.
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4.6 Summary

This chapter gave a critical analysis of the main categories of visualization techniques

that can be used to represent a trained SOM grid and data examples that relate to

such a grid. Section 4.1 gave a brief overview of the ideas underpinning traditional data

visualization approaches. Section 4.2 described the overall philosophy that underlies

all the SOM-based visualization methodologies. Sections 4.3 and 4.4 discussed the two

map representation categories (namely grid-based and irregular representations), and the

visual augmentations that can be used to add meaning to such representations. Finally,

Section 4.5 briefly considered the main categories of SOM-based EDA.

Map neuron labeling is an integral step of almost all SOM-based EDA and DM,

and is discussed within Chapter 6. The next chapter deals with emergent map clus-

ter discovery, which is a prerequisite for several of the most common neuron labeling

approaches. In addition, cluster discovery is also used by some of the SOM-based DM

algorithms. Consequently, the discovery of emergent clusters appears as a component in

many practical EDA and DM exercises that use the SOM algorithm as a basis.



Chapter 5

Emergent Neuron Cluster Discovery

The previous chapter described methods for SOM visualization, as well as SOM-based

EDA. This chapter covers emergent cluster discovery, which is an important component

within several of the map neuron labeling methods described in Chapter 6.

Section 5.1 overviews emergent cluster discovery. Section 5.2 covers the evaluation of

emergent clusters. This research defines three classes of emergent cluster discovery meth-

ods, namely algorithmic, exploratory, and hybrid (respectively discussed in Sections 5.3,

5.4, and 5.5, and illustrated as a taxonomy in Figure 5.1). Section 5.6 touches on cluster

stability in the context of SOMs. Finally, Section 5.7 gives a chapter summary.

5.1 An Overview of Emergent Cluster Discovery

Section 3.4.3 described emergent feature maps, and the advantages that emergent maps

have over their non-emergent counterparts. However, the following must be noted:

• Emergent feature maps only explicitly represent clusterings of training examples

around neuron centroids represented by weight vectors.

• While macro-level clusters of neurons do exist within emergent SOMs, these neu-

rons are not explicitly organized into groups.

• An additional step is therefore required in order to group neurons that are similar

to one another into a set of macro-level clusters.

89
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Figure 5.1: A taxonomy of SOM cluster discovery techniques. Note that only the algorithmic

discovery techniques that are most commonly used in a SOM-based context are shown.

Discrete emergent cluster discovery addresses the third point, and is concerned with

the division of neurons between a set of k clusters, denoted L = {S1, S2, . . . , Sk}. In turn,

each cluster, Si, is a discrete set of neurons that are all judged to be mutually similar in

some way. Each neuron may belong to only a single cluster. Fuzzy clustering [35, 226]

is also possible, but is difficult to interpret, and is thus not considered further.

All cluster discovery methods use an indicator of emergent cluster structure. Based

on the emergent feature map characteristics of Section 3.4.3, two indicators are possible:

• Inter-weight-vector similarity, where groups of very similar neurons indicate emer-

gent clusters, and neurons that are dissimilar to all other neurons denote borders

between clusters. Inter-weight-vector distance is a simple measure of similarity

(Euclidean distance is most commonly used, but other measures will also work).

• Data example concentration, where higher concentrations of BMUs indicate emer-

gent clusters, and lower concentrations indicate cluster boundaries. If the examples

have classification attributes, higher concentrations of similarly classified data ex-

amples may provide a more accurate indicator of emergent clusters.

Data example concentration is much less frequently used, and may give inconclusive

results when small data sets used on large maps produce sparse mappings. Inter-weight-

vector similarity may thus be seen as a primary cluster indicator, and data example

concentration as a secondary indicator. The two could conceivably be combined into a

more complex indicator, but it seems no such research has yet been conducted.
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5.2 Cluster Quality Evaluation

A cluster quality evaluation measure quantitatively scores the relative desirability of

neuron clusterings. A variety of cluster quality measures exist [17, 172]. This re-

search considers only one such quality measure, called the Davies-Bouldin index [48].

The Davies-Bouldin index is commonly used to evaluate discovered emergent clusters in

SOMs [257], and was used in the experiments that are described in Chapter 8.

The Davies-Bouldin index calculates a real-valued result for a group of clusters within

which k ∈ [2,∞), where lower values indicate more optimal clusterings, as follows:

index =
1

k
·

k∑

i=1

max
j 6=i

{
intra(Si) + intra(Sj)

inter(Si, Sj)

}
(5.1)

where k is the number of clusters in the grouping being evaluated, Si and Sj are arbitrary

clusters, intra(Si) is a measure of the intra-cluster distances between the neuron weight

vectors within cluster Si, and inter(Si, Sj) is a measure of the inter-cluster distance

between the neuron weight vectors within clusters Si and Sj, respectively.

Very commonly used measures for intra(Si) and inter(Si, Sj) are, respectively, the

centroid distance and centroid linkage. The centroid of a cluster is an I-dimensional

vector, computed as the average over all neuron weight vectors in the cluster.

Centroid distance is defined as the average Euclidean distance between the weight

vectors of cluster Si and the cluster’s centroid vector, calculated as follows:

intra(Si) =
1

oi
·
∑

~wyx∈Si
‖~wyx − ~gi‖2 (5.2)

where oi is the number of weight vectors in Si, ~wyx is an arbitrary weight vector, and

~gi is the centroid vector of Si. It is usually assumed that intra(Si) = ∞ for singleton

clusters, to prevent index from biasing towards clusters of only one neuron.

The centroid linkage measure is calculated as the Euclidean distance between the

centroid vectors of two clusters, Si and Sj, defined as follows:

inter(Si, Sj) = ‖~gi − ~gj‖2 (5.3)

where ~gi and ~gj are the centroid vectors of clusters Si and Sj, respectively. Equation (5.1)

implies that Si and Sj will never be the same cluster when calculating index .
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In addition to the centroid distance of Equation (5.2), there are several other measures

for intra(Si), including average and nearest neighbor distance [256]. Similarly, other

than the centroid linkage of Equation (5.3), there are other possibilities for inter(Si, Sj),

including single linkage, complete linkage and average linkage [70]. These methods are

uncommon in the context of SOMs, and are thus not considered in more detail.

5.3 Algorithmic Cluster Discovery

Algorithmic cluster discovery uses hard clustering algorithms to computationally parti-

tion generic objects (usually represented as vectors) into roughly homogeneous discrete

clusters, where object membership is exclusive to one cluster [123]. In the context of

SOMs, clustering algorithms group a trained map’s neurons [247].

Jain et al [123] taxonomize a variety of clustering algorithms, any of which can be

used for algorithmic cluster discovery. However, hierarchical and partitional clustering

algorithms are most commonly used with SOMs [255, 257], and are considered in turn,

below. In the third place, some notable miscellaneous approaches are discussed.

Clustering algorithms are often biased towards certain cluster shapes (for example,

elongated or spherical clusters) [70]. It is therefore advisable to use a hybrid cluster

discovery approach discussed in Section 5.5 to visually inspect clusters for feasibility,

allowing inappropriately discovered clusters to be adjusted if necessary.

This work’s literature survey found no examples of SOM-based clustering algorithms

that use the data example concentration cluster indicator. The remainder of this subsec-

tion thus assumes only inter-weight-vector similarity (i.e., the algorithms group together

weight vectors separated by smaller distances). It is, however, conceivable that existing

clustering algorithms could be modified to use data example concentration instead.

Because a SOM’s weight vectors approximate the distribution of the original train-

ing data set, clustering the weight vectors should find clusters with characteristics that

are approximately equivalent to those found if the training data itself is clustered [257].

Therefore, in general, either weight vectors or training examples can be clustered. How-

ever, the fundamental nature of the clusters differ in each case: in the former, components

of a data model are grouped; in the latter, actual data members are clustered.
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Due to the approximating nature of a SOM’s mapping, it is likely that SOM-based

clusters will be less accurate than clusters found in the map’s training data [257]. How-

ever, SOM-based algorithmic cluster discovery does offer the following advantages:

• A SOM manifests unsupervised, and emergent clusters. Most standard clustering

algorithms are supervised because they need contextual information, and are thus

biased. The standard algorithms also do not have emergent characteristics.

• Clustering algorithms are often time complex, becoming impractical on large data

sets. A SOM typically models many training examples using substantially fewer

weight vectors [247], which are more time-efficient to cluster [257].

5.3.1 Hierarchical Clustering Algorithms

Hierarchical approaches derive their name from the hierarchy of different sized clusters

that they discover. The structure of clusters can be visualized as a dendrogram, which

shows how larger high-level clusters are composed of smaller low-level clusters. To pro-

duce a specific number of clusters, it is possible to cut dendrograms in various ways.

Figure 5.2 shows a dendrogram with two cuts that both produce four clusters.

Most hierarchical methods are iterative and greedy (i.e., they do not backtrack to

modify the groups formed by previous iterations), making the clustering only approxi-

mately optimal. Hierarchical methods may be either agglomerative, or divisive:

• Agglomerative algorithms use a bottom-up approach to successively select similar

lower-level clusters, and merge them into larger higher-level groups.

• Divisive algorithms follow a top-down approach. Larger, higher-level clusters are

iteratively split into smaller, lower-level ones that are more cohesive.

Pseudocode outlines of both these classes are given in Algorithm 5.1. In each case, the

cluster selection is based on an optimality criterion. The exact specification of this detail

is what differentiates specific hierarchical clustering algorithms from one another.

A drawback which is associated with all hierarchical clustering algorithms is that

dendrograms produced for a large number of map neurons are computationally expensive

to build and require a large amount of storage space to represent [123].
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Figure 5.2: A hierarchical dendrogram, where squares denote neurons and lines link composite

clusters. Dashed lines show two ways to cut the dendrogram, both producing four clusters.

(a) Create and initialize a SOM, denoted map, consisting of Y ×X neurons

Train map on an I-dimensional training set, denoted DT , until convergence

Define a set of clusters, L = {S1, S2, . . . , SY×X}, where each cluster contains a single

unique neuron from the complete set of Y ×X neurons in map

repeat:

Select Si ∈ L and Sj ∈ L using an optimality criterion (e.g., Ward distance [269])

Create a new cluster Sq that contains both Si and Sj as sub-clusters

Remove Si and Sj from L, and add Sq to L
until L contains a single cluster of all map neurons

(b) Create and initialize a SOM, denoted map, consisting of Y ×X neurons

Train map on an I-dimensional training set, denoted DT , until convergence

Define a set containing a single cluster, L = {S1}, where S1 contains all the unique

neurons within the complete set of Y ×X neurons in map

repeat:

Select Sq ∈ L using an optimality criterion (e.g., min-max cut [57])

Use a splitting method (e.g., Mcut [57]) to break Sq into sub-clusters Si and Sj

Remove Sq from L, and add Si and Sj to L
until L contains Y ×X clusters, each of a single unique map neuron

Algorithm 5.1: Pseudocode of the two generic classes of greedy hierarchical clustering algo-

rithms: (a) shows the agglomerative technique; (b) shows the divisive technique.
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This research only considers agglomerative approaches in more detail, because divisive

methods are far less common in the clustering literature [134]. Divisive algorithms are

also usually more complex, because these methods have to find an optimal division along

which to split clusters. This work only investigates agglomerative Ward clustering and

a SOM-specific variant thereof, because of their prevalence in the SOM literature.

Classical Ward clustering [266] defines a cost function over all clusters. The cost

function’s value always increases with each merge that the algorithm performs. At each

iteration, the algorithm selects and merges the two clusters that result in the smallest

cost increase. Classical Ward clustering is a greedy algorithm. The sum-of-squares

criterion [70] is often used as a cost function. However, the classical approach is fairly

inefficient, especially when large maps require the clustering of many neurons.

A more efficient method, shown to be equivalent to Ward clustering using the sum-

of-squares criterion [269], simply merges cluster pairs with the smallest Ward distance,

with no backtracking. The Ward distance between clusters Si and Sj is:

ward dist(Si, Sj) =
oi · oj
oi + oj

· ‖~gi − ~gj‖2
2

where oi and oj denote the number of neurons that constitute the two clusters Si and Sj

respectively, ~gi and ~gj are respectively the centroids of these two clusters, and ‖~gi−~gj‖2

is the Euclidean distance between the two cluster centroids ~gi and ~gj.

As previously defined, a centroid is an I-dimensional vector average of a cluster’s

weight vector constituents. Before any cluster merging steps take place, each centroid is

simply equivalent to the weight vector of the single neuron that belongs to the centroid’s

cluster. After the Ward clustering algorithm merges two lower-level clusters Si and Sj

to form a new higher-level cluster Sq, the centroid of Sq is defined as:

~gq =
1

oi + oj
· (oi~gi + oj~gj)

The number of neurons in the newly formed cluster is referred to as oq, and is simply

the sum of the number of neurons in Si and Sj. In other words, oq = oi + oj.

If a SOM lacks global order (see Section 3.4.3), it is possible for Ward clustering to

merge clusters that are not topologically adjacent on the map. Such merging will result

in discovered clusters that are split up over the map’s surface, which will complicate
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the interpretation of an exploratory analysis task. In a SOM-based context, therefore,

Ward clustering implementations should only allow adjacent clusters to merge with one

another [176]. This approach is sometimes referred to as SOM-Ward clustering.

It is possible to use a cluster evaluation measure to find an optimal level of hierarchi-

cal clustering. Firstly, a hierarchical clustering algorithm is executed until termination

(i.e., an agglomerative algorithm merges clusters until a single cluster is produced, while

a divisive algorithm splits clusters until only singleton clusters remain). At each algorith-

mic step, the chosen cluster evaluation measure is recorded for the clustering produced

by the merge or split. Finally, the dendrogram is cut at the level that produces the best

evaluation, thus producing an approximately optimal clustering of map neurons.

5.3.2 Partitional Clustering Algorithms

Partitional clustering algorithms (which are also called non-hierarchical or k-clustering

algorithms) divide all neurons between k disjoint clusters S1, S2, . . . , Sk. The value of k

is a user-specified algorithmic parameter. The aim of a partitional algorithm is usually

to maximize intra-cluster cohesion, while minimizing inter-cluster coupling.

This dissertation only focuses on the k-means method [161], also often used with

SOMs. First, k clusters are defined, each with a randomly selected neuron as initial

member, and a centroid equivalent to the neuron’s weight vector. Each remaining neuron

is then added to the cluster possessing the centroid closest to the neuron’s weight vector.

With each neuron addition, the updated cluster’s centroid shifts to represent the new

mean of the cluster’s member vectors. Algorithm 5.2 outlines the technique.

The sizes, shapes and optimality of clusters may vary dramatically for different values

of k, making the selection of this parameter’s value a very important choice. Methods

like k-means are also sensitive to the initial centroid initializations [123].

It is again possible to use a cluster evaluation measure to find an optimal partitional

clustering. A partitional algorithm is executed for a range of potential k values, chosen

so that k ∈ [2, Y × X]. For each neuron clustering that is produced by an algorithm

execution, the related evaluation measure is recorded. The final clustering is the one

with the most optimal associated evaluation measure. This approach is generally very

time complex, because it necessitates multiple executions of the clustering algorithm.
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Create and initialize a SOM, denoted map, consisting of Y ×X neurons

Train map on an I-dimensional training set, denoted DT , until convergence

Define a cluster count k, and a set of k empty clusters L = {S1, S2, . . . , Sk}

for all clusters Si ∈ L do

Select a random neuron nyx that is unassigned to any Si ∈ L, and add it to Si

Set centroid ~gi of cluster Si equivalent to the weight vector ~wyx of neuron nyx

end for

while neurons exist that remain unassigned to any Si ∈ L do

Select a random neuron nyx (and associated ~wyx) that is unassigned to any Si ∈ L
Find cluster Si ∈ L with centroid ~gi, such that ‖~wyx − ~gi‖2 = min∀i′

{
‖~wyx − ~gi′‖2

}

Add nyx to Si and adjust ~gi to be the mean over all neuron weight vectors in Si

end while

Algorithm 5.2: Pseudocode of the k-means partitional clustering algorithm.

5.3.3 Miscellaneous Clustering Algorithms

The focus of this research is not an exhaustive review of the huge variety of less-used

clustering algorithms that are available. The miscellaneous techniques discussed in this

subsection are applied specifically within the domain of SOMs, and are therefore of

interest within the domain of SOM-based EDA and DM. A detailed analysis of the

benefits and drawbacks associated with each of the described miscellaneous approaches

is beyond the scope of this dissertation, and is therefore left to future work.

This research work identifies three main SOM-specific miscellaneous clustering algo-

rithms, namely partitional methods with centroids based on map-specific information,

hierarchical SOM systems, and algorithms focused on cluster boundary discovery. Each

of these three broad approaches is discussed under a separate heading, below:

5.3.3.1 Partitional Centroids Based on Map-Specific Information

The first type of miscellaneous clustering algorithm simply extends standard partitional

clustering algorithms in order to allow the exploitation of information derived specifically

from a trained SOM’s map structure. Approaches in this category use map-specific
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information to initialize cluster centroids using the map structure’s own constituent

neuron weight vectors. Two variations on this general approach exist:

• The centroids can be chosen as the neurons that have minimal values in the map’s

local similarity matrix [251]. Each remaining neuron on the map is then clustered

with the closest centroid in weight space, in terms of Euclidean distance. One

possible additional requirement is that clusters must remain contiguous [256]. This

technique is based on the inter-weight-vector similarity cluster indicator.

• Lewis et al [158] propose choosing the neuron with the highest value in the map’s

data subset mapping matrix as an initial centroid. Adjacent neurons are added to

the centroid’s cluster, while the addition does not increase the cluster’s evaluation

beyond a threshold. A possible evaluation of cluster Si is simply intra(Si)
1. Once a

cluster cannot be grown further, the process is repeated on the unclustered neurons.

This method uses the data example concentration cluster indicator.

5.3.3.2 Hierarchical SOMs

Another miscellaneous approach uses a hierarchical SOM system to discover emergent

neuron clusters. A hierarchical SOM simply trains a secondary SOM on an aspect of the

map that is being analyzed. Two general variants on this theme are possible:

• It is possible to train the secondary SOM on the weight vectors of the analyzed

SOM [164]. The secondary SOM models the analyzed SOM’s weight vector distri-

bution, and thus uses the inter-weight-vector similarity cluster indicator.

• Another alternative trains the secondary SOM on the two-dimensional map coor-

dinates of neurons that are data example BMUs [156]. This method models the

map’s BMU distribution, and focuses on the data example concentration indicator.

In both cases a non-emergent secondary SOM is equivalent to using k-means clustering on

the analyzed SOM. The k-means algorithm is less time complex than the SOM algorithm,

1 In the original work of Lewis et al, the cluster evaluation mechanism is based on the problem-specific

characteristics of the training examples mapped into each cluster. However, the previously discussed

intra-cluster cohesion measure, intra(Si), is an applicable general cluster evaluation measure.
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and should thus be preferred in practice. Emergent secondary SOMs, however, are able

to find emergent clusters in the analyzed maps, but are more complex to interpret.

5.3.3.3 Cluster Boundary Discovery Algorithms

Finally, it is possible for algorithms to focus on discovering boundaries for emergent map

clusters. This research identifies two alternative strategies in this category:

• The rule extractor by Malone et al (see Section 7.2) proposes the boundary dif-

ference value (BDV) [162] statistic for identifying boundaries of widely separated

weight vectors. Such boundaries are based on inter-weight-vector similarity.

• Another approach is to mark neurons that are not BMUs for any labeling examples,

and designate these neurons as cluster boundaries [256]. This technique uses data

example concentration as an indicator of emergent cluster structure.

Finally, both boundary discovery methods merge the neurons within boundary divisions

into clusters. These approaches suffer from clustering errors when boundary gaps occur,

and have complex implementations in contrast to traditional clustering methods.

5.4 Exploratory Cluster Discovery

All exploratory clustering methods are SOM-specific, due to a reliance on SOM visual-

ization techniques. As Figure 5.3 shows, map visualizations aid a human in identifying

emergent clusters [257, 274], or boundaries between clusters [50]. Exploratory clustering

thus has much in common with EDA methods, but is also applicable to DM tasks.

Because the grid-based representations of Section 4.3 closely resemble the neurons’ ac-

tual organization on the map, grid visualizations are very commonly used for exploratory

cluster discovery. While also usable, the irregular map representations discussed in Sec-

tion 4.4 are generally more difficult to interpret in an exploratory context.

Using an exploratory approach, it is up to the human analyst to subjectively decide

whether a particular region of interest is significant enough to constitute a cluster. The

analyst then typically makes use of an interactive tool to select single neurons or groups

of neurons, and to designate these neurons into cohesive, disjoint clusters [257].
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Training Data Trained SOM Visualized SOM

Visualization Clustering
ExploratoryInspection of

Clustered SOM

Figure 5.3: The overall procedure for the exploratory clustering process.

As is the case for the algorithmic clustering methods, exploratory cluster discovery

may use either of the two emergent cluster structure indicators described in Section 5.1.

The cluster indicator that is exploited depends on the map visualization used.

Using the inter-weight-vector similarity indicator, visually similar weight vectors in-

dicate clusters, with dissimilar neighboring neurons forming cluster boundaries [257]:

• It is possible for an analyst to use either a grid-based representation augmented

with similarity information (see Section 4.3.1), or an irregular map representation

that intrinsically represents similarity information (see Section 4.4). However, the

use of visualizations that directly represent algorithmically discovered clusters will

clearly be senseless in a practical setting, due to the fact that such visualizations

already represent the results of a cluster discovery process.

• Alternatively, visualizations that directly represent each neuron’s entire weight vec-

tor (see Section 4.3.2.2) may highlight groups of similar weight vectors. Visualizing

only a subset of the weight components will be insufficient in most practical situ-

ations, unless feature selection techniques are used to determine and display only

the most informative weights. It should also be noted that complex representations

and high-dimensional weight vectors may present interpretation difficulties.

Exploratory cluster discovery can also focus on the data example concentration clus-

ter indicator [274]. In this case, neurons that are BMUs for many examples should
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be identified as cluster members. Neurons that no (or very few) examples map to are

considered to fall on the border between clusters. It is possible to use the data subset

mapping visualizations that are mentioned in Section 4.3.3.2, provided that the number

of data examples used is sufficient to adequately delineate cluster structure.

It is possible to use cluster evaluation measures to help guide a human analyst during

an exploratory cluster discovery task. Exploratory clustering tools can display a cluster

evaluation measure that is updated as the analyst assigns neurons to different clusters.

The evaluation measure serves as a constantly updated numerical guide to the quality

of the clustering that an analyst is in the process of creating. Evaluation measures also

allow the comparison of several analyst’s clusterings of the same map, allowing for the

selection of the best discovered clusters for further EDA or DM analysis.

There are some very important drawbacks that are inherent to the use of any of

the above-mentioned exploratory cluster discovery methodologies. These factors should

always be carefully considered before such an exploratory approach is used in a practical

setting, and may mean that an algorithmic approach could be more appropriate:

• The subjectivity of the human analyst’s interpretation may become a concern [257].

Analysts may bias their interpretations towards examples that they expect to find,

thus reducing the possibility of discovering interesting and unexpected clusters.

• The clustering process results are not reproducible. This is because every individual

human analyst may cluster one map in a variety of different ways. Even a single

analyst’s results may vary over time due to factors such as mood and fatigue.

• The clustering process may become extremely tedious and time-consuming [257].

This is especially problematic when the clustering process involves SOMs that are

very large in terms of map structure size or weight vector dimensionality.

However, despite the above concerns, an exploratory approach may allow for the

discovery of clusters that algorithmic approaches cannot detect. For instance, an intrinsic

algorithmic bias or an inherent uncertainty in a map’s cluster structure might result

in certain clusters being overlooked by a clustering algorithm. Additionally, a human

analyst may denote certain clusters as irrelevant [104] (for example, due to a lack of

interesting characteristics), which a purely algorithmic approach is incapable of.
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5.5 Hybrid Cluster Discovery

Hybrid cluster discovery techniques simply combine a machine-based algorithmic method

(i.e., an approach from Section 5.3) and a human-oriented exploratory technique (i.e., a

method from Section 5.4). Hybrid cluster discovery methods use a clustering algorithm’s

output as a base, and a human analyst’s insight to improve this output.

Figure 5.4 illustrates one hybrid cluster discovery approach, which uses interactive

tools that allow an analyst to manually affect the operation of a clustering algorithm.

Two simple examples, related to the methods described in Section 5.3, are:

• A hierarchical dendrogram can be interactively cut at varying levels on different

branches, thus producing different clusterings [24]. This is shown in Figure 5.2.

• The output of partitional clustering algorithms can be changed through manual

selection of varying k values, as well as the initial centroid values.

Another possible hybrid cluster discovery method, shown in Figure 5.5, requires man-

ual post-modification of the cluster output produced by an algorithmic cluster discovery

method. This cluster modification must be performed in an exploratory fashion, where

a human expert re-assigns neurons to either existing or new emergent clusters.

Cluster quality evaluation measures may again be used in several ways to aid a hybrid

cluster discovery exercise. Of course, quality evaluations are separately applicable to both

the algorithmic and the exploratory components of a hybrid cluster discovery approach,

as previously described. In addition, the following approaches are also possible:

• For both hierarchical and partitional methods, clusterings with quality values above

or below (depending on the measure) a certain threshold may be added to a subset

of interesting groupings that are worthy of further investigation [182, 257].

• Hierarchical clustering dendrograms may be pruned using such measures. Group-

ings that are indicated as uninteresting may be discarded from the tree, thus re-

ducing the tree’s size, and limiting the complexity of the discovery process.

Ultimately, the intention is that the use of hybrid cluster discovery approaches will

allow for the exploitation of the advantages of both algorithmic and exploratory tech-

niques, while mitigating the drawbacks associated with each methodology.
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Trained SOMTraining Data Clustering Algorithm

Algorithm Tuning Clustered SOMSOM Clustering

Figure 5.4: The overall procedure for a hybrid cluster discovery procedure, wherein a human

data analyst performs a manual modification on the operation of a clustering algorithm.

Trained SOMTraining Data Clustering Algorithm

Clustered SOM Cluster Editing Modified Clusters

Figure 5.5: The overall procedure for a hybrid cluster discovery procedure, wherein a human

data analyst performs a manual modification to the clusters produced by a clustering algorithm.

5.6 Cluster Stability and SOMs

Cluster stability [1, 13, 28, 264] encompasses the study of how closely the result of cluster

discovery approximates the actual cluster structure present in the underlying data. For

emergent SOMs, the map weight vectors constitute the clustered data.

Cluster stability studies usually theoretically analyze the stability (or lack of stability)

that is intrinsic to a particular clustering approach. It is also possible to determine the
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stability of a clustering, given a particular configuration of the clustering algorithm

(including, for example, a particular value of k for partitional algorithms) [264]. Studies

also focus on the nature of data that produces stable clusters [1]. The assumption in all

cases is that a stable clustering should also represent clusters of good quality.

While there is no single definition for the concept of cluster stability, the following

three general perspectives on stability have been identified in the literature [252]:

• Sets of perturbed weight vectors are generated. The clustering technique is ap-

plied to each perturbed set, producing a clustering per set. Finally, the generated

clusterings are compared to one another. The smaller the differences between the

clusterings, the more stable the discovered clusters are judged to be [264].

• Assuming that an inter-weight-vector distance measure is used as a cluster indica-

tor, the second approach computes the size of the perturbation that can be applied

to the distance measure, while still preserving the structure of the discovered clus-

ters. The larger the perturbation, the more stable the clusters are [1].

• If all near-optimal clusterings on a data set (in terms of a clustering algorithm

cost function) are assumed to also be close to the true cluster structure, finding a

clustering that is approximately close to the true cluster structure is achievable in

polynomial time, even if finding a near-optimal cost value is NP-hard [13].

While several analyses have been performed to investigate the intrinsic stability

characteristics and shortcomings of the more established hierarchical [28] and parti-

tional [1, 13, 264] clustering algorithms, the stability of emergent clusters in SOMs has

not been the focus of much research. A literature review identified no publications that

scrutinize the innate stability characteristics of SOM-based emergent clusters.

Most studies that do consider emergent SOM cluster stability report specific results

in very narrow application areas, and thus the generality of these findings is unclear. Ex-

amples of such studies include work focused on microarray data [91, 218], gene expression

data [41, 137], and three-dimensional body scans for medical applications [160].

Some SOM-based cluster stability results are presented only in the context of simple

empirical comparisons to newly proposed algorithms, where the focus is the performance

of the new approaches rather than that of the SOM. For example, Kim and Lee compare
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SOMs and several other clustering approaches to a newly proposed ensemble clustering

method [137], while Cabanes and Bennani [26] compare two proposed SOM-inspired

algorithms (the S2L-SOM and DS2L-SOM approaches) and standard SOMs clustered

using two techniques (k-means and single linkage agglomerative clustering).

Finally, some publications assess the stability of SOMs that differ from the standard

stochastic approach discussed in this research. For example, one-dimensional SOMs [41],

and two-dimensional non-emergent SOMs [91] have been studied. These findings are not

general enough to be relevant for the methods covered in this dissertation’s work.

5.7 Summary

This chapter gave an overview of techniques appropriate for the discovery of emergent

neuron clusters. Emergent neuron cluster discovery is a requirement of several neuron

labeling methodologies that are discussed in the following chapter. Section 5.1 introduced

the overarching objective of emergent cluster discovery, and the main concepts underlying

all cluster discovery techniques. Section 5.2 discussed quality evaluation techniques for

discovered emergent clusters. The next three sections in this chapter focused on each of

the main categories of cluster discovery approaches within SOMs: Algorithmic cluster

discovery techniques were discussed in Section 5.3, Section 5.4 described exploratory

cluster discovery, and Section 5.5 dealt with hybrid cluster discovery. Finally, Section 5.6

touched upon cluster stability in the context of emergent clusters in SOMs.

The following chapter focuses on the variety of neuron labeling techniques that are

available for self-organizing maps. Such labeling techniques are integral to a large number

of data mining and exploratory data analysis techniques that are based on SOMs.
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Map Neuron Labeling

The previous chapter described methods for discovering emergent clusters of neurons

within a SOM’s map structure. The global similarity encoded visualizations of Sec-

tion 4.3.1.2, and most of the SOM-based DM methods in Chapter 7, rely on map neuron

labels. This chapter discusses methods for applying labels to neurons.

Section 6.1 discusses the viewpoint on labeling that is taken by this research. Sec-

tion 6.2 provides more detail on supervised labeling techniques, while Section 6.3 inves-

tigates unsupervised labeling methods. Section 6.4 focuses on the actual application of

neuron labeling techniques to trained SOMs. Section 6.5 discusses neuron labeling with

high-dimensional data sets. Finally, a chapter summary is provided in Section 6.6.

6.1 An Overview of Neuron Labeling

As was noted in Section 3.1.2, a SOM models the distribution of a training data set.

This model, however, is purely defined by the distribution of weight vector components

across the map structure, and is not characterized in any meaningful way.

Neuron labeling characterizes a SOM by associating textual labels with a subset of

the map’s neurons, while possibly leaving some neurons unlabeled. A neuron’s label

should describe the characteristics of the part of the data distribution modeled by the

neuron’s weight vector. Fuzzy labels are also possible [227], but are often difficult to

interpret and verify. Fuzzy labeling is thus not considered further in this research.

106
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This dissertation differentiates between two broad classes of neuron labeling tech-

niques, based on whether supervision is provided by means of data classifications:

• Supervised labeling methods derive labels from the classification attribute values

of examples. Labels are usually based on training examples, but examples from

a separate labeling set can be used instead. If class information is unavailable, a

human expert must manually provide classification attribute values.

• Unsupervised labeling methods use no intrinsic data classifications, and can thus

function in the absence of class information. Labels are derived either from a

human analyst’s observations, directly from the SOM’s weight vectors, or from

data examples in conjunction with the map’s weights.

Figure 6.1 illustrates the differences between supervised and unsupervised labeling, as

well as the three main approaches that fall under the banner of unsupervised labeling.

Supervised labeling is both commonly used and empirically verifiable, and is therefore the

main focus of this study. In contrast to supervised approaches, the results of unsupervised

labeling techniques are subjective, and are thus difficult to verify empirically. In addition,

unsupervised labeling methods are much less prevalent in the literature.

The presence or lack of supervision within a labeling technique is unrelated to the

SOM’s level of training supervision. Supervised and unsupervised labeling techniques can

both be applied to either unsupervised, supervised or semi-supervised SOMs. Section 6.4

discusses neuron labeling for SOMs with different levels of supervision.

EDA and DM exercises very often focus on neuron labels that are nominal, and thus

discrete in nature. Such discrete labels are this chapter’s main concern. This chapter

also investigates continuous-valued map neuron labels [12]. However, it should be noted

that continuous labels are often difficult to interpret and verify for accuracy.

6.2 Supervised Neuron Labeling

This research identifies three supervised neuron labeling techniques, namely example-

centric neuron labeling, example-centric cluster labeling, and weight-centric neuron label-

ing. These methods are investigated in Sections 6.2.1 to 6.2.3. Section 6.2.4 describes
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Figure 6.1: An overview of the main approaches to supervised and unsupervised neuron

labeling: (a) shows supervised labeling; (b) shows unsupervised labeling that is guided by a

human analyst; (c) shows unsupervised labeling based entirely on the map’s weights; (d) shows

unsupervised labeling based on the map’s weights and an unclassified data set.

some esoteric variations on the three approaches, based on how multiple label mappings

are handled. A taxonomy of these labeling methods is illustrated within Figure 6.2.

6.2.1 Example-Centric Neuron Labeling

Algorithm 6.1 shows example-centric neuron labeling [145]. Each neuron, nyx, keeps a

mapped example set, Myx. A BMU is found for each labeling example, and the example is

added to the BMU’s mapped example set. Each neuron is then labeled with the majority

classification in the associated mapped example set, with ties settled arbitrarily.

Example-centric neuron labeling has two advantages. Firstly, the approach is simple

to implement. The method is also efficient, because the labeling data is iterated through

only once, and each example’s search is limited to a relatively small set of neurons.

However, a drawback of example-centric neuron labeling is that all non-BMU neurons

remain unlabeled. A less serious concern is that the mapped example sets associated
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Figure 6.2: A taxonomy of SOM-based supervised neuron labeling techniques.

Create and initialize a SOM, denoted map, consisting of Y ×X neurons

Train map on an I-attribute training set, denoted DT , until convergence

for all neurons nyx in map do

Define an empty mapped example set, denoted Myx

Associate Myx with nyx

end for

for all labeling example vectors ~zs do

Determine the BMU for ~zs, denoted nyx, over all neurons in map

Add labeling example ~zs to Myx

end for

for all neurons nyx in map do

Determine the value of Acls that is most common in Myx

Label nyx with the Acls value that was determined

end for

Algorithm 6.1: Pseudocode of the example-centric neuron labeling algorithm.

with every neuron on a map occupy memory resources, which will be problematic when

very large labeling example sets require many examples to be stored.

The problem of unlabeled neurons is particularly acute when very large maps are

labeled using a limited number of labeling examples. This is because the small number

of examples will have relatively few BMUs, leading to fewer labeled neurons. This

research therefore recommends that example-centric neuron labeling should be avoided

during EDA, where a partially labeled map will hinder easy visual analysis.
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The drawback of unlabeled neurons can be addressed by techniques that propagate

labels from labeled neurons to adjacent unlabeled neurons [105]. Such methods have

thus far not been investigated in relation to practical EDA or DM exercises, and are

consequently not discussed in further detail within this dissertation.

This research work identifies three conditions that decrease the accuracy of individual

labels that are assigned to neurons by means of example-centric neuron labeling:

• Labeling data examples containing many missing values have less accurate BMU

matches, which will tend to result in mislabelings. It is consequently advisable to

ensure that the majority of labeling examples are as complete as possible.

• Label accuracy is compromised for neurons with very few mapped data examples,

particularly when a label is based on only one data example. Such a neuron’s label

is based on a less representative sample of data examples, and the label has a higher

probability of being assigned due to chance mappings. This research thus suggests

analyzing an example-centric neuron labeling in conjunction with a data subset

mapping visualization, such as the data histogram described in Section 4.3.3.2.

• A label is of questionable quality when several classes are almost equally prevalent

within the label’s mapped examples (e.g., out of ten mapped examples, five belong

to class A, four to class B, and one to class C). For such a neuron, there is no clear

distinction between the most prevalent classifications (A and B in the example),

and the neuron effectively represents multiple classes. It is possible to use a map-

based information visualization (these are discussed in Section 4.4.2) that shows

mapped examples for individual neurons, in order to identify such labels.

Figure 6.3 (a) illustrates a data histogram visualization of the examples used to train

the example SOM presented in Figure 4.1. In the histogram, a darker shade indicates a

larger number of mapped examples, and the lightest shade denotes that no examples have

been mapped to a neuron. The histogram should be compared to the example-centric

neuron labeling, which is shown in Figure 6.3 (b), and was performed using the full train-

ing data set. The labels SET, VER and VIR respectively correlate to the Iris_Setosa,

Iris_Versicolor and Iris_Virginica classes. Clearly, the neurons with no mapped

examples receive no labels, giving the labeling a fragmented appearance that is relatively
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Figure 6.3: Supervised labelings for the Iris data set SOM of Figure 4.1: (a) shows a data

histogram; (b) shows example-centric neuron labeling; (c) shows example-centric cluster label-

ing, using SOM-Ward clustering; (d) shows weight-centric neuron labeling. The Iris_Setosa,

Iris_Versicolor and Iris_Virginica classes are respectively labeled SET, VER and VIR.

difficult to visually interpret. Even so, it is possible to discern that Iris_Setosa labels

tend to be grouped in the upper right of the map, while Iris_Virginica labels can

be found in the lower left portion of the map, and Iris_Versicolor labels generally

occupy the space between the Iris_Setosa and Iris_Virginica groups.
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Kayacık and Zincir-Heywood [135] propose an approach that extends example-centric

neuron labeling, where labels are not based on unique mappings between data examples

and BMUs. Instead, every neuron has a continuous-valued counter for each classification

in the training data set. Each labeling example is then presented to the map, and the

five neuron weight vectors that are closest to the example are found. These neurons are

then ranked according to distance from the labeling example (with a rank of one for the

BMU). Finally, for each of the selected neurons, the counter for the classification of the

labeling example is incremented by a value that is inversely proportional to the neuron’s

rank. This approach does not seem to be used beyond the original paper. Furthermore,

no analysis in relation to standard example-centric neuron labeling has been done, and

the rationale behind the number of neurons considered for each mapping is not clear.

Investigations into the effectiveness of this method are thus left to future work.

6.2.2 Example-Centric Cluster Labeling

Example-centric cluster labeling [211] is outlined as pseudocode in Algorithm 6.2. As an

initial step, example-centric cluster labeling requires the discovery of emergent neuron

clusters within a trained map, as described in Chapter 5. Each discovered cluster is

labeled as a whole. While example-centric neuron labeling keeps a set of examples for

each neuron, example-centric cluster labeling links a mapped example set, Ni, with each

cluster, Si. Labeling examples are added to the mapped example set of the cluster

in which the example’s BMU falls. The majority classification in a cluster’s mapped

example set then labels all the cluster’s neurons, with ties settled arbitrarily.

Within an example-centric cluster labeling system, clusters that contain no BMUs

remain unlabeled. This phenomenon of unlabeled neurons is similar to the main draw-

back of example-centric neuron labeling. However, the aggregating effect of emergent

clusters minimizes the number of unlabeled neurons by grouping and labeling large sets

of map neurons together. It is therefore likely that an example-centric cluster labeling

will leave fewer unlabeled neurons than an example-centric neuron labeling.

As for example-centric neuron labeling, one drawback of example-centric cluster la-

beling is the potentially large memory requirements of the mapped example sets, partic-

ularly when large numbers of examples are used for labeling. This drawback is somewhat
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Create and initialize a SOM, denoted map, consisting of Y ×X neurons

Train map on an I-attribute training set, denoted DT , until convergence

Derive a discrete set of emergent clusters, L = {S1, S2, . . . , Sk}, of all ~wyx in the map

for all clusters Si ∈ L do

Define an empty mapped example set, denoted Ni

Associate Ni with Si

end for

for all labeling example vectors ~zs do

Determine the BMU for ~zs, denoted nyx, over all neurons in map

Determine emergent cluster Si, such that the BMU of ~zs is in Si, and add ~zs to Ni

end for

for all clusters Si ∈ L do

Determine the value of Acls that is most common in Ni

Label all nyx ∈ Si with the Acls value that was determined

end for

Algorithm 6.2: Pseudocode of the example-centric cluster labeling algorithm.

mitigated by the fact that fewer mapped example sets need to be maintained, in compar-

ison to example-centric neuron labeling. Another drawback of example-centric cluster

labeling is that the cluster discovery step adds time complexity to the method.

A more subtle drawback associated with example-centric cluster labeling arises when

at least one heterogeneous cluster exists, such that two or more inseparable example

classes are modeled within a single emergent cluster. Example-centric cluster labeling

applies a uniform labeling to such a heterogeneous cluster. This type of uniform labeling

eliminates any distinction between the classes of examples that map to the cluster.

The same situations that adversely affect example-centric neuron label accuracy also

apply to example-centric cluster labeling. Using labeling examples with many missing

values impacts label accuracy, but this is ameliorated by the large numbers of mapped ex-

amples per cluster, which average out small numbers of mis-mapped examples. Clusters

with very few mapped labeling examples also have suspicious labels. Furthermore, label
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quality should be questioned when multiple classes have close to the maximum number of

mapped labeling examples for a cluster. The last two situations are highlighted by map-

based information visualizations that show map meta-data for the emergent clusters,

similar to the histogram visualization that was shown in Figure 4.13 (b).

Figure 6.3 (c) illustrates a pathological example of a heterogeneous cluster, with

reference to the Iris data set SOM example of Figure 4.1. SOM-Ward clustering dis-

covered two emergent clusters of neurons: one in the upper right of the map, contain-

ing mostly Iris_Setosa examples, and one heterogeneous cluster to the lower left of

the map, containing predominantly Iris_Virginica and Iris_Versicolor examples.

Example-centric cluster labeling uniformly labels all neurons that model the two in-

separable classes. However, when compared to the example-centric neuron labeling in

Figure 6.3 (a), the example-centric cluster labeling leaves no neurons unlabeled, which

results in an unfragmented map appearance that is more suitable for visual EDA.

6.2.3 Weight-Centric Neuron Labeling

Weight-centric neuron labeling [145] is based on each neuron’s best matching example

(BME). The BME of a neuron is the training or labeling data example that is closest to

the neuron’s weight vector, usually in terms of Euclidean distance, and is defined as:

‖~wyx − ~ze‖2 = min
∀p

{
‖~wyx − ~zs‖2

}
(6.1)

where ~wyx denotes the weight vector of the neuron for which the BME is calculated, ~ze

denotes the training or labeling example vector of the BME, and ~zs denotes an arbitrary

training or labeling example vector. Using a similar approach as the BMU calcula-

tion procedure, missing attribute values can be easily dealt with by simply calculating

distances using only the vector components that are available within each ~zs.

It should, however, be noted that BMEs will clearly be less accurate in the presence of

a large number of missing values. Consequently, it is sensible to require that all training

or labeling examples used to calculate a BME should have no (or at least very few)

missing attribute values. The remainder of this dissertation assumes that there are no

missing attribute values present in any examples that are used to calculate a BME.
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The weight-centric neuron labeling approach is outlined in terms of pseudocode within

Algorithm 6.3. Weight-centric labeling essentially reverses the strategy that is used by

both example-centric neuron labeling and example-centric cluster labeling. Instead of

mapping labeling examples to map neurons or emergent clusters, weight-centric labeling

determines a BME for each neuron on the map. Finally, the class of each BME simply

becomes the label that is associated with the neuron that the BME maps to.

Like example-centric neuron labeling, weight-centric neuron labeling is efficient, be-

cause the map neurons are iterated through only once, and a limited BME search takes

place per neuron. Because no mapped example sets must be stored and searched, weight-

centric neuron labeling has an additional performance and memory advantage over the

example-centric methods. As Algorithms 6.1, 6.2, and 6.3 illustrate, the weight-centric

approach is also easier to implement than both example-centric methods. Another ad-

vantage associated with weight-centric labeling is that a label is guaranteed for every

neuron, which will be of assistance during visual exploratory analysis of a map.

Figure 6.3 (d) illustrates a weight-centric neuron labeling applied to the example Iris

data set SOM of Figure 4.1. When this label assignment is compared to the example-

centric neuron labeling shown in Figure 6.3 (b), it is clear that both approaches can

distinguish between the three class regions on the map. However, the weight-centric

technique labels every neuron, producing a less fragmented visualization.

In contrast to example-centric cluster labeling, weight-centric neuron labeling has

the advantage of being able to function well in the presence of heterogeneous emergent

clusters. This is because weight-centric labeling does not rely on the aggregating effect

of neuron clusters. A comparison of Figure 6.3 (c) and (d) shows how weight-centric

labeling distinguishes between neurons representing the inseparable Iris_Virginica
and Iris_Versicolor classes, even though both classes fall in the same cluster.

Unfortunately, weight-centric labeling provides an inaccurate neuron label if a neu-

ron’s BME is a very poor match (i.e., the neuron’s weight vector and the BME are far

apart). Neurons on the boundaries between emergent clusters often have poor BME

matches, as no data examples map to such neurons. Weight-centric labels on cluster

boundaries should thus be analyzed before being used for EDA or DM. An appropriate

map visualization, such as a U-matrix, can help identify boundary neurons.
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Create and initialize a SOM, denoted map, consisting of Y ×X neurons

Train map on an I-attribute training set, denoted DT , until convergence

for all neurons nyx in map do

Determine the BME for nyx, denoted ~ze, according to Equation (6.1)

Determine the value of Acls for BME ~ze, and label nyx with this value

end for

Algorithm 6.3: Pseudocode of the weight-centric neuron labeling algorithm.

The above discussion suggests that example-centric cluster labeling and weight-

centric neuron labeling should be preferred to example-centric neuron labeling during

EDA, because example-centric neuron labeling often leaves a map only partially labeled.

Furthermore, example-centric cluster labeling cannot accurately characterize real-world

data containing inseparable classes, which weight-centric neuron labeling can handle.

This research thus recommends weight-centric neuron labeling for EDA. Chapter 8 in-

vestigates how well the labeling approaches perform within a DM context.

Valero et al [245] propose performing a weight-centric neuron labeling on a SOM,

and using each neuron’s weight vector and label to train a Support Vector Machine

(SVM) [40], which learns the SOM’s labeling. The weight vectors of unlabeled SOMs are

later presented to the SVM, which predicts a label for each weight vector’s neuron. The

SVM is thus used to label these SOMs without requiring further labeled data examples.

This approach has not been applied beyond the field of sound event recognition. The

method also assumes that the labeled SOM models the same data space as any unlabeled

SOMs to which the SVM is applied, which is not necessarily the case. In a broader sense,

the efficacy of applying a supervised learning model, such as an SVM, to SOM neuron

labeling has not been demonstrated nor adequately analyzed in relation to other labeling

approaches. This technique is therefore ignored for the remainder of this dissertation.

6.2.4 Supervised Labeling using Multiple Label Mappings

Example-centric neuron and cluster labeling map multiple data examples to, respectively,

individual neurons and emergent clusters. Weight-centric neuron labeling maps single
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BMEs to neurons, but can be modified to choose each label as the most common class

amongst a neuron’s q̄ nearest examples [12]. This adapted weight-centric method thus

maps multiple examples, in a similar fashion to the example-centric techniques.

Variations on neuron label selection are also possible [12]. The following variations

are applicable to any of the above-mentioned supervised labeling methods that are based

on multiple mappings of labeling data set examples to map neurons or clusters1:

• The most basic label selection variation simply selects a random class label from

the set of mapped examples. The random nature of this approach is likely to result

in inaccurate labels, and this approach should therefore be avoided.

• Each set of mapped examples is ranked from nearest to furthest from a neuron

weight vector or cluster centroid. Examples are given weights that are inversely

proportional to the associated rank. Finally, the classification with the highest

weighted sum of appearances amongst the mapped examples become neuron or

cluster labels. Better matching classifications thus have greater contributions.

• A set of sub-labels can be associated with each labeled neuron or cluster. The

sub-label set contains every unique classification that occurs within the set of

labeling examples that map to the neuron or cluster being labeled. Crude labels

are produced when examples of many different classes map to the same labeling

location on the map (e.g., when the set of labeling examples is noisy).

• Again, neurons or clusters can be labeled with a set of sub-labels. However, each

sub-label set contains only those classifications that appear at least a user-defined

percentage of times amongst the labeling examples mapping to the labeled neuron

or cluster. Again, noisy labeling sets give crude labels. Also, the management of

the percentage threshold parameter complicates the labeling process.

The two last-mentioned approach variations usually introduce multiple neuron sub-

labels. A large set of sub-labels is often more difficult to interpret than single labels, and

may therefore be considered inappropriate within a practical EDA or DM setting.

1 The original literature [12] describes these variations only in the context of the modified weight-

centric method. However, all three variations are also valid for both example-centric labeling approaches.
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It should be noted that the variations based on multiple example mappings are not

widely used in practice, nor have the performance characteristics of these methods been

studied in detail. The investigation of these extensions is thus left to future work.

6.3 Unsupervised Neuron Labeling

This work defines four unsupervised labeling method classes, shown in Figure 6.4: ex-

ploratory labeling, which is discussed in Section 6.3.1, unique cluster labeling, which Sec-

tion 6.3.2 describes, unsupervised weight-based labeling, which is covered in Section 6.3.3,

and unsupervised example-based labeling, which Section 6.3.4 investigates.

Unique cluster labeling, and unsupervised weight- and example-based labeling are

all algorithmic techniques that perform automatic neuron label assignment. These algo-

rithmic unsupervised labeling techniques should be used when non-subjective labeling is

required in a short amount of time, or when many maps must be labeled.

This dissertation generalizes several similar techniques into the unified categories of

unsupervised weight-based and example-based labeling. Approaches in both categories

build labels from the components of a SOM’s model, which is non-trivial, and means

that these labeling methods are the most complex covered by this research.

6.3.1 Exploratory Labeling

Figure 6.5 illustrates exploratory labeling [39], which is driven by a human expert’s

analysis of a trained SOM. The approach is similar to the exploratory cluster discovery

that Section 5.4 describes. An expert’s analysis is guided by the map visualizations

described in Chapter 4, after which neurons or neuron groups must be assigned labels

manually. An interactive tool is usually used during exploratory labeling.

Exploratory cluster labeling has the same drawbacks as exploratory cluster discov-

ery. Firstly, the human analyst’s results are subjective and possibly biased. Secondly,

exploratory labels are typically non-reproducible, as different analysts’ assessments are

likely to vary [227]. Finally, the exploratory procedure is often very time-consuming [227].

Despite these drawbacks, it is often possible for the human insight of an exploratory ap-

proach to produce results superior to those of algorithmic labeling methods.
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Figure 6.4: A taxonomy of SOM-based unsupervised neuron labeling techniques.
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Figure 6.5: The overall procedure for the exploratory neuron labeling process.

6.3.2 Unique Cluster Labeling

Algorithm 6.4 illustrates unique cluster labeling [51]. The technique uses a set of dis-

covered emergent clusters as a basis for labeling. An algorithm simply assigns unique

machine-generated labels, such as cluster_1 and cluster_2, to each individual emer-

gent cluster on a map. Finally, all the neurons that make up an emergent cluster are

given the same label as the cluster. This process is repeated for every cluster.

Clearly, unique cluster labels simply differentiate emergent clusters from one another.

The labels are in no way descriptive of the underlying characteristics of clusters or

neurons. The intention of unique cluster labeling is therefore typically to provide only

basic assistance in the analysis of the structure of unique emergent map clusters. Deeper

analysis requires the use of visualizations, which must be compared to the labeled areas.
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Create and initialize a SOM, denoted map, consisting of Y ×X neurons

Train map on an I-attribute training set, denoted DT , until convergence

Derive a discrete set of emergent clusters, L = {S1, S2, . . . , Sk}, of all ~wyx in the map

for all clusters Si ∈ L do

Generate a unique cluster label, unassigned to any clusters in L, denoted Li

Label all nyx ∈ Si with cluster label Li

end for

Algorithm 6.4: Pseudocode of the unique cluster labeling algorithm.

6.3.3 Unsupervised Weight-Based Labeling

Unsupervised weight-based labeling methods define neuron sub-labels, which are based

on a subset of the map’s attributes. Chosen attributes are judged to be informative

according to a significance statistic that is based on the attribute’s weight value.

Weights must usually be normalized, so that components are fairly compared. Such

weights are produced by normalizing training data attribute values before training. Al-

ternatively, weights must be normalized after training. Because attributes with large

domains dominate during training, this work recommends the former method.

The complexity of multiple sub-labels is often undesirable for EDA or DM. Even if

appropriate, too many sub-labels reduce interpretability. Analysts must thus subjectively

limit the number of sub-labels, often using a maximum sub-label count per neuron.

Several labelings can also be produced, from which an appropriate one is chosen.

This research identifies two classes of unsupervised weight-based labeling methods:

unsupervised weight-based neuron labeling, which is discussed within Section 6.3.3.1, and

unsupervised weight-based cluster labeling, which Section 6.3.3.2 describes. The advan-

tages and drawbacks of the two approaches are contrasted in Section 6.3.3.3.

6.3.3.1 Unsupervised Weight-Based Neuron Labeling

Algorithm 6.5 illustrates unsupervised weight-based neuron labeling [155, 217]. The ap-

proach performs three steps, each of which is elaborated upon separately. Finally, several

examples of unsupervised weight-based neuron labeling are presented and discussed.
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Create and initialize a SOM, denoted map, consisting of Y ×X neurons

Train map on an I-attribute training set, denoted DT , until convergence

for all neurons nyx in map do

for all attributes Al represented by a weight in ~wyx do

Use weight wyxl associated with Al to compute sig(Al, nyx)

Associate the new significance value with Al in nyx

end for

end for

for all neurons nyx in map do

for all sufficiently significant attributes Al with corresponding wyxl do

Build a sub-label using the name of Al and value of wyxl

Add the new sub-label to the label for nyx

end for

end for

Algorithm 6.5: Pseudocode of the unsupervised weight-based neuron labeling algorithm.

Step 1: Compute Attribute Significance Values for Neurons

The operation of unsupervised weight-based neuron labeling is primarily based on a

significance statistic, which is denoted sig(Al, nyx). This significance statistic computes

a value representing the significance of attribute Al within neuron nyx. The statistic

must be based on the continuous weight value wyxl. Attributes with values indicating

higher significance are chosen to become neuron sub-labels in the following step.

Many sig(Al, nyx) statistics are possible. Serrano-Cinca’s absolute weight value sig-

nificance [217] considers very high and very low weight values to be dominant. If weights

are normalized to a [−1.0, 1.0] range, absolute weight value significance is defined as:

sig(Al, nyx) = |wyxl| (6.2)

The absolute value is thus in the range [0.0, 1.0], with higher values denoting greater

significance. Lagus and Kaski [155] propose a keyword-based significance measure specif-

ically for SOMs trained on text documents, which has not been applied more generally.
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Step 2: Select Informative Attributes for Neurons

During this step of the labeling procedure, a chosen sig(Al, nyx) measure assigns a sig-

nificance value to each attribute associated with every neuron on the map. Next, an at-

tribute selection mechanism is used in order to identify one or more sufficiently significant

attributes for inclusion in each neuron’s sub-labels. The attribute selection mechanisms

appropriate for unsupervised weight-based neuron labeling include the following:

• The simplest mechanism is to select only the single most significant attribute for

each neuron [217]. However, single-attribute labels often lose too much descriptive

detail, because neurons are usually characterized by several attributes.

• Another simple method chooses a user-defined number of the most significant at-

tributes per neuron. Unfortunately, this technique is crude because the required

number of informative attributes is often unclear. In addition, adequate descrip-

tions of different neurons typically require varying numbers of attributes.

• A more sensible method is to select all attributes with at least a user-specified

significance level. In addition, to guarantee a label for every neuron, each neuron

label can be constrained to include at least the single most significant attribute,

regardless of what the attribute’s actual associated significance value may be.

• Another approach selects attributes with highly characteristic significance values

within each neuron. Such components can be identified for absolute weight value

significance, as the attributes with significance values greater than one positive

standard deviation from the mean significance over all the neuron’s attributes.

• It is possible to select attributes with significance values that are distinctive across

the whole map. Using absolute weight value significance, for example, such com-

ponents are identifiable by significance values that differ by more than one positive

standard deviation from the attribute’s mean significance value across the map.

Step 3: Associate Values with Selected Attributes

Neuron sub-labels that consist only of selected attribute names are possible, but usually

not sufficiently detailed. It is therefore prudent to combine each sub-label’s attribute
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name with a value. Sub-label values should reveal details such as whether a selected

attribute has a very high or a very low value. The most basic sub-label values are simply

the weights corresponding to the selected sub-label attributes for each neuron.

Unfortunately, sub-label values based on raw weights are typically fairly difficult for a

human data analyst to interpret, particularly if the neuron weight values are normalized.

Consequently, in order to improve the readability of sub-label values for unsupervised

weight-based neuron labeling, two simple post-processing operations are available:

• If data normalization was performed either on a map’s training data or weight

vectors, it is recommended that sub-label values be appropriately de-normalized

to the original training data component value ranges. This post-processing step

is generally simple and efficient to perform. De-normalized sub-label values have

more meaningful interpretations, because the label values are more directly related

to the map’s original training data. As an example, Equation (2.2) is used to

de-normalize map weights that are normalized using min-max normalization.

• Thresholds can be used to aggregate raw weight values into broad categories [217].

A simple scheme respectively labels the lower, upper, and middle third of an at-

tribute value range as high, medium, and low. While appropriate threshold selection

is not this work’s focus, different thresholds generally result in different label inter-

pretations (a similar problem arises when binning attribute values [103]). Thresh-

olds are easier to understand than raw values, allow for quicker analysis of large

map areas, and facilitate more general deductions about a map’s characteristics.

Examples: Unsupervised Weight-Based Neuron Labeling

Figure 6.6 shows examples of the Iris data set SOM from Figure 4.1, labeled with unsu-

pervised weight-based neuron labeling using absolute weight value significance. Min-max

normalization was used on the SOM’s training data. The sub-labels sl, sw, pl and pw

respectively denote the components sepal_length, sepal_width, petal_length, and

petal_width. Figure 6.6 (a) shows the map’s emergent clusters, using a U-matrix.

Figure 6.6 (b) illustrates an example of a labeling using only the most significant

attribute and associated weight value, where all label values have been de-normalized to
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sw: 2.43 sw: 2.54 sw: 2.72 sw: 2.86 pw: 1.10 pw: 0.51 pw: 0.31 pw: 0.28 pw: 0.26 pw: 0.25 pw: 0.23

sw: 2.59 sw: 2.68 sw: 2.81 sw: 2.91 pw: 0.92 pw: 0.41 pw: 0.28 pw: 0.25 pw: 0.24 pw: 0.23 pw: 0.22

pw: 1.92 pw: 1.83 sw: 2.77 sw: 2.87 sw: 2.99 pw: 0.81 pw: 0.35 pw: 0.25 pw: 0.22 pw: 0.21 pw: 0.20

pw: 1.99 pw: 1.83 sw: 2.85 sl: 6.57 sl: 6.51 pw: 0.75 pw: 0.34 pw: 0.24 pw: 0.19 pw: 0.18 pw: 0.19

pw: 2.02 pw: 1.93 pl: 5.05 pl: 4.79 sl: 6.64 sl: 6.41 pl: 2.50 pl: 1.73 pw: 0.24 pw: 0.18 pw: 0.19

pl: 5.54 pl: 5.42 pl: 5.19 pl: 4.89 pl: 4.63 pl: 4.03 pl: 2.88 pw: 0.59 pw: 0.33 pw: 0.28 pw: 0.34

pl: 5.97 pl: 5.81 pl: 5.58 pl: 5.31 pl: 4.97 pw: 1.58 sl: 5.88 sl: 5.63 sl: 5.48 sl: 5.22 sl: 4.99

pl: 6.13 pl: 5.86 pl: 5.55 pw: 1.92 pw: 1.79 pw: 1.58 sw: 2.96 sw: 2.85 sw: 2.70 sw: 2.48 sw: 2.34

pl: 6.33 pl: 6.05 pw: 2.07 pw: 2.10 pw: 2.02 pw: 1.79 pw: 1.58 sw: 2.88 sw: 2.72 sw: 2.56 sw: 2.40

pl: 6.21 pw: 2.22 pw: 2.24 pw: 2.19 pw: 2.01 pw: 1.77 pw: 1.57 sw: 2.75 sw: 2.60 sw: 2.48 sw: 2.37
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Figure 6.6: The Iris data set SOM of Figure 4.1, with unsupervised weight-based neuron labels

using the absolute weight value significance of Equation (6.2). The components sepal_length,

sepal_width, petal_length, and petal_width are respectively denoted sl, sw, pl, and pw:

(a) shows the map’s U-matrix; (b) shows neurons labeled with only the most significant weight

value, de-normalized to the original attribute value range; (c) shows neurons labeled with only

the most significant component value threshold (the low, med, and high labels respectively

denote values in the lower, middle, and upper third of each attribute range); (d) shows map

neurons labeled using all the components with a significance above 50% (where at least one

label is required for each neuron), using the low, med, and high value thresholds.
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the appropriate original attribute ranges. While raw weight values provide some insight

into the map structure, it is clear that interpretation by humans is fairly difficult.

Figure 6.6 (c) shows the same labeling as Figure 6.6 (b), but uses threshold-based

labels instead of raw weight values. The thresholds used are low, med and high. These

labels respectively denote the lower, middle and upper third of each weight’s range, which

was computed across the entire map. In comparison to Figure 6.6 (b), general emergent

map structures are clearly far easier to visually discern within Figure 6.6 (c).

Finally, Figure 6.6 (d) shows an example of a labeling scheme where multiple sub-

labels are assigned per neuron, using the same threshold-based labels as in Figure 6.6 (c),

where all attributes with significances above a 50% threshold are selected. To guarantee

labels for all neurons, at least one attribute is chosen for each neuron, regardless of the

attribute’s significance. The labeling in Figure 6.6 (d) gives a more detailed description

for neurons that are characterized by several highly-informative attributes.

6.3.3.2 Unsupervised Weight-Based Cluster Labeling

Unsupervised weight-based cluster labeling is a novel proposal of this research, and is

summarized in Algorithm 6.6. In contrast to unsupervised weight-based neuron labeling,

unsupervised weight-based cluster labeling derives sub-labels from the weight vectors in

emergent neuron clusters, rather than from individual neurons. The technique has four

steps, which are discussed separately, followed by examples of the labelings produced.

Step 1: Discover Emergent Clusters

As an initial step, emergent clusters of neurons must be discovered. Any of the techniques

described in Chapter 5 are appropriate for use during this phase. Naturally, if an entirely

automatic labeling process is required, an algorithmic clustering method should be used.

Step 2: Compute Significance Values for Emergent Clusters

In a similar fashion to unsupervised weight-based neuron labeling, a statistical attribute

significance measure is required. For unsupervised weight-based cluster labeling, this

significance measure is denoted as sig(Al, Si), and calculates a numerical significance
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Create and initialize a SOM, denoted map, consisting of Y ×X neurons

Train map on an I-attribute training set, denoted DT , until convergence

Derive a discrete set of emergent clusters, L = {S1, S2, . . . , Sk}, of all ~wyx in the map

for all clusters Si ∈ L do

for all attributes Al represented by a weight in ~wyx do

Use weight wyxl associated with Al, for all ~wyx ∈ Si, to compute sig(Al, Si)

Associate the new significance value with Al in Si

end for

end for

for all clusters Si ∈ L do

for all sufficiently significant attributes Al with corresponding wyxl do

Build a sub-label using the name of Al and value of wyxl over Si

Add the new sub-label to the label of each nyx ∈ Si
end for

end for

Algorithm 6.6: Pseudocode of the unsupervised weight-based cluster labeling algorithm.

value for attribute Al within cluster Si. The sig(Al, Si) measure bases the computation of

the significance value on all the weight values that correspond to attribute Al, measured

over the entire emergent cluster Si. Each attribute within every emergent cluster is

assigned a significance value, which is computed using the chosen measure.

Several statistical measures [47] are possible for sig(Al, Si), although each must be

suited to continuous value analysis. This work identifies only three possible significance

measures: the simplest is based on absolute weight values, a second focuses on the

standard deviation of weights within emergent clusters, and a final measure [5, 6] uses the

Kolmogorov-Smirnov (or K-S) statistic [151]. This research focuses neither on a detailed

discussion dealing with the operational characteristics of these proposed measures, nor

on the advantages and drawbacks associated with each method. A detailed theoretical

and empirical analysis of significance measures is thus deferred to future work.

The absolute weight value sig(Al, Si) measure simply extends Serrano-Cinca’s neuron-

based absolute weight value measure [217], by using mean weight values over emergent
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clusters, rather than weight values from single neurons. Again, weight values with very

high or very low values are assumed to be dominant features, and all weights must be in

the range [−1.0, 1.0]. Cluster-based absolute weight value significance is calculated as:

sig(Al, Si) = |mean(wyxl, Si)| (6.3)

where mean(wyxl, Si) denotes the mean value of weight value wyxl calculated over all the

neuron weights making up the discovered emergent cluster Si, and wyxl is the weight

that corresponds to attribute Al. The mean value for the weight wyxl within emergent

neuron cluster Si is a trivial measure, which is simply computed as follows:

mean(wyxl, Si) =
1

oi
·
∑

~wyx∈Si
(wyxl) (6.4)

where oi is the number of neurons in neuron cluster Si. The absolute weight value

significance measure for unsupervised weight-based cluster labeling produces a value in

the range [0.0, 1.0], where higher values denote attributes with greater significance.

The second sig(Al, Si) measure ascribes higher significance to weights with values

that have a low sample standard deviation over a cluster, because such weights have

fairly constant characteristic values within the cluster. The measure is defined as:

sig(Al, Si) = −
√

1

oi − 1
·
∑

~wyx∈Si

(
wyxl −mean(wyxl, Si)

)2
(6.5)

where mean(wyxl, Si) is calculated according to Equation (6.4). Higher values for this

significance measure indicate a greater significance. The measure has a maximum value

of 0.0, which denotes a weight that is perfectly constant over a neuron cluster.

Alhoniemi and Simula [5, 6] suggest using the K-S statistic [141] to assess attribute

significance. The K-S statistic was originally developed by Kolmogorov [151], and later

refined by Smirnov [224]. The sig(Al, Si) measure that is based on the K-S statistic

compares the cluster Si to a set of clusters, out(Si). The out(Si) set is defined as:

out(Si) =

(
k⋃

j=1

Sj

)
\ Si (6.6)

where k is the number of emergent neuron clusters that have been discovered. The set

out(Si) is thus the combination of all the map’s emergent clusters, other than Si.
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An algorithmic implementation of the K-S statistic, by Press et al [188], is often used

in practice. A higher statistic value indicates a weight with a cumulative distribution over

Si that differs greatly from the weight’s cumulative distribution over out(Si), meaning

that the corresponding attribute is unusual, and therefore highly informative.

Step 3: Select Informative Attributes for Emergent Clusters

The third phase of unsupervised weight-based cluster labeling uses the significance values

computed during the previous step to guide a suitable attribute selection mechanism.

Selected attributes must be the ones judged to be more significant, based on sig(Al, Si).

The selected attributes are then used to build sub-labels for emergent clusters.

The attribute selection mechanisms for unsupervised weight-based cluster labeling are

similar to the unsupervised weight-based neuron labeling attribute selection methods,

although attributes are selected for clusters instead of for individual neurons:

• Only the most significant attribute in a cluster, or a user-specified number of the

most significant attributes per cluster, can be selected to form sub-labels. As is

the case for unsupervised weight-based neuron labeling, both these techniques are

generally too simplistic to produce accurate and sufficiently detailed sub-labels.

• It is also possible to select attributes for each cluster, such that the significance

of each selected attribute reaches at least a user-defined threshold of significance.

As for unsupervised weight-based neuron labeling, labels can be ensured for all

neurons by selecting at least one attribute for each emergent neuron cluster.

• Another selection method identifies attributes with very characteristic significance

values within a cluster [12]. One method identifies such attributes as those in

cluster Si with sig(Al, Si) values that are more significant than the mean sig(Al, Si)

value for all the attributes within cluster Si, by at least one standard deviation.

• A final selection method chooses, for each cluster, attributes with significance val-

ues that differ substantially from the map’s other clusters. For example, sig(Al, Si)

values that are more significant by at least one standard deviation than the mean

sig(Al, Si) value across all clusters will identify such characteristic attributes.
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Step 4: Associate Values with Selected Attributes

Because labeling neurons with only the selected attribute names is typically insufficient,

a representative value is usually computed for each selected attribute. One simple repre-

sentative value is the mean of the weight corresponding to Al, measured over the cluster.

Each selected attribute’s name and representative value are combined to form cluster

sub-labels, which are also associated with the cluster’s member neurons.

When data normalization has been performed prior to SOM training, sub-label values

should be de-normalized to the attribute value ranges present in the original training

data, to aid sensible interpretation of the labels. Thresholds allow for the aggregation of

sub-label values into broad ranges that are often easier to understand [217].

Examples: Unsupervised Weight-Based Cluster Labeling

Figure 6.7 illustrates examples of unsupervised weight-based cluster labeling performed

on the SOM of Figure 4.1, which was trained on the Iris data set. The labelings use

the same encoding for sub-labels that Figure 6.6 does: sl, sw, pl, and pw correspond to

sepal_length, sepal_width, petal_length, and petal_width, respectively.

Figure 6.7 (a) shows a grid-based visualization with a global similarity encoding

representing the result of a SOM-Ward cluster discovery of emergent clusters. Clearly,

two emergent clusters have been discovered: a smaller one in the upper right corner of

the map, and a larger cluster occupying the left and lower portions of the grid.

Figure 6.7 (b) presents a table, which summarizes the labeling statistics that are

relevant to these examples, for each emergent cluster. For every cluster, the table records

the mean and standard deviation of the corresponding weight value for each attribute.

The derived value of the standard deviation significance measure of Equation (6.5) is

also provided for the attributes within every cluster. The significance values presented

in this table were used to produce the labels shown in Figure 6.7 (c) and (d).

Figure 6.7 (c) depicts an unsupervised weight-based cluster labeling of the exam-

ple map, using standard deviation significance. Components with a significance above

−0.0165 are selected (this threshold was established via trial and error), and sub-labels

combine attribute names and mean weight values across clusters. The neurons in each

emergent cluster receive a uniform labeling, where the upper right cluster is labeled with
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Cluster 1 (◦)
Attr. Mean Std. Dev. sig(Al, Si)

sl 0.53 0.0372 -0.0372

sw 0.37 0.0164 -0.0164

pl 0.64 0.0394 -0.0394

pw 0.63 0.041 -0.041

Cluster 2 (•)
Attr. Mean Std. Dev. sig(Al, Si)

sl 0.24 0.0014 -0.0014

sw 0.57 0.0167 -0.0167

pl 0.13 0.015 -0.015

pw 0.11 0.0166 -0.0166

(a) (b)
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Figure 6.7: The Iris data set SOM of Figure 4.1, with unsupervised weight-based cluster labels

using the standard deviation significance of Equation (6.5). The components sepal_length,

sepal_width, petal_length, and petal_width are respectively denoted sl, sw, pl, and pw:

(a) shows a global similarity visualization of two clusters discovered using the SOM-Ward

method; (b) shows, for each cluster, weight means and standard deviations, and attribute sig-

nificance values; (c) shows neurons labeled using a minimum significance threshold of −0.0165,

with sub-labels showing mean weight values across clusters; (d) shows the same unsupervised

weight-based cluster labeling, with component value thresholds (where low, med, and high

respectively denote mean values in the lower, middle, and upper third of each attribute range).
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the attributes sepal_length and petal_length, while the cluster to the left and bottom

is only labeled with the sepal_width attribute. The uniformly labeled clusters sacrifice

detail for a broader, aggregated characterization of the map’s larger areas.

Finally, Figure 6.7 (d) shows the same labeling that Figure 6.7 (c) illustrates, with the

exception that threshold-based sub-label values are used. Again, as in Figure 6.6, low,

med, and high represent the lower, middle, and upper third of each weight’s range. As

was the case for unsupervised weight-based neuron labeling, it is clear that the threshold-

based sub-labels are more interpretable by a human than mean weight values are.

6.3.3.3 A Critical Analysis of Unsupervised Weight-Based Labeling

Both unsupervised weight-based neuron and cluster labeling are capable of producing

labels for every neuron on a SOM grid. Unsupervised weight-based neuron labeling,

however, produces a much less regular labeling than its cluster-oriented counterpart.

Unsupervised weight-based neuron labels typically vary from neuron to neuron, and are

therefore more difficult for humans to interpret during EDA investigations.

Unsupervised weight-based cluster labeling should be used when larger emergent map

areas require uniform labels. Such uniformly labeled areas are useful when analysts are

likely to be overwhelmed by the detail of irregular labels on large maps. This increased

uniformity within the labeling is traded off against reduced label detail.

A drawback of unsupervised weight-based cluster labeling is the failure of the ap-

proach to successfully deal with heterogeneous clusters, which contain two or more in-

separable classes. Section 6.2.2 describes the same problem in the context of supervised

example-centric cluster labeling. Unsupervised weight-based neuron labeling does not

have this disadvantage, because the aggregating effect of clusters is absent.

Both unsupervised weight-based neuron labeling and unsupervised weight-based clus-

ter labeling require potentially complex significance measure computations. It is possible

for these computations to adversely impact the efficiency of the methods. However, the

calculations are generally performed over a comparatively small number of neurons, even

for fairly large maps, which limits this problem’s effect in practice.

In the case of unsupervised weight-based cluster labeling, the emergent cluster dis-

covery step introduces additional computational complexity, which becomes more pro-
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nounced as the number of neurons being clustered increases. This effect is obviously not

a factor during unsupervised weight-centric neuron labeling. An analysis of unsupervised

weight-based cluster labeling’s performance characteristics is left to future work.

6.3.4 Unsupervised Example-Based Labeling

Like the unsupervised weight-based labeling methods, unsupervised example-based la-

beling techniques select statistically informative components to form neuron sub-labels.

In contrast to the weight-based methods, however, unsupervised example-based labeling

chooses components from data examples that map to a SOM’s neuron structure.

The labeling data is chosen from either the training set or a separate labeling set. Un-

supervised example-based labeling uses the notion of a BMU, defined in Equation (3.2).

Labeling examples must thus be normalized in the same way as the training data.

It should also be noted that the labeling examples need not necessarily consist of

exactly the same attributes as the SOM’s original training data, although some overlap

is necessary. Data analysts should take note that using labeling examples with fewer

attributes than the training examples will result in less accurate BMU mappings, thus

compromising label accuracy. The use of labeling examples with additional attributes

allows labels to be based on attribute data that was not present during training.

As was noted for both the unsupervised weight-based labeling methods, it is possible

for multiple sub-labels to introduce an undesirable level of complexity for practical EDA

or DM tasks. The optimal number of sub-labels is a subjective parameter. In order

to ease label interpretation, data analysts can choose to tune any of the example-based

labeling approaches by limiting the number of allowed sub-labels per neuron.

Unsupervised example-based labeling is not based on a SOM’s weight structure, and

is thus likely to produce a different labeling to unsupervised weight-based labeling. It

is therefore possible for an unsupervised example-based labeling, based on a sufficiently

large and descriptive labeling example collection, to provide new insights into a SOM’s

structure that both the unsupervised weight-based labeling methods cannot.

In a similar fashion to the unsupervised weight-based labeling techniques that were

discussed in the previous section, this dissertation’s research identifies two general clas-

sifications for unsupervised example-based neuron labeling approaches: unsupervised
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example-based neuron labeling, which is described in detail within Section 6.3.4.1, and

unsupervised example-based cluster labeling, which is discussed in Section 6.3.4.2. Finally,

Section 6.3.4.3 critically compares the two approaches to one another.

6.3.4.1 Unsupervised Example-Based Neuron Labeling

Algorithm 6.7 summarizes unsupervised example-based neuron labeling [201, 202]. This

method goes through four sequential steps, each of which is separately elaborated upon.

Several examples of unsupervised example-based neuron labeling are then presented.

Step 1: Map Labeling Examples to Neurons

Unsupervised example-based neuron labeling techniques require a set of labeling data

examples to be associated with each neuron that is a component of the map grid. At

the start of the labeling process, an empty mapped data example set, Myx, is associated

with each neuron, nyx. Labeling data examples are then mapped to each set, such that

each set, Myx, stores all the labeling examples that share neuron nyx as a BMU.

Step 2: Compute Significance Values for Neurons

For each neuron nyx on the map, unsupervised example-based neuron labeling meth-

ods use the mapped example set Myx to build sub-labels describing the neuron. In

a similar fashion to the unsupervised weight-based labeling techniques, unsupervised

example-based neuron labeling methods use a significance measure, which is denoted as

sig(Al,Myx). This numeric significance measure is computed for attribute Al within the

mapped set of examples Myx, and is also connected, by extension, with neuron nyx.

A variety of different statistics can feasibly be used for the sig(Al,Myx) significance

measure. LabelSOM is one example of an unsupervised example-based neuron labeling

method, which was developed by Rauber and Merkl [201, 202]. The LabelSOM approach

assumes that an attribute, Al, is descriptive of a neuron, nyx, if the values of attribute

Al within the set of mapped examples, Myx, are all very similar to the corresponding

weight vector component, wyxl, within the neuron. The LabelSOM technique assigns

higher significance to the attributes from the mapped example set for neuron nyx that
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Create and initialize a SOM, denoted map, consisting of Y ×X neurons

Train map on an I-attribute training set, denoted DT , until convergence

for all neurons nyx in map do

Define an empty mapped example set, denoted Myx

Associate Myx with nyx

end for

for all labeling example vectors ~zs do

Determine the BMU for ~zs, denoted nyx, over all neurons in map

Add labeling example ~zs to Myx

end for

for all neurons nyx in map do

for all attributes Al in Myx do

Use attribute Al in Myx to compute sig(Al,Myx)

Associate the new significance value with Al in Myx

end for

end for

for all neurons nyx in map do

for all sufficiently significant attributes Al in Myx do

Build a sub-label using the name of Al and aggregate zsl value in Myx

Add the new sub-label to the label for nyx

end for

end for

Algorithm 6.7: Pseudocode of the unsupervised example-based neuron labeling algorithm.

have the lowest cumulative Euclidean quantization error with respect to the weight vector

of the neuron, ~wyx. The significance measure used by LabelSOM is expressed as:

sig(Al,Myx) = −
( ∑

~zs∈Myx

√
(zsl − wyxl)2

)
(6.7)

where zsl is the lth component of weight vector ~zs, and higher significance values indicate

attributes with greater significance. The LabelSOM approach’s sig(Al,Myx) produces a
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maximum significance value of 0.0 when, for the attribute under consideration, all the

labeling data examples are perfectly consistent with the weight vector.

The LabelSOM significance measure requires all attributes to be continuous or ordi-

nal, and is inappropriate for nominal values. Therefore, every attribute must have an

intrinsic order, because of the measure’s reliance on Euclidean quantization errors. This

fact highlights an important consideration when selecting a significance measure: the

measure must be appropriate for the types of attributes in the labeling data set.

The computation of a value for the numeric sig(Al,Myx) significance measure must

be repeated for each attribute that is represented within the set of mapped labeling data

examples of every neuron that is a constituent of the map grid of the SOM.

Step 3: Select Informative Attributes for Neurons

An attribute selection mechanism chooses sufficiently significant attributes for sub-labels.

The attribute selection methods applicable to unsupervised example-based neuron label-

ing are the same as those used by unsupervised weight-based neuron labeling.

Step 4: Associate Values with Selected Attributes

Each sub-label typically also incorporates an associated value, which is usually calculated

using the neuron’s set of mapped examples. For standard continuous attributes, it is

appropriate to use the mean or median value calculated over the mapped example set. In

the case of attributes with a binary interpretation, it is sensible to choose the attribute

value that occurs the most frequently within the mapped example set.

If the weight vectors and labeling example components are normalized, it is advisable

to de-normalize the label values to the training data’s original attribute ranges, to allow

for easier sub-label interpretation. As is the case for the unsupervised weight-based

labeling methods, it is also possible to use threshold values in place of raw attribute

values, in order to create labels that are more readily interpretable [217].

Examples: Unsupervised Example-Based Neuron Labeling

Figure 6.8 depicts examples of an unsupervised example-based neuron labeling on the

Iris data set SOM in Figure 4.1. The figure uses the sub-label encodings that are used



136 6.3. Unsupervised Neuron Labeling
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Figure 6.8: The Iris data set SOM of Figure 4.1, with unsupervised example-based neuron

labels using the LabelSOM significance of Equation (6.7). The components sepal_length,

sepal_width, petal_length, and petal_width are respectively denoted sl, sw, pl, and pw:

(a) shows the map’s U-matrix; (b) shows the training examples’ data subset mapping; (c) shows

neurons labeled with the full training data set, using a −0.15 significance threshold (where sub-

labels require a minimum of two mapped labeling examples, no more than three sub-labels are

allowed per neuron, and label values are de-normalized means over mapped labeling example

sets); (d) shows the same labeling, using threshold values (where low, med and high respectively

denote mean values in the lower, middle and upper third of each attribute range).
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in Figures 6.6 and 6.7, where the sub-labels sl, sw, pl, and pw represent the attributes

sepal_length, sepal_width, petal_length, and petal_width, respectively.

Figure 6.8 (a) shows the U-matrix of the trained map, indicating two emergent clus-

ters. Figure 6.8 (b) illustrates a map grid augmented with a data subset mapping of the

SOM’s entire training set, where lighter gray shades indicate neurons with fewer BMU

matches, and darker shades represent higher numbers of matches. Of interest is the

relatively sparse mapping of training set examples over the map’s surface, with many

neurons receiving either no example mappings at all, or very few mappings.

Figure 6.8 (c) shows an unsupervised example-based neuron labeling, where the full

training set is used for label building. The labeling uses a minimum threshold of −0.15,

established via trial and error, on the LabelSOM significance measure of Equation (6.7).

Sub-label values are means calculated over the labeling examples mapped to the label’s

neuron. At least two mapped examples are required per sub-label, ensuring labels are

based on representative example sets. Very complex labels are avoided by allowing at

most three sub-labels per neuron. The labeling method clearly suffers in the presence of

sparse labeling sets, as evidenced by the large number of uncharacterized neurons.

Figure 6.8 (d) illustrates the same labeling as Figure 6.8 (c), but uses threshold-based

labels in place of mean attribute values. The labeling scheme uses the encodings of low,

med and high to respectively indicate the lower, middle and upper third of attribute

ranges. It is clear that thresholds offer a more easily interpretable characterization of

the neurons than weight aggregates do, at the expense of some sub-label detail.

6.3.4.2 Unsupervised Example-Based Cluster Labeling

Section 6.3.3 discussed how unsupervised weight-based cluster labeling is a simple exten-

sion of unsupervised weight-based neuron labeling, which uses emergent clusters to label

groups of fairly homogeneous neurons. Similarly, unsupervised example-based cluster la-

beling [12] uses the basic approach of unsupervised example-based neuron labeling, but

adapts the method so that the labeled units are emergent neuron groups. The technique

is summarized, in the form of pseudocode, within Algorithm 6.8. The approach executes

a five-step procedure, and each step is discussed separately. At the end of the discussion,

some examples of unsupervised example-based cluster labeling are presented.
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Create and initialize a SOM, denoted map, consisting of Y ×X neurons

Train map on an I-attribute training set, denoted DT , until convergence

Derive a discrete set of emergent clusters, L = {S1, S2, . . . , Sk}, of all ~wyx in the map

for all clusters Si ∈ L do

Define an empty mapped example set, denoted Ni

Associate Ni with Si

end for

for all labeling example vectors ~zs do

Determine the BMU for ~zs, denoted nyx, over all neurons in map

Determine emergent cluster Si, such that the BMU of ~zs is in Si, and add ~zs to Ni

end for

for all clusters Si ∈ L do

for all attributes Al in Ni do

Use attribute Al in Ni to compute sig(Al,Ni)

Associate the new significance value with Al in Ni

end for

end for

for all clusters Si ∈ L do

for all sufficiently significant attributes Al in Ni do

Build a sub-label using the name of Al and aggregate zsl value in Ni

Add the new sub-label to the label of each nyx ∈ Si
end for

end for

Algorithm 6.8: Pseudocode of the unsupervised example-based cluster labeling algorithm.

Step 1: Discover Emergent Clusters

In a similar fashion to the unsupervised weight-based cluster labeling technique, the

first step that is performed by unsupervised example-based cluster labeling necessitates

the discovery of emergent clusters of map neurons. For this purpose, it is once again

appropriate to use any one of the methods that were discussed within Chapter 5.



Chapter 6. Map Neuron Labeling 139

Step 2: Map Labeling Examples to Clusters

As is the case for unsupervised example-based neuron labeling, unsupervised example-

based cluster labeling requires that labeling examples be associated with each unit being

labeled. In the case of unsupervised example-based neuron labeling, these units are

individual neurons. For unsupervised example-based cluster labeling, labeling examples

are mapped to sets associated with each emergent cluster, where set Ni is associated

with emergent cluster Si. It is possible to choose the mapped examples from either the

training data set, or a separate labeling data set that was unseen during training.

Step 3: Compute Significance Values for Clusters

A statistical significance measure, denoted as sig(Al,Ni), is used to calculate a numerical

indication of the significance attribute Al has in the mapped example set Ni. Of course,

many alternative significance measures for sig(Al,Ni) can plausibly be defined.

Azcarraga et al [12] propose a significance measure called the difference factor. This

measure relies upon out(Ni), which is a set of labeling data examples defined as:

out(Ni) =

(
k⋃

j=1

Nj

)
\ Ni (6.8)

The out(Ni) set therefore encompasses all the labeling examples that are not contained

within the mapped example set Ni. In other words, out(Ni) contains the complete set

of labeling data examples that do not map into the emergent neuron cluster Si.

The difference factor aims to assign a high significance to attributes that have a mean

value over the labeling examples falling within a cluster, which is significantly higher or

lower than the corresponding mean for labeling examples falling outside the cluster.

According to the difference factor, the significance of attribute Al in the set Ni is:

sig(Al,Ni) =
mean(Al,Ni)−mean

(
Al, out(Ni)

)

mean
(
Al, out(Ni)

) (6.9)

where mean(Al,Ni) is the mean value of Al over the mapped example set Ni, and

mean
(
Al, out(Ni)

)
is the mean value of Al over the out(Ni) set. The difference factor

produces a significance value of 0.0 when the attribute means are equal to one another.
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The attribute thus shows no difference between Ni and out(Ni), and is considered to be

insignificant. Highly significant attributes have large positive or negative values.

Significance measures must again be appropriate for the types of attributes in the

labeling set, whether continuous, ordinal, or nominal. It is possible to adapt an un-

supervised weight-based cluster labeling sig(Al, Si) measure for example-based cluster

labeling by computing the measure over Ni, rather than Si. For example, the measures

of Equations (6.3) to (6.5), as well as the K-S metric, are adaptable in this way. How-

ever, it should be noted that these measures are only applicable to continuous attributes

within labeling data sets. Pearson’s chi-squared statistic [180] is an alternative to the

K-S statistic, which is appropriate for nominal attributes in labeling sets [188].

Step 4: Select Informative Attributes for Clusters

The attributes that produce values indicating higher significance are used as the basis of

sub-labels for emergent map clusters. By extension, the neuron constituents that make

up an emergent cluster receive the same sub-labels as the cluster itself does.

An appropriate attribute selection mechanism builds sub-labels, using sufficiently

significant attributes that are chosen from each cluster’s mapped example set. The

attribute selection mechanisms for unsupervised example-based cluster labeling are the

same as those that are available for unsupervised weight-based cluster labeling. All the

neuron constituents of a cluster receive the same sub-labels as the cluster.

Step 5: Associate Values with Selected Attributes

In a similar fashion to unsupervised example-based cluster labeling, each selected at-

tribute usually has an associated value. This value is typically the mean, median or most

common value for the attribute in question, calculated over the set of mapped exam-

ples for the sub-label’s cluster. Sub-label values should be de-normalized to the original

attribute ranges, and threshold-based values often improve interpretability [217].

Examples: Unsupervised Example-Based Cluster Labeling

Figure 6.9 illustrates examples of unsupervised example-based cluster labeling on the

Iris data set SOM from Figure 4.1, using the difference factor significance measure of
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Cluster 1 (◦)
Attr. Mean Ni Mean out(Ni) sig(Al, Ni)

sl 0.54 0.20 1.72

sw 0.36 0.59 -0.39

pl 0.66 0.08 7.30

pw 0.66 0.06 9.81

Cluster 2 (•)
Attr. Mean Ni Mean out(Ni) sig(Al, Ni)

sl 0.20 0.54 -0.63

sw 0.59 0.36 0.63

pl 0.08 0.66 -0.88

pw 0.06 0.66 -0.91
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Figure 6.9: The Iris data set SOM of Figure 4.1, with unsupervised example-based cluster

labels using the difference factor significance of Equation (6.9). The components sepal_length,

sepal_width, petal_length, and petal_width are respectively denoted sl, sw, pl, and pw:

(a) shows a visualization of two SOM-Ward discovered clusters; (b) shows, per cluster, the

mean Al value over Ni and out(Ni), and attribute significances; (c) shows clusters labeled using

attributes with significances differing more than one standard deviation from the cluster’s mean

significance, with sub-labels showing mean attribute values across clusters; (d) shows the same

unsupervised labeling, with component value thresholds (where low, med, and high respectively

denote mean values in the lower, middle, and upper third of each attribute range).
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Equation (6.9). These examples use the attribute name encodings found in Figures 6.6,

6.7, and 6.8. That is to say, the sl, sw, pl and pw sub-labels represent the sepal_length,

sepal_width, petal_length, and petal_width attributes, respectively.

Figure 6.9 (a) illustrates a grid-based map visualization that is augmented with a

global similarity encoding. The visual encoding shows two emergent clusters of neurons,

which were discovered by means of the SOM-Ward clustering algorithm.

Figure 6.9 (b) summarizes the statistical values that are relevant to the calculation

of the difference factor significance values for each of the attributes in both discov-

ered clusters. Specifically, the values of mean
(
Al, Ni

)
, mean

(
Al, out(Ni)

)
, and the final

sig(Al,Ni) measure are shown for all attributes within each emergent cluster.

Figure 6.9 (c) shows an unsupervised example-based cluster labeling, based on the

full training data set, and the significance values shown in Figure 6.9 (b). Cluster 1 has a

mean significance value of 4.61, with a standard deviation of 4.11. The mean significance

for cluster 2 is −0.45, with a standard deviation of 0.63. Selected sub-label attributes

have significances that exceeded one positive or negative standard deviation from the

relevant cluster’s mean significance value. Sub-label values are de-normalized means of

the attribute values for each selected attribute, calculated over the appropriate emergent

cluster. Clusters are labeled uniformly, and no neurons have been left unlabeled.

Finally, Figure 6.9 (d) depicts the same unsupervised labeling as is shown in Fig-

ure 6.9 (c), but uses threshold-based sub-label values, rather than raw attribute value

means. The sub-label values low, med, and high respectively represent the upper, middle,

and lower third of the relevant attribute value’s range. Threshold-based sub-labels are

again easier to interpret than attribute value means, while sacrificing finer detail.

6.3.4.3 A Critical Analysis of Unsupervised Example-Based Labeling

Unsupervised example-based approaches and their weight-based counterparts are likely

to produce fairly different labelings. Unsupervised weight-based labels are based on

weights that approximate the training data. The sub-labels and values chosen by these

methods thus also only approximately represent the training data. In contrast, example-

based labels are derived from actual data examples. This implies that such labels are

more direct representations of the data set attributes, rather than approximations.
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In a similar fashion to supervised example-centric neuron labeling, both unsupervised

example-based labeling methods are sensitive to labeling data quality. A sparse data set

will produce smaller and less representative mapped example sets. Such sets will result

in poor quality significance values, and therefore badly chosen sub-labels. Smaller sets

of mapped examples also tend to result in less accurate sub-label values.

A labeling data set with many missing values also produces poor example mappings,

which leads to poor sub-labels. It is thus prudent for unsupervised example-based label-

ing methods to require that attributes (or at least attributes chosen as sub-labels) have

an analyst-specified minimum number of non-missing values among the mapped exam-

ples. The missing value threshold depends on the average number of mapped labeling

examples per neuron or cluster, because large mapped example sets can accommodate

more missing values before significance value reliability is compromised.

Unsupervised example-based cluster labeling is, however, less susceptible to the prob-

lems associated with sparse data sets and missing values than unsupervised example-

based neuron labeling is. This is because of the aggregating effect of the emergent

clusters, which group larger numbers of labeling data examples together than individual

neurons do. This grouping produces mapped labeling example sets that are more rep-

resentative, and within which a smaller proportion of missing values fall. In any event,

this research very strongly recommends that validity analysis be performed by a human

expert on any unsupervised example-based neuron or cluster labeling.

A further drawback associated with unsupervised example-based neuron labeling is

that non-BMU neurons have no mapped examples, and thus receive no labels. Unsuper-

vised example-based neuron labeling is therefore prone to partially labeling map grids

in the presence of sparse data. In contrast, both the unsupervised weight-based labeling

techniques ensure that sub-labels are applied to all neurons on the map.

The phenomenon of unlabeled neurons is also less severe for unsupervised example-

based cluster labeling, because clusters containing no mapped examples are much less

likely. This is because each emergent cluster’s sub-labels are applied to all the cluster

constituents, including neurons that are never BMUs for any labeling examples.

The above discussion suggests that the unsupervised example-based labeling methods

should be preferred above unsupervised weight-based labeling when a comprehensive
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enough data set is available. However, in the presence of a sparse or incomplete data set,

the results of unsupervised weight-based labeling will be more trustworthy. Unsupervised

example-based neuron labeling is also less appropriate for EDA than the other methods,

because fragmented labelings are more difficult for humans to analyze.

A disadvantage shared by both unsupervised example-based and weight-based neuron

labeling is that sub-labels tend to vary from neuron to neuron, producing irregular

labelings. Such labelings are usually more difficult for human analysts to interpret.

Both unsupervised example-based and weight-based cluster labeling produce large areas

of uniform sub-labels, which are typically easier for human experts to analyze.

Unsupervised example-based cluster labeling also suffers from the problem of uni-

formly labeling heterogeneous clusters containing more than one class, in the same way

that supervised example-centric cluster labeling and unsupervised weight-based cluster

labeling do. Unsupervised example-based neuron labeling, of course, does not suffer from

this problem, because the method does not rely on discovered emergent clusters.

Another drawback of both unsupervised example-based neuron and cluster labeling

is the additional performance penalty incurred while mapping labeling examples to the

map’s neurons. The mapped examples can also negatively impact the memory resources

used when sizable maps are labeled using a large number of examples, because of the

memory resources required to store the necessary sets of mapped data examples.

As was the case for the unsupervised weight-based labeling techniques, both unsu-

pervised example-based labeling approaches require relatively complicated significance

measure calculations. It is possible for these computations to negatively affect the effi-

ciency of the approaches, especially when very large sets of labeling examples are used.

Large labeling example sets result in large sets of mapped examples, which will take

more time to process into significance values. Large maps, consisting of many neurons,

will exacerbate any problems related to slow significance value computation.

Unsupervised example-based cluster labeling’s cluster discovery step increases com-

putational cost, compared to both unsupervised weight-based neuron labeling and un-

supervised example-based neuron labeling. The exact complexity introduced by the

clustering phase depends on the clustering algorithm that is used. A detailed analysis of

the comparative performance characteristics of the approaches is left to future work.
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6.4 Applying Neuron Labeling to SOMs

Each of the supervised and unsupervised neuron labeling techniques, respectively dis-

cussed in Sections 6.2 and 6.3, can be applied to purely unsupervised, supervised, or

semi-supervised SOMs. The supervision levels for SOM training are described in Sec-

tion 3.3.4. Section 6.4.1 discusses the application of labeling methods to purely unsuper-

vised SOMs, while Section 6.4.2 describes considerations for supervised SOM labeling,

and Section 6.4.3 investigates labeling method application for semi-supervised SOMs.

6.4.1 Neuron Labeling for Purely Unsupervised SOMs

As has been noted previously, the majority of self-organizing maps applied in a practical

setting are purely unsupervised in nature. As a consequence, the majority of neuron

labeling approaches have been developed with purely unsupervised maps in mind. All of

the neuron labeling techniques that have been discussed within this chapter can therefore

be applied directly to entirely unsupervised SOMs, with no additional modifications.

6.4.2 Neuron Labeling for Supervised SOMs

A supervised SOM is simply an unsupervised SOM that incorporates classification at-

tributes during training. As a result, all the labeling methods that are applicable for

unsupervised SOMs are also relevant in the context of a supervised map. However, it is

important to take note of the fact that any labeling methods that are employed will be

biased by the classification information that is included during training.

Additionally, the trained map weights associated with the data set’s classification

attributes can be directly used for unsupervised labeling. A simple approach is to label

each neuron with the attribute names and weight values associated with the data set’s

classification attributes. Unfortunately, such labels are fuzzy in nature, because the label

values are continuous and provide no hard membership to one class or another.

Because fuzzy labels are often not desirable in a practical EDA or DM context, thresh-

olds can be used to discretize the classification attribute weights. The selection of specific

thresholds in such cases is dependent on the nature of the classification’s encoding. Bi-

nary classification attributes normalized to a [0.0, 1.0] range should use a threshold of
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0.5, with weights below the threshold generating a label according to one classification,

and weights greater than and equal to the threshold generating labels for the opposite

classification. A non-binary nominal classification attribute requires multiple thresholds,

equal to one fewer than the number of values allowed by the attribute.

It is also possible to use classification attribute weights to label clusters of neurons.

One approach is to discretize the classification attribute weight values for each neuron in

a cluster, and label the cluster with the discrete label that most commonly occurs within

the cluster. Another alternative is to calculate the mean of each classification attribute’s

weight values across a cluster, and label the entire cluster using these means. Such mean

values can also be discretized using threshold values. No experimental investigation into

such techniques has yet been attempted, and is left to future research.

6.4.3 Neuron Labeling for Semi-Supervised SOMs

Semi-supervised SOMs are simply standard unsupervised SOMs that model the distri-

bution of classification attributes over the map surface, but do not allow these attributes

to bias the training process. Consequently, all of the labeling methods applicable for

purely unsupervised SOMs are also valid for semi-supervised maps.

In addition, due to the inclusion of classification attributes, the unsupervised labeling

methods for supervised SOMs are all also appropriate for semi-supervised SOM grids. An

advantage that labeling specific to semi-supervised SOMs has over the same approaches

on supervised maps is that, while labels are derived from the classification attributes,

the classification information will not bias the map’s data model in any way.

6.5 Neuron Labeling and High-Dimensional Data

As Section 3.6 notes, data sets with very high dimensionality have the potential to

negatively affect the accuracy of a SOM’s data model because of the problems that are

introduced by the “curse of dimensionality” [16, 19, 216]. Neuron labels are always in

some way derived from the map structure embodying the data model of a SOM. As a

result, high-dimensional data sets are also likely to negatively affect the accuracy of any

characterization provided by the labels of the neurons making up such inaccurate maps.
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Due to the same problem with distances in high dimensions, any labeling approaches

that are based on distance measures will themselves become less accurate as data set

dimensionality increases. This problem affects all the labeling algorithms that require

mappings of labeling data examples to neurons, or mappings of weight vectors to labeling

examples. Furthermore, in the case of the unsupervised weight- and example-based

labeling algorithms, this adverse effect extends to any significance measures or attribute

selection schemes that use distances between weight vectors, distances between labeling

data examples, or distances between weight vectors and labeling examples.

A concern unique to the unsupervised weight- and example-based neuron labeling

algorithms is the number of sub-labels that can feasibly be used, which is limited by

the ability of the human analyst to interpret the chosen number of attributes. This

number is dependent on both the complexity of the data set and the expertise of the

analyst in question, but is very unlikely to exceed ten in most practical cases. This

limit is particularly troublesome for very high-dimensional data sets with few redundant

attributes. In such cases the number of sub-labels describing each neuron becomes a

tiny fraction of the available attributes, thus limiting the expressivity of the labeling.

The labels also lose the ability to distinguish between neurons that have the same highly

significant attributes, but differ in terms of less significant attributes. In such cases

the same set of highly significant attributes will be selected for all neurons in question,

reducing the ability of the labeling to differentiate between these map elements.

The above-mentioned potential pitfalls associated with SOM neuron labeling in the

presence of high-dimensional data have yet to be analyzed. Real-world data sets are of

particular interest for such investigations, and this work is left to future research.

6.6 Summary

This chapter overviewed the available map neuron labeling techniques. Section 6.1 pre-

sented an overview of the objectives that underlie neuron labeling, and the perspective on

neuron labeling that is taken by this dissertation. Two categories of labeling techniques

were described, namely supervised labeling techniques and unsupervised labeling meth-

ods. Section 6.2 provided further detail on specific supervised labeling techniques, while
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Section 6.3 discussed the important factors related to unsupervised labeling. Section 6.4

dealt with the application of neuron labeling methods to self-organizing maps that are

purely unsupervised, supervised, or semi-supervised. Finally, Section 6.5 discussed the

limitations of neuron labeling in the face of very high-dimensional data sets.

The next chapter provides a detailed overview of the available SOM-based data min-

ing algorithms. The chapter also introduces the novel HybridSOM rule extraction frame-

work, which is the major contribution made by this dissertation’s research work.



Chapter 7

SOM-Based Data Mining

The previous chapter described the various techniques available for addressing the task

of labeling the neurons that make up a trained SOM. This chapter provides an overview

of the automatic DM approaches that can be applied to SOMs. The overall distinction

between the realms of EDA and DM was investigated in Chapter 2. The SOM-based DM

methods in this chapter should be contrasted with the SOM-based EDA and visualization

techniques described in Chapter 4. The emergent cluster discovery techniques, which

were discussed in Chapter 6, are also referred to in parts of this chapter.

This chapter is arranged as follows: Section 7.1 outlines the underpinnings of SOM-

based DM, and differentiates between supervised and unsupervised SOM-based DM.

Section 7.2 outlines a supervised DM approach based on map region boundary detec-

tion, while Section 7.3 covers SIG*, the most widely cited unsupervised SOM-based DM

algorithm. Section 7.4 describes this work’s main contribution, an unsupervised rule

extraction framework called HybridSOM. Section 7.5 covers miscellaneous SOM-based

methods for DM, which are not this work’s main focus. Section 7.6 justifies the viability

of SOM-based DM in a practical setting. Finally, Section 7.7 summarizes the chapter.

7.1 The Philosophy of SOM-Based Data Mining

The premise of SOM-based data mining is similar to the one upon which SOM-based

visualization is founded, which is described in Section 4.2: because the map structure of

149
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a trained SOM approximately models characteristics of the data set used during training,

a visualization of the map (or map-related features) reveals aspects of this training data.

Similarly, SOM-based DM approaches are based on a trained map that is assumed to

form a weight vector model of the underlying training data. SOM-based DM methods

build a model either directly from the map’s weight vectors, or from training data that

is related to the map’s weight structure. The model is typically a rule set.

This research identifies two categories of SOM-based DM techniques, defined by the

reliance of the approach on knowledge of the classes present in the training data:

• Supervised SOM-based data mining is based on algorithms that require a priori

knowledge of the classes that are present within the training data set. Clearly,

these techniques cannot be used if no class information is present. It should also

be noted that classification information is often unavailable in a practical data

mining setting. In addition, the reliance of supervised SOM-based DM methods

on classification information often biases DM approaches in this category.

• Unsupervised SOM-based data mining requires no prior knowledge of the training

data classes. Techniques in this category are applicable both in situations where

classification attributes are present, and when no such attributes are available.

These methods are thus more general than their supervised counterparts. Another

advantage of unsupervised SOM-based DM is that knowledge extraction is not

biased by classification information, even when this information is present.

If it is assumed that the training data subset is representative of the general data

landscape being modeled, the overall objective of a SOM-based DM technique is to

build a model that represents the general characteristics of data examples that were not

presented during SOM training (i.e., the model generalizes to unseen examples).

This dissertation investigates three data mining algorithms for SOMs. The only su-

pervised SOM-based data mining method identified during this research work’s literature

survey is the boundary-based rule extraction algorithm, which is described in Section 7.2.

Two unsupervised SOM-based data mining methodologies also exist: the widely-cited

SIG* algorithm is covered in Section 7.3, and the novel HybridSOM framework is pro-

posed in Section 7.4. Figure 7.1 illustrates the categorization of these methods.
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Figure 7.1: A general overview of the categorization of the supervised and unsupervised

SOM-based data mining techniques that are discussed within this dissertation.

The main focus of this research work is on unsupervised SOM-based DM algorithms,

because these techniques are applicable to a wider variety of data sets, and better main-

tain the overall philosophy of unsupervised training that SOMs promote. As such, the

remainder of this discussion focuses more on the SIG* and HybridSOM methods.

7.2 Boundary-Based Rule Extraction

The boundary-based rule extraction algorithm is a supervised SOM-based DM approach

that was proposed in 2006 by Malone et al [162]. Section 7.2.1 gives an overview of the

approach, while a more detailed discussion of the algorithm’s mechanics is undertaken

in Section 7.2.2. Lastly, a critique of the method is provided in Section 7.2.3.

7.2.1 An Overview of the Approach

Boundary-based rule extraction focuses on the algorithmic detection of boundaries within

a SOM’s U-matrix and various component plane visualizations. Salient attributes are

detected using correlations between the U-matrix and component plane boundaries. The

boundaries within the selected component planes are then used to define attribute value

conditions for rules that differentiate between the areas separated by the boundaries. The

technique is outlined visually in Figure 7.2, and by means of pseudocode in Algorithm 7.1.
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Figure 7.2: The overall procedure for the boundary-based rule extraction algorithm.

7.2.2 The Rule Extraction Procedure

The rule extraction process is separated into four steps. The first step detects cluster

boundaries from the U-matrix of a trained map. The second step performs a similar

boundary detection process on each of the SOM’s component planes. Thirdly, each

individual component plane boundary is compared to the U-matrix cluster boundaries,

with the aim of selecting the component plane boundaries that closely match any one of

the U-matrix boundaries. Finally, each component plane’s boundaries are used to define

a new rule’s antecedent conditions. Each step is described in greater detail, below.

Step 1: Compute Candidate Cluster Boundaries

The first step of the boundary-based rule extraction process requires a SOM to be trained

on an I-dimensional training data set. A U-matrix of the fully trained SOM must then

be generated, as described in Section 4.3.1.1, after which a set of candidate boundaries on

the U-matrix must be found. Each candidate boundary is a set of links on the U-matrix,

joining adjacent neurons that are on the borders between emergent map clusters. Every

neuron on the map is considered as a potential candidate boundary member.

A quantitative statistical measure is required to judge each neuron’s potential for

forming part of a candidate U-matrix boundary. While a variety of statistical measures

could conceivably be used for this purpose, the original work of Malone et al [162]
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Create and initialize a SOM, denoted map, consisting of Y ×X neurons

Train map on an I-attribute training set, denoted DT , until convergence

Generate a U-matrix for map, denoted umat , as described in Section 4.3.1.1

while umat has insufficient boundaries to separate one area per class Cm ∈ C do

Generate a new candidate boundary on the U-matrix of map

end while

for all attributes Al ∈ DT do

Generate a component plane for Al, denoted planel, as described in Section 4.3.2.1

while planel has insufficient boundaries to separate one area per class Cm ∈ C do

Generate a new candidate boundary for the component plane of Al

end while

end for

Define an empty rule set, denoted rule set

for all candidate boundaries, umat boundu, on the U-matrix do

Define ruleu1, with a consequent that predicts the first area separated by umat boundu

Define ruleu2, with a consequent that predicts the second area separated by umat boundu

for all component plane visualizations, planel, of map do

for all candidate boundaries, plane bound lm̂, on planel do

Compute the similarity between plane bound lm̂ and umat boundu

if computed similarity is within an error threshold then

Compute the mean value along plane bound lm̂, denoted plane mean lm̂

Add an antecedent condition, based on plane mean lm̂, to ruleu1

end if

end for

end for

Add ruleu1 to rule set , merging ruleu1 with rules already in rule set if necessary

Add ruleu2 to rule set , merging ruleu2 with rules already in rule set if necessary

end for

Algorithm 7.1: Pseudocode of the boundary-based rule extraction algorithm.
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suggests using a statistic called the boundary difference value (BDV). For neuron nyx,

the BDV is calculated relative to any two neurons adjacent to nyx. The neuron, nyx, and

its two neighbors form a candidate boundary segment. The BDV is defined as:

BDV (candyx) =
mean(candyx)−mean(cand ′yx)

range(cand ′yx)
(7.1)

where candyx is a set containing two candidate neurons that are neighbors of nyx,

the set cand ′yx contains the neurons that are neighbors of nyx and are not in candyx,

mean(candyx) and mean(cand ′yx) denote the mean distances between ~wyx and the neu-

ron weight vectors in candyx and cand ′yx, respectively, and range(cand ′yx) defines the

range of the distances between ~wyx and the weight vectors within the cand ′yx set (calcu-

lated as the difference between the largest distance and the smallest distance).

For map neuron nyx, a BDV statistic is calculated for every pair of adjacent neurons,

thus considering every possible candidate boundary segment through nyx. Once the

BDV for every candidate boundary segment through neuron nyx has been computed, the

maximum of these values is selected as the final BDV for nyx. This process is repeated

across the grid, producing an optimal BDV statistic value for every neuron.

Finally, the neuron with the highest BDV on the map is identified, in order to serve

as a starting point for a new candidate boundary. Subsequent neurons with the highest

BDV values neighboring the partially-formed boundary are added to the boundary. The

process is repeated until a complete candidate boundary has been formed. The boundary-

forming procedure is repeated on the remaining non-boundary neurons of the map’s U-

matrix. Boundaries are formed until the number of delimited areas is equivalent to the

number of classes that are present in the map’s original training data set.

Step 2: Compute Candidate Component Boundaries

The second step of the rule extraction process finds candidate boundaries for each of

the map’s components. This procedure requires a component plane to be generated, as

Section 4.3.2.1 discusses, for each attribute making up the SOM’s data model.

Once a component plane has been generated, a set of candidate boundaries must be

computed to link neurons separating areas of similar weights. The detection of compo-
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nent plane boundaries is similar to the previously described boundary detection process

on the map’s U-matrix, and uses a measure that is similar to the BDV of Equation (7.1).

The BDV statistic used for component plane boundaries, however, uses the distances

between adjacent component plane values, rather than U-matrix distances.

Other than the minor adaptation of the BDV statistic, the boundary detection pro-

cedure is the same as the detection performed on the trained map’s U-matrix. For a

single component plane, sufficient boundaries must be generated to separate a number

of areas that is equivalent to the number of classes in the map’s training data. Finally,

the entire detection process is repeated for each of the component planes in turn.

Step 3: Find Matching Boundaries

Following the mapping of candidate boundaries on the SOM’s U-matrix and component

planes, the rule extraction process attempts to detect the most descriptive attributes

that characterize emergent clusters of neurons on the map’s U-matrix. The basic premise

underlying this step of the procedure is as follows: homogeneous areas on component

planes, which correlate (or partially correlate) to emergent clusters on the U-matrix, can

be assumed to have an influence on the formation of these emergent clusters.

The detection of salient attributes is achieved by means of a search that identifies close

matches between the U-matrix and component plane boundaries. The search compares

each U-matrix candidate boundary to every component plane boundary. A user-specified

similarity threshold is used to determine whether the compared boundaries are close

enough to one another in map space. Attribute boundaries that satisfy the threshold

requirement are selected to form rule conditions during the algorithm’s final step.

Step 4: Construct Rules

The final step of the boundary-based rule extraction algorithm is the construction of

descriptive rules. These rules are based on the U-matrix and component plane boundaries

that have been defined as similar during the previous step of the algorithm.

As a first step, the candidate U-matrix boundaries are considered one by one. At-

tribute value conditions are defined for each of the component plane boundaries that
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have been matched to the U-matrix boundary under consideration. The mean of the

attribute values along each selected component plane boundary is also computed.

Two conditions are typically derived from a computed component boundary mean,

each describing one of the emergent neuron clusters separated by the matching U-matrix

boundary. The two generated attribute value conditions are of the general form:

plane attribute l ≥ plane mean lm̂

plane attribute l < plane mean lm̂

where plane attribute l is the attribute name for component plane l, and plane mean lm̂

is the mean attribute value over candidate boundary m̂ on component plane l.

Finally, the generated conditions are added to the antecedent of a rule that predicts

one of the areas separated by the U-matrix boundary that is currently being considered.

The consequent of the rule refers either to the appropriate emergent cluster, or a de-

scriptive label that has been applied to the emergent cluster. All the conditions that

refer to the same emergent cluster should also be aggregated into a single rule.

7.2.3 A Critique of the Approach

To the author’s knowledge, the boundary-based algorithm has not been analyzed in

detail, or compared to other methods. Only initial reasoning on the approach’s strong

and weak points is thus feasible, and further analysis is left to future work.

The method’s comparison of SOM visualizations is similar to the EDA map analysis

discussed in the previous chapter. Therefore, the boundary-based approach is relatively

intuitive. Because of the emergent characteristics of trained SOMs, it is possible that

the technique could offer advantages over traditional DM methods. However, further

analysis is required to confirm the existence of any such advantages.

The first drawback of the method is simply that the algorithm is supervised, meaning

that the approach cannot mine data sets that have no associated classification data. The

algorithm’s supervised nature also biases the produced rule set results.

The approach’s second drawback lies in the relative complexity of the algorithm’s

implementation, as is evident from the previous description of the technique. This com-

plexity may hinder the correct or timeous implementation of the algorithm.
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Thirdly, the procedure is likely to be time-consuming, because multiple boundaries

must be detected on several map visualizations. Algorithm efficiency is likely to suffer

greatly in the presence of very high-dimensional training data, because many component

planes will be generated, and each plane must also be searched for boundaries.

Finally, the technique depends on the presence of clear U-matrix and component plane

boundaries. It is thus likely that poor or erratic results will be produced if boundaries

are not present, fragmented, or do not fully separate emergent neuron clusters.

7.3 The SIG* Algorithm

The SIG* algorithm was developed in 1991 by Alfred Ultsch [238]. The algorithm became

part of a KDD system called REGINA [239], and applied to problem domains such as

medical diagnosis, environmental evaluation and industrial process analysis.

Section 7.3.1 overviews the algorithm. Section 7.3.2 outlines the algorithm’s first

main sub-procedure, which builds characterizing rules. Section 7.3.3 covers the second

sub-procedure of the algorithm. Section 7.3.4 explains how SIG* rules can be converted

into standard production rules. Finally, Section 7.3.5 critiques the SIG* algorithm.

7.3.1 An Overview of the Approach

The SIG* algorithm is a relatively complex data mining method, consisting of a pipelined

sequence of several steps. The sequence of steps that the algorithm executes are sum-

marized in diagrammatic form in Figure 7.3, and as pseudocode in Algorithm 7.2.

The algorithm’s first phase begins by using an I-attribute data set to train a SOM

until convergence. Once training is completed, discrete emergent neuron clusters must

be found. While the original algorithm’s description uses exploratory clustering aided

by a U-matrix, any of the discrete cluster discovery methods described in Chapter 5 are

appropriate for finding k emergent clusters, denoted as L = {S1, S2, . . . , Sk}.
Each discovered emergent neuron cluster, Si, must then receive a label, Li, using

any of the cluster-based labeling techniques from Chapter 6. Either supervised label-

ing techniques (i.e., example-centric cluster labeling) or unsupervised labeling methods

(i.e., exploratory cluster labeling, unique cluster labeling, unsupervised weight-based
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Figure 7.3: The overall component interactions within the SIG* algorithm.

cluster labeling, or unsupervised example-based cluster labeling) are applicable. Addi-

tionally, in a situation where the SOM’s training is either supervised or semi-supervised,

it is also possible to use the cluster labeling methods that were described in Section 6.4.

Because the SIG* algorithm extracts rules from emergent clusters, it is impossible to use

any of the labeling methods that attach characterizations to individual neurons.

The first phase of the SIG* algorithm reaches a conclusion with a mapping of all

the SOM’s training data examples to the discovered emergent neuron clusters. This is

done by determining a BMU for each training example. Each training example is then

mapped to the emergent cluster within which the BMU of the example falls.

Once the first algorithmic phase has been completed, the rule extraction procedure

commences. The primary mechanism at the core of the SIG* rule extraction process is

embodied in the remaining two general phases of the algorithm: the characterizing rule

construction procedure and the differentiating condition construction procedure.

The characterizing rule construction sub-procedure builds a characterizing rule for

each unique training example set and the set’s corresponding discovered emergent neuron

cluster. The general objective of each characterizing rule is to summarize the essential

characteristics of the training example set that the rule describes. The characterizing

rule building process is discussed in greater detail within Section 7.3.2.

The differentiating condition construction sub-procedure conditionally refines certain

characterizing rules, by adding additional differentiating conditions to pairs of charac-

terizing rules that are judged to have overlapping descriptions. Two characterizing rules
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Create and initialize a SOM, denoted map, consisting of Y ×X neurons

Train map on an I-attribute training set, denoted DT , until convergence

Phase 1: Map training examples to emergent neuron clusters

Derive a discrete set of emergent clusters, L = {S1, S2, . . . , Sk}, of all ~wyx in the map

Apply a label, Li, to each cluster, Si ∈ L, using a cluster-based neuron labeling method

for all clusters Si ∈ L do

Define an empty mapped example set, denoted Ni

Associate Ni with Si

end for

for all training example vectors ~zs do

Determine the BMU for ~zs, denoted nyx, over all neurons in map

Determine emergent cluster Si, such that the BMU of ~zs is in Si, and add ~zs to Ni

end for

Phase 2: Define a characterizing rule for each emergent cluster

Define an empty rule set, denoted as rule set , which contains no rules

call function AddCharacterizingRules(DT , L, rule set), given in Algorithm 7.3

Phase 3: Specialize any overlapping rule pairs

for all clusters Si ∈ L and Sj ∈ L, such that Si 6= Sj do

if the rules predicting Li and Lj in rule set classify at least one common example then

call function AddDifferentiatingRule(DT , Si, Sj , rule set), given in Algorithm 7.4

end if

end for

Algorithm 7.2: Pseudocode of the SIG* algorithm’s overall structure.

overlap if the sets of training examples that they classify are not distinct, as Figure 7.4

shows. Section 7.3.3 deals with differentiating condition construction in more detail.

7.3.2 Characterizing Rule Construction Procedure

The method for building the characterizing rules that each describe one of the emergent

clusters of a trained SOM relies on a single significance matrix. The matrix records the

relative significance of each of the components of the training examples that map to

every map cluster, where every component corresponds to a unique attribute.
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Figure 7.4: The condition governing when SIG* builds differentiating conditions for clusters

Si and Sj : (a) shows no overlap between the training examples classified as Li and Lj , thus

requiring no differentiating conditions for Si and Sj ; (b) shows an overlap between the training

examples classified as Li and Lj , thus requiring conditions differentiating between Si and Sj .

The characterizing rule construction procedure has three continuous-valued user pa-

rameters. Firstly, a characterizing rule threshold value, denoted as θchar , is a percentage

in the range (0, 100], and influences the number of attributes that are chosen for each

characterizing rule. Lower threshold values result in fewer attributes per characterizing

rule, while higher values cause more attributes to be selected.

The second and third parameters are the low and high characterizing condition pa-

rameters, respectively denoted ψchar and φchar . These parameters are both components

in the calculation of attribute value ranges for rule conditions. Both parameters are in

the range (0,∞), and affect the range of values included in each characterizing rule’s

attribute conditions. Higher characterizing condition parameter values result in wider

attribute condition bounds, while lower values cause narrower bounds.

The characterizing rule building procedure consists of four sequential steps, outlined

in Algorithm 7.3. The first step populates the significance matrix with initial values. The

second and third steps process the matrix using cell marking and value normalization.

The final step uses the significance matrix to build the conditions of the rules that

describe each emergent neuron cluster. Each step is elaborated upon individually.

Step 1: Populate the Characterizing Significance Matrix

Prior to the construction of characterizing rules, an empty I × k characterizing signifi-

cance matrix must be defined. The significance matrix consists of I rows, where I is the
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begin function AddCharacterizingRules(DT , L, rule set) :

Define an empty I × k matrix of continuous significance values, denoted mat char

Define user-specified algorithmic parameters θchar , ψchar and φchar

Step 1: Populate the characterizing significance matrix with significance values

for all attributes Al ∈ DT and clusters Si ∈ L do

Set mat char li to sig(Al, Ni), the significance of Al in example set Ni linked with Si

end for

Step 2: Mark appropriate cells in the characterizing significance matrix

for all attributes Al ∈ DT do

Mark all cells in row l of mat char , where mat char li = max∀j{mat char lj}
end for

for all clusters Si ∈ L do

Step 3: Normalize the values in the significance matrix column for cluster Si

Calculate the total for column i in matrix mat char , and denote it total char i

for all attributes Al ∈ DT do

Update mat char li = (mat char li ÷ total char i) · 100

end for

Step 4: Define a rule for cluster Si, using the most significant attributes of Si

Add rulei, an empty antecedent that predicts label Li of Si, to rule set

Define, for column i, an attribute set select char i and an accumulator sum char = 0

while sum char < θchar do

Find Al /∈ select char i, such that ∀Al′ /∈ select char i : mat char li ≥ mat char l′i

Add Al to select char i, and update sum char = sum char + mat char li

end while

Add to select char i all Al /∈ select char i that are marked in column i of mat char

for all attributes Al ∈ select char i do

Compute l char(Al, Si) and h char(Al, Si) using Equations (7.2) and (7.3)

Add conjunctive condition, Al ∈
[
l char(Al, Si), h char(Al, Si)

]
, to rulei

end for

end for

end function

Algorithm 7.3: Pseudocode of the SIG* algorithm’s procedure for adding characterizing rules

(based on a training data set, DT , and a neuron cluster set, L) to a rule set denoted as rule set .
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number of attributes in the original training data set (and thus the number of training

example dimensions in the map). The number of matrix columns, k, is equivalent to

the number of discovered emergent neuron clusters on the map. The value stored in

the cell at row l and column i of the significance matrix is denoted as mat char li. The

value stored at mat char li numerically represents the relative significance of attribute Al

within the set of mapped examples, Ni, which is associated with cluster Si.

The first main step that the SIG* algorithm uses for building a characterizing rule

set involves populating each cell of the characterizing significance matrix with an ini-

tial value. Each matrix cell value, mat charli, is derived from a statistical significance

measure, which is represented as sig(Al, Ni). The sig(Al, Ni) measure must be chosen

to compute a numeric representation of the significance of attribute Al within the set of

mapped training examples that is linked with emergent neuron cluster Si.

Ultsch’s original work does not elaborate on the exact nature of the significance value,

beyond mentioning that a statistical method is likely to be used. This dissertation’s

previous discussion on example-based cluster labeling, presented in Section 6.3.4.2, has

mentioned several appropriate sig(Al, Ni) measures. These measures are all applicable

to the SIG* algorithm’s computations of characterizing matrix values.

Figure 7.5 illustrates a hypothetical example of the process for populating a char-

acterizing significance matrix with values. The example is based on a SOM trained on

a data set with four attributes. The example also assumes that three emergent neuron

clusters have been discovered, and that the set of the SOM’s original training examples

have been mapped to these clusters. The matrix thus has four rows and three columns.

This example is extended throughout the remainder of this section and the next.

Step 2: Mark Cells in the Characterizing Significance Matrix

The second step of the characterizing rule extraction procedure begins processing the

characterizing significance matrix by marking highly significant cells within the matrix.

The marking process considers each row of the characterizing significance matrix sep-

arately, and flags the single cell that holds the highest significance value for that row.

The marks associated with matrix cells are used to indicate attributes that are forced to

appear as part of the characterizing rule of an emergent neuron cluster.
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A1 A2 A3 A4

... S3

S1 S2

S1 S2 S3

A1 2.5 2.4 6.8

A2 0.8 3.4 2.5

A3 0.5 1.8 2.1

A4 0.9 2.6 1.9

Training data set with
four attributes

-

SOM with mapped examples in
three emergent clusters

-

4× 3 matrix with raw
significance values

Figure 7.5: A hypothetical example of a SIG* characterizing rule significance matrix, popu-

lated with initial raw significance values. The matrix is for a SOM trained on a data set with

four attributes (A1, A2, A3, and A4), with three emergent clusters (S1, S2, and S3).

The objective of the marking procedure is to ensure that the cluster for which a

particular attribute is the most significant will include that attribute in the cluster’s

characterizing rule description. A side-effect of the marking process is that every at-

tribute in the SOM’s data model will definitely be included in the rule set.

Figure 7.6 shows the outcome of the cell marking procedure for the example charac-

terizing significance matrix of Figure 7.5. The original un-augmented significance matrix

appears to the left of the figure, while the marked matrix is on the right. Each marked

cell is annotated with an asterisk symbol. This example illustrates that it is possible for

some cluster columns to contain more than one marked cell. Similarly, certain cluster

columns might have no matrix cells that are marked by this step of the algorithm.

Step 3: Normalize the Characterizing Significance Matrix

The characterizing rule construction method’s third step completes the processing of the

characterizing significance matrix, prior to the actual rule building procedure commence-

ment. The process normalizes cell values in the characterizing significance matrix, so that

all the attributes within an emergent cluster can be compared in terms of a contribution

to the cluster’s description, instead of absolute significance value magnitudes.

The normalization process first requires totals to be calculated for all the raw sig-

nificance values in each matrix column. Each cell value is then re-computed as the

percentage that the cell’s value contributes to the total calculated for the cell’s column.

Finally, each cell’s computed percentage replaces the raw significance value.
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S1 S2 S3

A1 2.5 2.4 6.8

A2 0.8 3.4 2.5

A3 0.5 1.8 2.1

A4 0.9 2.6 1.9

S1 S2 S3

A1 2.5 2.4 6.8 *

A2 0.8 3.4 * 2.5

A3 0.5 1.8 2.1 *

A4 0.9 2.6 * 1.9

Matrix with raw significance values

-

Matrix with marked significance values

Figure 7.6: The marking of appropriate cells within the initially populated SIG* charac-

terizing matrix of Figure 7.5. In each row of the significance matrix, the cell containing the

maximum significance value is marked. Marked cells are indicated with an asterisk.

Figure 7.7 illustrates the normalization of the marked matrix shown in Figure 7.6.

The original matrix of raw significance values is shown on the left, with the totals of

each column’s significance values included at the bottom of the table. The normalized

table is shown to the right of the figure. Both tables again use the asterisk symbol to

indicate the matrix cells that were marked during the previous algorithmic step.

Step 4: Define a Rule for Each Cluster

The final step of the SOM’s characterizing procedure builds up one rule that describes

each emergent cluster on the map structure. The rule definition procedure commences

by selecting maximally descriptive attributes for each cluster, and constructing rule

conditions out of these attributes. The process uses the marked cells and normalized

values that were computed during steps 2 and 3 of the characterizing procedure.

The algorithm iterates through each column of the characterizing matrix, and selects

attributes one at a time. Selected attributes are associated with the cluster represented

by the current column. A user-defined parameter, called the characterizing threshold

and represented as θchar , is required. For each matrix column, attributes are selected

in descending order of normalized significance. A cumulative total is kept for each

matrix column, which stores the sum of the normalized significance values for the selected

attributes. Attributes are added to the set of selected attributes for a column until the

cumulative total reaches or exceeds the specified characterizing threshold.

Clearly, the most descriptive attributes are selected first. Should one or more at-

tributes have a particularly high significance in a column, fewer will be selected. Con-
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S1 S2 S3

A1 2.5 2.4 6.8 *

A2 0.8 3.4 * 2.5

A3 0.5 1.8 2.1 *

A4 0.9 2.6 * 1.9

Total 4.7 10.2 13.3

S1 S2 S3

A1 53.2% 23.5% 51.1% *

A2 17.0% 33.3% * 18.8%

A3 10.6% 17.7% 15.8% *

A4 19.2% 25.5% * 14.3%

Matrix with marked significance values

-

Matrix with normalized significance values

Figure 7.7: The normalization of values within the marked SIG* characterizing matrix of

Figure 7.6. Each value is normalized as a percentage of the total significance in the value’s

column. Significance totals per column are indicated in the non-normalized matrix.

versely, if all attributes have fairly low significances, many will be chosen. The charac-

terizing threshold affects the number of attributes selected for each characterizing rule.

More attributes will tend to be selected to meet the requirements of a high threshold.

Conversely, fewer attributes will be chosen before a low threshold is exceeded.

Once every column’s attributes have been selected, subject to the characterizing

threshold, the SIG* algorithm takes marked matrix cells into consideration. Each col-

umn’s unselected attributes are investigated. If any marked attributes have not been

chosen for a column, those attributes are also selected for the column’s cluster.

Figure 7.8 illustrates the selection of attributes from the marked and normalized

significance matrix of Figure 7.7. The normalized and marked significance matrix is

shown to the left of the figure, while the right of the diagram lists the attributes that

are selected for each cluster. A characterizing threshold of 50% was used. Each selected

attribute is followed by an annotation in parentheses. If the annotation is a normalized

significance value, the attribute significance was the deciding factor for selection. If

the annotation is the keyword marked, attribute selection occurred only because the

attribute’s cell was marked during step 2. Also shown for each cluster, is the total of the

normalized significances for cells chosen only due to the characterizing threshold.

After the attribute selection process has been completed, the characterizing rules that

describe the essential characteristics of the map are finally built. A rule is generated for

each discovered emergent cluster, where the label of the cluster is used as the consequent

of the rule. For each emergent cluster, every attribute that was selected is used to create
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S1 S2 S3

A1 53.2% 23.5% 51.1% *

A2 17.0% 33.3% * 18.8%

A3 10.6% 17.7% 15.8% *

A4 19.2% 25.5% * 14.3%

S1 : A1 (53.2%) = 53.2%

S2 : A2 (33.3%) + A4 (25.5%) = 58.8%

S3 : A1 (51.1%) + A3 (marked) = 51.1%

Matrix with marked significance values

-

Selected characterizing attributes per cluster

Figure 7.8: Characterizing attribute selection, using the normalized SIG* characterizing ma-

trix of Figure 7.7, and a 50% threshold. Selected attribute significances and cumulative signif-

icances are shown. Attributes listed as marked are chosen only due to a marked cell.

one antecedent condition. The condition that is created for attribute Al within the

characterizing rule for emergent cluster Si has the following general form:

Al ∈
[
l char(Al, Si), h char(Al, Si)

]

where l char(Al, Si) denotes the lower bound of the characterizing rule’s attribute condi-

tion, and h char(Al, Si) represents the upper bound for the attribute’s value condition.

All of the selected attribute tests for a rule are linked by logical conjunctions.

The lower bound for a condition on the value of attribute Al, for the characterizing

rule that predicts the label that is associated with cluster Si, is defined as follows:

l char(Al, Si) = mean(Al, Ni)−
(
ψchar · dev(Al, Ni)

)
(7.2)

where mean(Al, Ni) is the mean value for attribute Al over the mapped example set Ni,

and dev(Al, Ni) is the standard deviation of attribute Al over example set Ni. Similarly,

the upper bound on the condition for attribute Al in the rule for cluster Si is:

h char(Al, Si) = mean(Al, Ni) +
(
φchar · dev(Al, Ni)

)
(7.3)

The parameters ψchar and φchar respectively affect the lower and upper bounds of the

condition. Smaller values result in narrower value ranges, and larger values produce

wider value ranges. The separation between the two parameters and equations allows

independent fine-tuning of the two bounds relative to the attribute’s mean value.

Figure 7.9 depicts the example rule set that is generated from the selected attributes

shown in Figure 7.8. The rules predict each of the three emergent clusters present in

the original SOM, and show a condition for each of the selected attributes. The exact

condition bounds have been omitted from the figure, in order to simplify the example.
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S1 : A1 (53.2%) = 53.2%

S2 : A2 (33.3%) + A4 (25.5%) = 58.8%

S3 : A1 (51.1%) + A3 (marked) = 51.1%

IF A1 ∈ [. . .] THEN L1

IF A2 ∈ [. . .] AND A4 ∈ [. . .] THEN L2

IF A1 ∈ [. . .] AND A3 ∈ [. . .] THEN L3

Selected characterizing attributes per cluster

-

One characterizing rule per cluster

Figure 7.9: The construction of a SIG* characterizing rule for each emergent cluster, using the

selected characterizing attributes of Figure 7.8. The actual bounds selected for the attribute

conditions, which form part of each characterizing rule’s antecedent, are omitted.

7.3.3 Differentiating Condition Construction Procedure

Rules with overlapping conditions will not be able to differentiate between similar train-

ing examples. Consequently, the SIG* algorithm attempts to specialize pairs of charac-

terizing rules that have overlapping descriptions. Pairs of overlapping rules are identified

when both rules independently match any training set examples. All possible pairs of

characterizing rules are compared, to determine which require specialization.

Unfortunately, the details of the differentiating condition building sub-procedure are

not clearly specified in the original literature on SIG* [243] (the process is described

simply as an “analog algorithm”, similar to the characterizing rule building procedure).

This chapter’s discussion on the differentiating procedure is therefore based as closely as

possible on Ultsch’s original algorithm, but may differ in some respects.

The differentiating condition building procedure has three parameters. The first

parameter, θdiff , specifies a continuous differentiating threshold percentage in the (0, 100]

range, which adjusts the number of attributes selected for differentiating conditions.

Higher values for θdiff result in a greater number of attributes being selected, while lower

values incorporate a smaller number of attributes into the conditions.

The second and third differentiating condition construction parameters are referred

to as ψdiff and φdiff , and are continuous values in the range (0,∞). As the ψchar and

φchar parameters do for characterizing conditions, both ψdiff and φdiff affect the range

of values that are incorporated into differentiating condition attribute tests. Higher

parameter values result in wider attribute value condition boundaries, and lower values

cause narrower ranges. The two parameters again allow separate fine-tuning of the upper

and lower condition bounds, in relation to the attribute’s mean.
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The SIG* algorithm’s differentiating condition building sub-procedure is illustrated

in Algorithm 7.4. The entire procedure consists of three steps, and is repeated for

every characterizing rule pair that is judged to overlap. The first step involves building

and populating a differentiating significance matrix for the rule pair. The second step

normalizes the significance values that are stored in the differentiating matrix. The final

sub-procedure step performs the actual specialization of both the overlapping rules. Each

of the differentiating procedure’s steps is investigated separately, in more detail.

Step 1: Populate the Differentiating Significance Matrix

For any overlapping pair of characterizing rules, an empty differentiating significance

matrix must be defined prior to rule specialization. The differentiating significance ma-

trix has one column and I rows. Each matrix row represents an attribute in the SOM’s

model. Only one column is required because the matrix stores significance values that

tell the overlapping clusters apart, rather than describe the clusters separately.

The first step of the rule differentiation sub-procedure populates a differentiating

significance matrix for a selected pair of overlapping characterizing rules. In contrast to

the significance matrix for characterizing rules, the differentiating significance matrix cell

mat diffl1, in column l, holds a value representing the significance of attribute Al in terms

of telling the overlapping example sets Ni and Nj apart. It should be noted that the

example sets Ni and Nj are linked to clusters Si and Sj, respectively. The differentiating

matrix values are computed using a statistic represented as sig(Al, Ni, Nj).

While Ultsch unfortunately does not describe the specific nature of the differentiating

significance statistic, it is possible to utilize any measure that compares the attribute

values that make up two mapped sets of training examples. To perform such a com-

parison, it is possible to modify the sig(Al,Ni) significance measures for unsupervised

example-based cluster labeling that are based on a comparison between the Ni set and

the out(Ni) set of Equation (6.8). The modified statistics should, however, simply com-

pare the example sets Ni and Nj, rather than the Ni and out(Ni) sets of examples.

Figure 7.10 illustrates a hypothetical example of the differentiating matrix construc-

tion procedure, based on the example characterizing rules defined in Figure 7.9. The

example assumes that an overlap exists between the examples classified by the char-
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begin function AddDifferentiatingRule(DT , Si, Sj , rule set) :

Define an empty I × 1 matrix of continuous significance values, denoted mat diff

Define user-specified algorithmic parameters θdiff , φdiff and ψdiff

Step 1: Populate the differentiating significance matrix with significance values

for all attributes Al ∈ DT do

Set mat diffl1 to sig(Al, Ni, Nj), the significance of Al in telling Ni and Nj apart

end for

Step 2: Normalize the values in the significance matrix

Calculate the column total for matrix mat diff , and denote it total diff

for all attributes Al ∈ DT do

Update mat diffl1 = (mat diffl1 ÷ total diff ) · 100

end for

Step 3: Specialize rules for Si and Sj , using their most significant attributes

Retrieve rulei predicting Li and rulej predicting Lj from rule set

Define empty differentiating condition expressions cond diffi and cond diffj

Define an attribute set select diff and an accumulator sum diff = 0

while sum diff < θdiff do

Find Al /∈ select diff , such that ∀Al′ /∈ select diff : mat diffl1 ≥ mat diffl′1

Add Al to select diff , and update sum diff = sum diff + mat diffl1

end while

for all attributes Al ∈ select diff do

Calculate l diff (Al, Si) and h diff (Al, Si) using Equations (7.4) and (7.5)

Add a disjunctive condition, Al ∈
[
l diff (Al, Si), h diff (Al, Si)

]
, to cond diffi

Calculate l diff (Al, Sj) and h diff (Al, Sj) using Equations (7.4) and (7.5)

Add a disjunctive condition, Al ∈
[
l diff (Al, Sj), h diff (Al, Sj)

]
, to cond diffj

end for

Add cond diffi as a new conjunctive condition to rulei

Add cond diffj as a new conjunctive condition to rulej

end function

Algorithm 7.4: Pseudocode of the SIG* algorithm’s procedure for differentiating the charac-

terizing rules for clusters Si and Sj (based on a training set, denoted as DT ), and an existing

set of characterizing rules previously generated from DT , which is denoted as rule set .
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acterizing rules for clusters S1 and S3, but not between any other pairs of rules. A

differentiating condition must therefore be built for both of the overlapping rules, using

a single differentiating significance matrix as a base. The matrix has four rows, each of

which is associated with one of the attributes represented by the SOM.

Step 2: Normalize the Differentiating Significance Matrix

The second step of the differentiating condition building process requires the normal-

ization of the values contained in the differentiating matrix. The normalization of a

differentiating significance matrix is similar to the normalization of the characterizing

significance matrix. A significance value total is calculated for the single differentiating

matrix column, and cell values are normalized as a percentage of the total.

Figure 7.10 shows the outcome of the value normalization for the significance matrix

used in the differentiating condition attribute selection example. The total for the single

matrix column is shown in the non-normalized matrix. To the right of the unmodified

matrix of raw significance values appears the normalized matrix of percentages.

Step 3: Specialize the Rules for the Overlapping Clusters

The final step of the SIG* algorithm’s specialization procedure involves the actual con-

struction of the differentiating conditions. Once built, the differentiating conditions must

also be added to the two existing characterizing rules that are being specialized.

First, attributes are selected to make up the differentiating conditions. Attributes are

chosen in descending order of normalized significance, starting with the highest value.

A total of all the selected normalized significance values is kept. Attributes are selected

until the total reaches or exceeds the value of the θdiff parameter.

Figure 7.10 shows the attribute selection step for the rule specialization example,

which used a 50% differentiating significance threshold. Attribute A2 and A4 are thus

chosen, with a normalized significance total of 61.3% exceeding the threshold.

After the selection of appropriate attributes for an overlapping pair of characterizing

rules, a separate differentiating condition is built for each of the two rules. Each dif-

ferentiating condition consists of several value boundaries, each associated with one of

the selected differentiating attributes. A boundary associated with an attribute has the
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L3

L2

L1

S1 & S3

A1 1.9

A2 3.4

A3 2.2

A4 3.1

Total 10.6

S1 & S3

A1 17.9%

A2 32.1%

A3 20.8%

A4 29.2%

A2 (32.1%) +

A4 (29.2%) = 61.3%
- - -

Examples classified as
L1, L2 and L3

Column Vector with
raw significance values

Column vector with
normalized values

Selected differentiating
attributes for S1 and S3

Figure 7.10: Differentiating attribute selection for the characterizing SIG* rules of Figure 7.9,

given an overlap between examples classified as L1 and L3. In the normalized matrix, values

are a percentage of the column’s total significance. A differentiating threshold of 50% is used,

and the selected attributes are annotated with their normalized significance values.

same form as the attribute conditions used in characterizing rules. The general structure

of an attribute condition within a differentiating condition is as follows:

Al ∈
[
l diff (Al, Si), h diff (Al, Si)

]

The differentiating condition bounds are similar to characterizing bounds. A differenti-

ating condition’s lower bound on Al, for the characterizing rule of Si, is:

l diff (Al, Si) = mean(Al, Ni)−
(
ψdiff · dev(Al, Ni)

)
(7.4)

In a similar fashion, the upper value boundary on the differentiating condition for at-

tribute Al, defined for the characterizing rule that predicts Si, is computed as:

h diff (Al, Si) = mean(Al, Ni) +
(
φdiff · dev(Al, Ni)

)
(7.5)

The ψdiff and φdiff parameters have effects that are similar to the influence that the user-

defined ψchar and φchar parameters have on characterizing condition boundaries. Smaller

parameter values reduce condition ranges, while larger values result in a wider range. As

was the case for the characterizing rule conditions, the two separate parameters allow

for a separate fine-tuning of the upper and lower bounds.

The constructed attribute conditions for a specialized characterizing rule are com-

bined into a complete differentiating condition. The construction of such complete con-

ditions simply involves linking the differentiating attribute conditions using logical dis-

junctions. According to the original algorithm description, disjunctions are used because
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characterizing rule conditions should generally be stronger descriptions than differentiat-

ing conditions. As a final step, the constructed differentiating condition is simply added

to the appropriate characterizing rule’s antecedent, using a logical conjunction.

Figure 7.11 illustrates how the example’s selected differentiating attributes from Fig-

ure 7.10 are combined with the original characterizing rules shown in Figure 7.9, to form

a finally specialized rule set. Two differentiating conditions of the same general form are

built from the set of selected attributes. The differentiating conditions are then added

to the rules predicting L1 and L3, the labels of the overlapping clusters S1 and S3. To

illustrate the form of the rules more clearly, the exact condition bounds are omitted.

7.3.4 Converting SIG* Rules into Production Rules

Many DM algorithms, including those compared to SIG* in Chapter 8, output production

rules with simple conjunctions of attribute tests as antecedents. The SIG* algorithm’s

rule set is clearly not in this form. It is thus often necessary to convert SIG* rules into

general production rules, to allow a fair structural comparison of algorithm results.

Should a characterizing rule contain any differentiating conditions, the rule an-

tecedent must be converted into a Boolean expression that is composed only out of

a conjunction of attribute value conditions. Standard Boolean algebra [267] is used to

perform the translation. For example, the following SIG* characterizing rule:

IF A1 ∈ [. . .] AND
(
A2 ∈ [. . .] OR A3 ∈ [. . .]

)

AND
(
A4 ∈ [. . .] OR A5 ∈ [. . .]

)
THEN L1

is converted into the following set of separate rules, where each rule has an antecedent

that consists of only a conjunction of conditions on the values of the attributes:

IF A1 ∈ [. . .] AND A2 ∈ [. . .] AND A4 ∈ [. . .] THEN L1

IF A1 ∈ [. . .] AND A2 ∈ [. . .] AND A5 ∈ [. . .] THEN L1

IF A1 ∈ [. . .] AND A3 ∈ [. . .] AND A4 ∈ [. . .] THEN L1

IF A1 ∈ [. . .] AND A3 ∈ [. . .] AND A5 ∈ [. . .] THEN L1

The reader should note that the converted set of rules is generally more complex than

the original SIG* rule, both in terms of the number of rules and the number of attribute



Chapter 7. SOM-Based Data Mining 173

IF A1 ∈ [. . .] THEN L1

IF A2 ∈ [. . .] AND A4 ∈ [. . .] THEN L2

IF A1 ∈ [. . .] AND A3 ∈ [. . .] THEN L3

One characterizing rule for each cluster

A2 (32.1%) + A4 (29.2%) = 61.3%

Differentiating attributes for S1 and S3

IF A1 ∈ [. . .] AND
(
A2 ∈ [. . .] OR A4 ∈ [. . .]

)
THEN L1

IF A2 ∈ [. . .] AND A4 ∈ [. . .] THEN L2

IF A1 ∈ [. . .] AND A3 ∈ [. . .] AND
(
A2 ∈ [. . .] OR A4 ∈ [. . .]

)
THEN L3

?

One final, complete rule for each cluster

Figure 7.11: The construction of final SIG* rules, using the characterizing rules of Figure 7.9,

and the differentiating attributes for clusters S1 and S3 from Figure 7.10. Differentiating

conditions are added to the rules predicting L1 and L3. Actual attribute ranges are omitted.

conditions. This effect is exacerbated by a large number of differentiating conditions, as

well as by differentiating conditions that consist of many attribute tests.

Many DM algorithms, including the algorithms that the SIG* algorithm is compared

against in Chapter 8, use only equalities and inequalities in attribute conditions. Clearly,

the SIG* algorithm’s bounded attribute conditions have a different syntax.

Bounded conditions are easily translatable into two equality-based conditions, which

are linked by a logical conjunction. The first condition tests the lower bound of the

range, while the second condition tests the upper bound. For example, the condition:

A1 ∈ [0.2, 5.1]

will be converted into the following equivalent logical conjunction, which contains two

separate production rule conditions on the value of the same data attribute, A1:

(A1 >= 0.2) AND (A1 <= 5.1)

It should, of course, be borne in mind that this translation necessarily increases the

complexity of the rule set, in terms of the number of conditions contained in each of the

rules. This effect is greater when rules have many conditions, and is further magnified

if many rules exist due to the conversion of antecedents into conjunctions of conditions.
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7.3.5 A Critique of the Approach

The SIG* algorithm was the only SOM-based data mining algorithm for more than a

decade, and is consequently an important baseline algorithm against which all SOM-

based rule extraction algorithms should be analyzed and measured. However, this re-

search work’s analysis of the SIG* approach, which is based on the interpretation of

the algorithm as it was described within this chapter, has identified several drawbacks

and shortcomings associated with the technique. This section discusses these drawbacks

theoretically, and some are experimentally investigated within Chapter 8.

Firstly, the SIG* algorithm bases rules on discovered emergent clusters of neurons.

As Chapter 5 illustrated, there are many potential drawbacks to different clustering

algorithms. Any drawback linked to a clustering algorithm used by SIG* will implicitly

be associated with the operation of the SIG* implementation. Drawbacks include the

time-consuming nature of an exploratory clustering approach, the need to select an

appropriate number of clusters that a partitional algorithm should produce, and the

level at which a hierarchical technique’s dendrogram should be cut.

Real-world SOM models also often include emergent clusters that are insignificant

(because the cluster is very small, very few data examples fall within the cluster, or the

cluster is simply uninteresting). While data mining and exploratory data analysis tools

often eliminate insignificant rules, SIG* requires the inclusion of a characterizing rule for

every emergent cluster, regardless of how insignificant the cluster may be.

In the third place, because of the cell marking procedure used during the construc-

tion of characterizing rules, every attribute is used to describe at least one emergent

cluster. Redundant or unimportant data set attributes will, however, not contribute to a

description of a data set. Many data mining and exploratory data analysis methods elim-

inate unimportant attributes. However, SIG* enforces the inclusion of even insignificant

attributes in the rule set, leading to potential rule description redundancy.

Fourthly, adding differentiating conditions to both rules in an overlapping pair, rather

than just one, is likely to introduce a large degree of redundancy to the rule set. Fur-

thermore, differentiating conditions are generated for rule pairs that have even a single

classified example in common. The specialization of a rule to eliminate a single positive

example is also likely to require a great deal of detail. It is thus likely that very minor



Chapter 7. SOM-Based Data Mining 175

overlaps between rules will result in a large increase in rule set complexity. Moreover,

when a characterizing rule overlaps with several other rules, the differentiating conditions

for every overlapping pair will cause an even greater complexity increase.

Related to the fourth drawback, it is also likely that the addition of many differ-

entiating conditions will lead to an over-specialization of rules. The result of such an

over-specialization will be a rule set that very closely models the SOM’s training data,

while not generalizing well to unseen data examples. The rule set will thus perform less

accurately on examples that are not available during map training.

In the sixth place, component mean and standard deviation calculations over mapped

training example sets form the basis for attribute value conditions. It is likely that means

and standard deviations will be an inaccurate approximation of the underlying compo-

nent distributions for examples mapped to very irregular clusters. Rule performance is

therefore likely to degrade when describing these types of clusters.

In a similar vein to the previous drawback, the accuracy of extracted rule sets is

likely to become a concern if a relatively small number of training examples fall within

one or more emergent clusters on the map. Means and standard deviations for these

clusters will therefore be calculated on fewer example observations, which will reduce

the accuracy of the derived characterizing rule attribute conditions.

The execution time of the SIG* algorithm is also of some concern. The very complex

characterizing and differentiating processes (which involve repeated matrix-building and

significance calculations) increase execution time. Several clustering algorithms are fairly

time complex, and will also slow down SIG* if used as part of the algorithm.

Finally, the SIG* algorithm is incredibly complicated in comparison to many other

rule extraction algorithms, as is attested to by the lengthy description of the approach.

This potentially results in a very cumbersome and time-consuming algorithm implemen-

tation process, and a widened scope for programmatic errors to be introduced.

7.4 The HybridSOM Framework

The HybridSOM approach is a novel method, introduced by this research work. Hy-

bridSOM is not an algorithm in the true sense of the word, but rather a framework that



176 7.4. The HybridSOM Framework

allows for the combination of any rule extraction algorithm with a SOM. The framework

is thus a highly adaptable general approach to SOM-based rule extraction.

A broad overview of the approach is presented in Section 7.4.1, while Section 7.4.2

provides a more detailed outline of the rule extraction procedure. Finally, an analysis of

the framework’s strengths and weaknesses is presented within Section 7.4.3.

7.4.1 An Overview of the Approach

The HybridSOM framework is predicated on three facts. Firstly, the SOM’s weight vec-

tors model the characteristics of the map’s training data set. Secondly, SOMs typically

contain fewer weight vectors than the number of training examples [68], meaning that

the weight vector model is less complex than the training data set. Thirdly, a SOM’s

weight vectors are equivalent in structure to unlabeled training set examples.

Based on these three assumptions, it is possible to hypothesize that an arbitrary DM

algorithm’s application to a trained SOM’s weight vectors will be roughly equivalent

to the DM algorithm’s application on the map’s original training data examples. Fur-

thermore, it can be hypothesized that the rule set that is produced by a DM algorithm

executed on a trained SOM’s weight vectors should be similar to the rules produced if

the same DM algorithm is executed on the map’s raw training data.

The overall structure of the HybridSOM framework’s operation is presented graphi-

cally in Figure 7.12. A pseudocode approach outline is also provided in Algorithm 7.5.

7.4.2 The Rule Extraction Procedure

The HybridSOM framework includes a SOM component, and is configured with a neuron

labeling method and a rule extraction algorithm. The labeling technique is not required

to apply a label to every neuron in the map. As a result, any one of the neuron labeling

approaches that were discussed in Chapter 6 is appropriate for HybridSOM. Furthermore,

any rule extraction algorithm that processes a data set using the table-based data model

is usable, including rule induction approaches (e.g., CN2 [38] and AQ15 [171]), decision

tree building techniques (e.g., C4.5 [193], ID3 [190], and ASSISTANT 86 [30]), and

computational intelligence methodologies (e.g., Ant-Miner [179] and GPMCC [186]).
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Figure 7.12: The component interactions within the HybridSOM framework.

Create and initialize a SOM, map, and train it on an I-attribute training set, DT
Apply a label to the neurons corresponding to every ~wyx that make up map

Define a data set, input , with the same I attributes that are found in DT
for all labeled weight vectors, ~wyx, in the map do

Define a new example, record , and add it to input

Add all wyxv to record , as values for their corresponding attribute values

Add labelyx to record , as the record classification

end for

Execute rule extractor on input , producing a rule set, output

Algorithm 7.5: Pseudocode of the HybridSOM rule extraction DM framework.

The HybridSOM method begins by simply initializing and training a SOM on a

training data set. Once training has been completed, the map is prepared for mining by

labeling the neurons of the map structure, using the chosen labeling method.

After map preparation, a representative proxy data set is built from the map’s weight

vectors and labels. Each weight vector becomes a new example in the proxy data set,

where each weight becomes an attribute value. The label associated with the neuron of

a weight vector becomes the classification of the example built from that weight vector.

Any unlabeled weight vectors are simply discarded from the proxy data set.
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Because map weights correlate to training data attributes, the descriptive attributes

of the proxy data set have exactly the same structure as the descriptive portion of

the training data set. The correlation between the classification information in the

proxy data set and the original training data set obviously depends on the results of

the neuron labeling scheme used. When a supervised labeling approach is used, proxy

data set classifications will have the same form as those found in the original training

data set. If unsupervised labeling approaches are used, it is possible that proxy data set

classifications will differ from the original training data.

Once the new data set has been constructed, HybridSOM’s final step simply executes

the chosen rule extraction algorithm on the proxy data set. The rule set produced by

the data mining algorithm then becomes the final output of the framework.

7.4.3 A Critique of the Approach

The HybridSOM framework has a number of advantages. Firstly, the hybrid nature of

the framework allows any neuron labeling scheme and any rule extraction algorithm to

be used for SOM-based data mining. This introduces a level of flexibility that is not

present in either the boundary-based rule extraction algorithm, or SIG*.

Simplicity is the second advantage of the framework, as is demonstrated by the com-

pact algorithm description. The framework’s implementation is thus quick and easy, and

poses less of a problem than SIG* or the boundary-based method. This is particularly

advantageous when a pre-existing general-purpose rule extraction algorithm is available,

in which case very little effort is required to use the algorithm with a SOM.

The third advantage of the HybridSOM framework lies in the relative execution

efficiency of the approach, because the method requires only a single iteration through

the map’s neurons, and a simple copy operation on weights and neuron labels.

The framework is not without drawbacks, however. Firstly, the quality of a Hy-

bridSOM configuration’s output rule set (in terms of rule set accuracy and description

complexity) is strongly linked to the rule set quality that the rule extraction algorithm

is capable of producing. Thus, if a DM algorithm that is not suited to a particular data

domain is used with a SOM trained on such data, HybridSOM’s output rules will also

perform poorly. It is usually difficult to ascertain whether a DM algorithm is suited to a
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certain data set, making appropriate rule extractor selection challenging. By extension,

a generally poor rule extractor will also produce poor HybridSOM results.

A second drawback associated with HybridSOM is that the framework’s overall result

quality is also partially linked to the neuron labeling algorithm that the framework is

configured with. Inaccurate or unintuitive labels will result in substandard proxy rule

set classification information, leading to poor rule extraction algorithm results.

The final drawback of the HybridSOM technique is that the simplicity and time com-

plexity of the neuron labeling and rule extraction algorithms are entirely separate from

the framework itself. Consequently, if the implementation of either algorithm is com-

plex, the overall implementation complexity of a HybridSOM configuration will increase.

Similarly, if either a very time complex labeling algorithm or rule extractor is chosen, the

overall time complexity of the framework configuration will also be adversely affected.

7.5 Miscellaneous Approaches

Several miscellaneous SOM-based data mining techniques have been proposed, which

produce different forms of knowledge to the previously discussed methods in this chapter.

Further investigation of these miscellaneous approaches is left to future research.

Hung and Huang [116] propose a method similar to the characterizing rule building

of SIG*. A one-dimensional SOM is used, contiguous groups of equivalent labels define

clusters, and a weighted boundary between clusters defines rule conditions. This method

does not scale to two-dimensional maps, and is thus not considered further.

It is possible to generate fuzzy rule sets from trained SOMs. Fuzzy rules differ

greatly from production rules in both structure and interpretation, and are thus excluded

from this dissertation’s focus. Alfred Ultsch has proposed an extension to the SIG*

algorithm [242], which builds and outputs sets of fuzzy rules. Pedrycz and Card [181]

have also proposed a method to give fuzzy descriptions to neuron clusters.

Vesanto and Hollmén [260] have broadly outlined approaches for optimizing rule con-

dition bounds, based on a classification error function. However, the original publication

does not describe the exact nature of the optimization procedure. Further investigation

into the effects of attribute value optimization is therefore left to future work.
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Work by Fung et al [89] has used SOMs as a component in the initial data preparation

phase of a complex classification scheme that uses a system of several feedforward neural

networks. The SOM is only a minor component in the overall system, and this research

thus does not consider the method to be a SOM-based data mining approach.

Siponen et al [223] have done some work on evaluating the significance of individual

rules in a SOM-derived rule set. The proposed rule significance measure is calculated for

a particular rule, relative to a discovered emergent neuron cluster that the rule predicts.

As a result, the significance measure is not applicable to rules that do not describe

emergent clusters, such as those derived by the HybridSOM framework. The measure’s

application is thus not general enough to be considered further within this work.

Vesanto and Hollmén [260] have also presented some research on the visualization

of rules that describe emergent neuron clusters. This dissertation focuses on rule set

performance, rather than the visual representation of rules, and therefore does not focus

further on this or any other visualization methods for SOM-derived rules or rule sets.

7.6 The Viability of SOM-based Data Mining

As is evident from this chapter, there are not many SOM-based data mining approaches.

This is due largely to the fact that the SOM is a modeling technique suited primarily to

visual representations that are interpretable by humans. This means that a SOM’s use

is traditionally considered very well suited to EDA, but less applicable to DM.

SOM training is very time complex, especially when training examples have many

attributes and when the map is large [129]. SOM execution time further suffers in the

presence of large training sets. There are thus many data mining methods that are less

time complex, and also produce adequate rule sets. As outlined in Section 3.6, the “curse

of dimensionality” [16, 19, 216] is also problematic for high-dimensional data.

In addition, it should be recalled that the SOM produces an approximate model of the

map’s training data. As a result, SOM-based rule extractors are essentially built upon a

rough approximation of the training data, rather than the unmodified and more precise

original set of training data. This dissertation’s research work therefore hypothesizes that

SOM-based DM algorithms will inevitably produce rules that are at least somewhat less
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accurate than rules extracted directly from the raw training data. The degree of accuracy

degradation will, of course, depend on the accuracy of the SOM’s model.

The question then arises as to whether SOM-based data mining is a worthwhile

approach justifying further investigation, and whether SOM-based DM is suitable for any

real-world applications. This dissertation proposes that the following general advantages

are associated with rule extraction based on a sufficiently trained self-organizing map:

1. In problem domains such as medical data analysis, SOMs have been found to be

capable of modeling problem spaces for which other algorithms cannot generate

adequate rule sets [243]. Under such conditions, it is possible for one of the SOM-

based rule extraction approaches to produce rule sets with improved performance

in comparison to other approaches, despite an increase in time complexity.

2. A SOM is a very versatile approach, because trained maps can also be used for

EDA purposes. It is possible to train a SOM once, and then use the map as a

single platform for a variety of exploratory tasks, as well as a basis for automatic

rule set generation. It is possible to use such a SOM-based rule set in addition to

the exploratory findings. It is also possible to use generated rule sets as additional

evidence to verify the results of an EDA exercise, or vice versa.

3. Very large data sets often cause problems for DM algorithms [71], which can ex-

haust available hardware or software resources. However, because SOM training

uses one data example at a time, large data sets do not prevent the training of

moderately-sized maps. Furthermore, practical SOMs typically contain far fewer

neurons than training examples, meaning that a SOM can substantially reduce the

time complexity of algorithms that derive rules from map weight vectors.

4. A SOM’s model tends to smooth out noise in the training data set [146]. It is

therefore possible that a rule extractor that is based on a SOM’s constituent weight

vectors will degrade more gracefully in the presence of noise, when compared to a

rule extraction algorithm that is executed on a raw training data set.

The last two advantages are only applicable to SOM-based rule extraction algorithms

that are based directly on the weight vectors of a trained SOM, such as the boundary-

based method and the HybridSOM framework. The SIG* approach is based on training
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examples mapped to a SOM structure, and thus does not have these two advantages. Of

course, the advantages described under points 1 and 4 require further empirical research

to confirm or reject, but this analysis is deferred until future research studies.

7.7 Summary

This chapter dealt with the DM-oriented aspect of SOM use. DM applications are rel-

atively limited due to the fact that SOMs lend themselves primarily to the visual inter-

pretation of EDA, rather than automatic rule extraction. Section 7.1 discussed the phi-

losophy underlying SOM-based DM. Three SOM-based DM approaches were discussed

in this chapter. Firstly, the boundary-based rule extraction algorithm was described in

Section 7.2. Secondly, the SIG* algorithm was discussed in Section 7.3. Finally, Hy-

bridSOM is a novel framework proposed by this research, and discussed in Section 7.4.

Section 7.5 outlined miscellaneous approaches that are related to DM with SOMs, and

Section 7.6 discussed the practical viability of using a SOM for automatic DM.

The next chapter presents the results of the empirical analysis performed for this

work. The chapter experimentally compares configurations of the HybridSOM framework

to the SIG* algorithm implementation that was described in this chapter. In addition,

the classic CN2 rule induction algorithm and the C4.5 decision tree building technique

are compared against. As previously mentioned, this research focuses on unsupervised

SOM-based DM, and the boundary-based method is thus not included in the comparison.
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Experimental Results

The previous chapter described the SOM-based DM techniques that can be used for rule

extraction. This chapter describes the procedures and statistical measures used during

the empirical study conducted for this research. Thereafter, the experimental results

obtained during the empirical investigation are presented and discussed.

The experimental analysis performed for this dissertation is split into two separate

investigations. The first investigates the performance of the supervised neuron labeling

methods for SOMs, which are covered in Chapter 6. The second explores the performance

of the SOM-based DM techniques, which are described within Chapter 7.

This chapter is arranged as follows: Section 8.1 discusses the experimental procedures

that are applicable to both the aforementioned investigations. Section 8.2 describes the

data sets used as a basis for the experiments. Sections 8.3 and 8.4 present and interpret

the experimental results for the supervised neuron labeling approaches and the SOM-

based DM methods, respectively. Finally, Section 8.5 summarizes the chapter.

8.1 General Experimental Procedure

This section discusses details of the experimental procedure that both the aforementioned

investigations share. Section 8.1.1 describes the cross-validation procedure used in the

experiments. Section 8.1.2 covers the general analysis techniques and statistics that were

used to compare the performance characteristics of the algorithms under investigation.

183
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8.1.1 Cross-Validation Procedure

The performance of each investigated technique was assessed using several classification

problems. In other words, both the supervised neuron labeling methods and the SOM-

based data mining algorithms were used to apply labels to data examples, and the task

performance of each approach was measured. Each classification problem used examples

from a well-known benchmark data set. The sets are described in Section 8.2.

It is possible to use several measures to assess the performance of algorithms on

classification problems. The specific performance measures used for assessing the various

approaches in the two investigations are discussed in Sections 8.3.3 and 8.4.3.

It is insufficient to judge the performance of a technique using only a single simulation

on a classification problem [68]. Consequently, several simulations are required, upon

which all reported results are based. It is also well known that analysis performed on

an algorithm’s training data gives an over-estimation of algorithmic performance [157].

Cross-validation [10] is a family of techniques used to judge how the results of a statistical

analysis on an algorithm generalize to a data set not presented during training.

The k-fold cross-validation method [174] divides the benchmark data set upon which

an algorithm is being assessed into k disjoint subsets, each containing the same number

of data examples. A set of k simulations is then executed, where each simulation trains

the algorithm on a unique training set of k − 1 subsets. One subset is not presented

during training, and is referred to as the test data set for the simulation. Across the k

simulations, each data subset is therefore used as a test set in one simulation.

Any performance measures computed using a test set are more indicative of the

algorithm’s true performance for the simulation on data outside the training set (i.e., the

generalization performance). Because the cross-validation uses every data subset as a

test set, the full training set is effectively used as a test set. The mean of any test

set performance measure over the cross-validation is then an overall estimate of the

algorithm’s performance on data that is independent of the training set. A representation

for the variance of the same measure over the simulations, such as standard deviation,

estimates the consistency of the algorithm’s performance on unseen data.

All analyses in this chapter used k-fold cross-validation. This choice is based on the

fact that cross-validation only assumes that the data examples within the underlying



Chapter 8. Experimental Results 185

data sets are identically distributed, and that the training set examples and validation set

examples in each simulation are independent [10]. The k-fold cross-validation technique

in particular is very widely used, and has reasonable time complexity compared to other

cross-validation techniques, such as leave-one-out cross-validation.

For each algorithm tested on a benchmark data set in this chapter, 30-fold cross-

validation was performed throughout (in other words, k = 30). This decision was based

on the fact that the benchmark data sets that were experimented upon are relatively

small. This means that a smaller number of folds, which is typically used for large data

sets, results in training sets that are too small for adequate training. Conversely, a larger

number of folds results in smaller test sets, which are less representative.

When k does not divide perfectly into the number of examples in the full data set, a

group of fewer than k examples is left after the subset division. This group is too small

to form a test set. The procedure used for these experiments simply added all remaining

examples to the training set for each simulation in the cross-validation.

To avoid bias related to the original order of data set examples, each data set was ran-

domly shuffled once, prior to any experiments, and all cross-validations were performed

on the same shuffled data set. As a consequence, any results produced by simulations

with the same training and test sets are dependent. The Fisher-Yates shuffle [79, 141]

was used, because this shuffling algorithm produces an unbiased permutation of the data

set. The shuffling algorithm used the MT19937 implementation of the Mersenne Twister

pseudo-random number generator [90, 166], because this generator is very commonly

used in practice [163] and is considered to be appropriate for simulations [90].

8.1.2 Algorithmic Performance Comparison Procedure

The reported experiments aim to draw general conclusions about the relative perfor-

mance of the investigated algorithms. A statistical hypothesis test [55] draws conclusions

about statistical populations by analyzing sets of samples drawn from the populations.

For these experiments, the samples are performance measure values obtained over 30-fold

cross-validated simulations. Specifically, the hypothesis test used in this investigation

must determine whether any observed performance differences between algorithms cross-

validated on the same data set are due only to chance, at a specific significance level.



186 8.1. General Experimental Procedure

Demšar [53] suggests using the two-sample Wilcoxon signed-rank statistical hypoth-

esis test [268] to compare two algorithms that are cross-validated on the same data set.

The two-sample test is designed for dependent samples, and is thus appropriate for this

investigation. This is because, as noted in the previous section, results derived from the

same training and test sets in a cross-validation are dependent.

The two-sample Wilcoxon signed-rank test determines a p-value, which is a statistic

computed from the two samples of performance values. The p-value is calculated using

the ranks of the absolute differences between pairs of performance measure values pro-

duced by simulations of the two algorithms on the same training and test data subsets.

The p-value computation also uses the sign function of the differences.

The use of the Wilcoxon signed-rank test is appropriate because the test is non-

parametric. This means that the test does not assume that the populations represented

by the sets of performance measure samples belong to a specific distribution.

The two-tailed version of the test was used for all reported experiments. This test

simply indicates whether the population distributions of performance measure values for

two algorithms cross-validated on the same data sets differ from one another. The null

hypothesis for the two-tailed test is that the population median of paired differences

for the two performance measure samples is 0.0. The null hypothesis implies that the

populations of performance values are not significantly different from one another, and

that the algorithms do not differ with respect to the performance measure and data set

under investigation. The alternative hypothesis is that the median is not 0.0, implying

a significant difference in performance. In this case, the mean values of the performance

measure for the two algorithms were compared to draw conclusions.

The null hypothesis of the test is rejected when the p-value of the test is less than

the significance level chosen for the investigation. For the experiments reported here,

a significance level of 0.05 was decided upon prior to any experimental analysis. This

significance level implies that the null hypothesis is incorrectly rejected only 5% of the

time. When performing multiple hypothesis tests, as this investigation does, the family-

wise error rate increases, and the probability of incorrectly rejecting the null hypothesis

rises. To reduce the family-wise error rate, a Bonferroni correction [21, 22, 61, 62] was

performed on the critical value used for the tests. This correction is considered to be
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relatively conservative, meaning that the populations of performance measure values are

guaranteed to be different if the test indicates the presence of a significant result.

The two-sample, two-tailed Wilcoxon signed-rank test used during this chapter’s

analysis is the implementation provided within the coin add-on package [113, 114] for the

R programming language [198]. The exact conditional distribution of the statistic under

the null hypothesis was computed using the Streitberg-Röhmel shift algorithm [228, 229].

During the computation of the test’s p-value, it is possible for no differences between

ranks to occur. Such differences of 0.0 are handled according to the technique proposed

by Pratt [187], whereby all absolute differences are initially ranked, and the ranks that

correspond to differences of 0.0 are discarded, but the remaining ranks remain unchanged.

8.2 Experimental Data Sets

This section provides details on the experimental data sets that were used as a platform

for the analysis of the techniques investigated in this chapter. All data sets are freely

available for download from the UCI Machine Learning Database Repository [3].

8.2.1 Iris Plants Data Set

This section discusses the Iris plants data set. Background information on the data set

is given in Section 8.2.1.1, while Section 8.2.1.2 describes the data preparation that was

performed on the Iris plants data set prior to the experimental analysis.

8.2.1.1 Data Set Background

The Iris plants data set was produced in 1936 by Sir Ronald Aylmer Fisher, for his

work on taxonomic problems [77]. This data set is considered to be a very simple

learning domain. Despite this simplicity, the set is a very common benchmark for pattern

recognition and data mining applications, and was thus included in the analysis.

The data set consists of tuples that represent individual examples of Iris plants. The

descriptive attributes of the data set consist of four attributes, namely sepal_length,

sepal_width, petal_length, and petal_width. Each attribute value is continuous,
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and denotes a measurement that is taken in centimeters. No attribute values are missing

for any of the examples making up the data set. Table 8.1 shows the most important

characteristics related to the descriptive attributes of the data set.

Each example is classified by means of a single nominal attribute. A classification

is either Iris_Setosa, Iris_Versicolor or Iris_Virginica. The distribution of data

set examples between these three classes is shown within Table 8.2.

The Iris_Setosa class is known to be linearly separable from the other classes, and

Iris_Versicolor and Iris_Virginica are not linearly separable from one another.

High correlations to the example classification exist for petal_length and petal_width,

with a moderate correlation for sepal_length, and no correlation for sepal_width.

8.2.1.2 Data Preparation

As for all the benchmark data sets, a 30-fold cross-validation was performed for each

experiment involving the Iris plants data set. Table 8.3 shows the division of examples

between the training and test sets that resulted from this procedure.

As is noted in Section 2.3.2, data requires pre-processing before any data analysis or

mining begins. Consequently, the basic data preparation techniques that are discussed

in Section 2.4 had to be applied to all data sets, where necessary.

Because no attribute values are missing, no replacement strategy was required. This

study aims to investigate the performance of the various approaches in the presence

of noise, thus no noise reduction was performed. No obvious data set inconsistencies,

which require cleaning, exist in the data set. Because no nominal descriptive attributes

are present, no binary encoding of nominal values was required either.

Table 8.1 clearly shows that the attributes of the Iris plants data set vary over very

different ranges, which necessitates the use of a data normalization procedure. Min-max

normalization, which is described in Section 2.4.2.1, preserves the original relationships

that are observable between the attribute values within the unmodified data set. Con-

sequently, this normalization approach was chosen to scale all attribute values into the

range [0.0, 1.0]. No nominal descriptive attributes are present, and therefore no binary

encoding was required. Finally, because all the tested labeling and rule extraction meth-

ods require nominal classes, no modification of the classification attribute was necessary.
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Table 8.1: The characteristics of data attributes in the Iris plants data set.

Attribute Data Type [Min, Max] Range Missing

sepal_length Continuous [4.3, 7.9] 3.6 0

sepal_width Continuous [2.0, 4.4] 2.4 0

petal_length Continuous [1.0, 6.9] 5.9 0

petal_width Continuous [0.1, 2.5] 2.4 0

Table 8.2: The distribution of example classifications in the Iris plants data set.

Classification Example Count Data Set Percentage

Iris_Setosa 50 33.3̇%

Iris_Versicolor 50 33.3̇%

Iris_Virginica 50 33.3̇%

Total Examples 150 100.0%

Table 8.3: Data subsets for 30-fold cross-validations on the Iris plants data set.

Set of Examples Data Examples

Entire data set 150

Test set 5

Training set 145

Examples not used in any test sets 0

8.2.2 Ionosphere Data Set

This section discusses details related to the ionosphere data set. Section 8.2.2.1 provides

brief background details on the data set. Section 8.2.2.2 describes the data preparation

that was performed on the data set prior to the experimental work.

8.2.2.1 Data Set Background

This data set was produced by the Space Physics Group of Johns Hopkins University in

1989. The set contains radar data collected by a system located in Goose Bay, Labrador.

The system consisted of a phased array of 16 high-frequency radar antennae with a total
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transmitted power to the order of 6.4 kW. The antennae targeted free electrons in the

ionosphere, in order to detect any form of structure within the ionosphere.

An autocorrelation function was used to process the received signals. The arguments

of the function were the time of a pulse and the pulse number. There were 17 pulse

numbers for this system. A tuple corresponds to a radar return, and is described by two

attributes per pulse number, resulting in 34 attributes. Each attribute corresponds to

the complex values that were returned by the autocorrelation function through which the

signal was processed, and are continuous values in the range [0, 1]. No missing attributes

are present. Table 8.4 summarizes the attribute characteristics. This data was chosen

due to the large number of attributes, in comparison to the other sets.

A total of 351 radar returns were recorded in the data set, each of which was classified

as either good, or bad. A good return signifies that evidence of some type of structure in

the ionosphere was shown, while a bad return indicates that no structure was found be-

cause the radar signals passed through the ionosphere. These classifications are encoded

into an additional binary-valued, nominal classification attribute. The distribution of

data set tuples between these two classes is illustrated in Table 8.5.

8.2.2.2 Data Preparation

As in all other cases reported here, 30-fold cross-validations were performed in all ex-

periments involving the ionosphere data set. The breakdown of the examples between

training sets and test sets for the cross-validation is given in Table 8.6.

For the same reasons considered in the preparation of the Iris plants data set, no miss-

ing attribute replacement, noise reduction, or nominal value encoding was performed.

Similarly, the nominal classification attribute needed no further processing. Because

the attribute values of this data set are all in the same range, no data normalization is

required. In summary, therefore, no data cleaning was necessary for this data set.

8.2.3 The Monk’s Problems Data Sets

This section provides a discussion on the three monk’s problems data sets. Section 8.2.3.1

gives the most important background information relating to the data sets, and Sec-

tion 8.2.3.2 lists the data preparation steps that were required for each set.
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Table 8.4: The characteristics of data attributes in the ionosphere data set.

Attribute Data Type [Min, Max] Range Missing

1 to 34 Continuous [0.0, 1.0] 1.0 0

Table 8.5: The distribution of example classifications in the ionosphere data set.

Classification Example Count Data Set Percentage

good 225 64.1%

bad 126 35.9%

Total Examples 351 100.0%

Table 8.6: Data subsets for 30-fold cross-validations on the ionosphere data set.

Set of Examples Data Examples

Entire data set 351

Test set 11

Training set 340

Examples not used in any test sets 21

8.2.3.1 Data Set Background

The monk’s problems [233] are artificial data sets created by Sebastian B. Thrun, Tom

Mitchell and John Cheng (all from Carnegie Mellon University) for the 2nd European

Summer School on Machine Learning, which was held in Belgium during the summer

of 1991. The sets were used to compare several learning algorithms. The suite contains

three data sets, each with the same attribute domain, but different problem charac-

teristics. The sets were devised for several research teams, each of which advocated a

particular technique, thus reducing bias in favor of any specific learning strategy.

The three monk’s problems data sets are identical in basic structure. Each data

example represents a hypothetical monk. The same nominal attributes are present in

all three data sets, and describe six characteristics of the monks. The sets contain no

missing attribute values. The relevant attribute characteristics are shown in Table 8.7.
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Table 8.7: The characteristics of data attributes in the monk’s problems data sets.

Attribute Data Type Legal Values Missing

head_shape Nominal {round, square, octagon} 0

body_shape Nominal {round, square, octagon} 0

is_smiling Nominal {yes, no} 0

holding Nominal {sword, balloon, flag} 0

jacket_color Nominal {red, yellow, green, blue} 0

has_tie Nominal {yes, no} 0

All three data sets contain examples representing the full 432 possible attribute value

combinations. Each example is classified, using a binary nominal classification attribute,

as either monk, or not_monk. Each problem uses a different classification condition:

• Problem 1: This data set describes a condition in standard disjunctive normal

form (DNF). The condition for an example to be classified as monk is:

(head_shape = body_shape) OR (jacket_color = red)

No noise is added to this data set. The distribution of the examples between the

two possible classes within this data set is shown in Table 8.8.

• Problem 2: This problem is similar to a parity problem, and is difficult to describe

in simple DNF or CNF. The condition for an example to be monk is:

exactly two of all six attributes have their first value

As was the case with the first problem, the data set is noise-free. The distribution

of data set examples between the two classes is tabulated in Table 8.9.

• Problem 3: The condition of the third problem is in DNF, and is more complex

than the first problem’s condition. The condition for a classification as monk is:

(jacket_color = green AND holding = sword) OR
(jacket_color 6= blue AND body_shape 6= octagon)

Table 8.10 shows this data set’s class distribution. In addition, 5% class noise is

added to the training data. The test set, obviously, remains noise-free.
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Table 8.8: The distribution of example classifications in the monk’s problem 1 data set.

Classification Example Count Data Set Percentage

monk 216 50.0%

not_monk 216 50.0%

Total Examples 432 100.0%

Table 8.9: The distribution of example classifications in the monk’s problem 2 data set.

Classification Example Count Data Set Percentage

monk 142 32.87%

not_monk 290 67.13%

Total Examples 432 100.0%

Table 8.10: The distribution of example classifications in the monk’s problem 3 data set.

Classification Example Count Data Set Percentage

monk 228 52.78%

not_monk 204 47.22%

Total Examples 432 100.0%

8.2.3.2 Data Preparation

As for the previous data sets, a 30-fold cross-validation was performed for all experiments

involving one of the monk’s problems data sets. Table 8.11 shows the division of examples

between training and test sets, and is the same for all three data sets.

For the same reasons that are discussed in Sections 8.2.1.2 and 8.2.2.2, no attribute

replacement or noise reduction strategies were applied to the three sets. The nominal

classification attribute in each set also required no further processing.

The need for nominal attributes to be encoded into binary-valued sub-attributes

is discussed in Section 2.4. Due to this requirement, binary attribute encoding was

performed for all three data sets. After this encoding was completed, all attribute values

varied over the range [0.0, 1.0], and consequently no normalization was required.
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Table 8.11: Data subsets for 30-fold cross-validations on the monk’s problems data sets.

Set of Examples Data Examples

Total data set 432

Test set 14

Training set 418

Examples not used in any test sets 12

In the case of the original third data set, a pre-composed training set is provided,

which has 5% noise added. However, the cross-validation process requires training sets

drawn over the entire data set. Consequently, a noise-free base data set was constructed.

For each of the training sets in a 30-fold cross-validation, 5% random class noise was

then introduced. This was achieved by randomly selecting 20 training examples from

each clean training set of 418 data examples. The class of each chosen data example

was then changed to the complement of the correct classification. To ensure compara-

bility between simulations performed on the third monk’s problem, the same randomly

modified training set was used in corresponding simulations over all cross-validations.

8.2.4 Pima Indians diabetes Data Set

This section discusses the Pima Indians diabetes data set, the final data set used in this

investigation. The salient details relating to the data set are given in Section 8.2.4.1,

and Section 8.2.4.2 covers the cleaning steps required before experimentation.

8.2.4.1 Data Set Background

This data is a subset of a larger data set, and originated from the National Institute of

Diabetes and Digestive and Kidney Diseases. The set contains only female patients who

were at least 21 years old, of Pima Indian heritage, and lived near Phoenix, Arizona, in

the United States of America. Eight attributes, summarized in Table 8.12, describe each

example. The data set owners did not indicate any missing attribute values.

A total of 768 examples are classified by a binary nominal attribute as either positive
or negative. These classes indicate that the patient tested either positive or negative
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Table 8.12: The characteristics of data attributes in the Pima Indians diabetes data set.

Attribute Data Type [Min, Max] Range Missing

Number of times pregnant Continuous [0.0, 17.0] 17.0 0

2-Hour plasma glucose concentration Continuous [0.0, 199.0] 199.0 0

Diastolic blood pressure Continuous [0.0, 122.0] 122.0 0

Triceps skin fold thickness Continuous [0.0, 99.0] 99.0 0

2-Hour serum insulin Continuous [0.0, 846.0] 846.0 0

Body mass index Continuous [0.0, 67.1] 67.1 0

Diabetes pedigree function Continuous [0.078, 2.42] 2.342 0

Age Continuous [21.0, 81.0] 60.0 0

for diabetes according to World Health Organization criteria. A test was positive when

a 2-hour post-load plasma glucose measurement of 200 mg/dl, or more, was recorded

at any examination. Because the classifications are nominal, as was the case for all the

other data sets, no modification of the classification attributes was necessary. Table 8.13

shows the distribution of examples between the two classes. The data set was selected

because it represents a real-world application with a heterogeneous attribute set.

8.2.4.2 Data Preparation

Once again, 30-fold cross-validations were performed in all experiments involving the

Pima Indians diabetes data set. The breakdown of data set examples between training

and test sets over every simulation is shown in Table 8.14.

No missing attribute replacement, or noise reduction strategies were employed, for

the same reasons that these cleaning operations were not necessary in the previously

discussed data sets. It was also unnecessary to modify the classification attributes in

any way, because the tested algorithms all require nominal classes.

As in the instances of the ionosphere and Iris data sets, all the attributes in this set

are continuous. No binary encoding of attribute values was therefore needed. However,

because the values of the various attributes in the data set have differing ranges, attribute

value normalization was necessitated. Min-max normalization was used to scale all

attribute values into a [0, 1] range, as in the case of the Iris plants data set.
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Table 8.13: The distribution of example classifications in the Pima Indians diabetes data set.

Classification Example Count Data Set Percentage

positive 268 34.9%

negative 500 65.1%

Total Examples 768 100.0%

Table 8.14: Data subsets for 30-fold cross-validations on the Pima Indians diabetes data set.

Set of Examples Data Examples

Total data set 768

Test set 25

Training set 743

Examples not used in any test sets 18

8.3 Analysis of Supervised Labeling Techniques

This section describes the details surrounding the first experimental investigation per-

formed during this investigation, which compared the supervised labeling approaches

discussed in this dissertation. Section 8.3.1 presents the overall objectives that the anal-

ysis sets out to address. Section 8.3.2 provides details on the specific implementations

of the algorithms that were used for the experiments. The performance measures that

were used to assess algorithmic performance are outlined in Section 8.3.3. Section 8.3.4

describes the parameter optimization procedure that was carried out for every tested al-

gorithm, while Section 8.3.5 presents the results of the parameter optimizations. In Sec-

tion 8.3.6, the relative performance characteristics of the optimized labeling algorithms

are compared, while Section 8.3.7 discusses the results of the performance comparison.

8.3.1 Objectives of the Analysis

These experiments compared the three supervised labeling algorithms, namely example-

centric neuron labeling, example-centric cluster labeling, and weight-centric neuron la-

beling. Two variants of the example-centric cluster labeling technique were included: one
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using Ward clustering, the second using k-means clustering. These clustering algorithms

are very commonly used for SOM neuron labeling, justifying the analysis of both.

The Davies-Bouldin index, described in Section 5.2, was used to produce an optimal

number of clusters. The method described in Section 5.3.1 was used for Ward clustering,

while Section 5.3.2 describes the technique used by k-means clustering.

To assess labeling algorithm performance, each algorithm was applied to a simple

classification exercise. First, a SOM was trained on a training data set. The tested

labeling algorithm was then applied to the converged map. During assessment, a BMU

was determined for each data example in a test or training set. Each data example’s

BMU label was compared to the actual example classification, where a match constituted

a correct classification, and a mismatch denoted a misclassification. Any data example

that mapped to an unlabeled BMU was considered to be unclassified.

This classification task was performed for each experimental data set discussed in

Section 8.2. Classifications were performed and assessed on both the training and test

data set of each simulation in a 30-fold cross-validation. Several performance aspects,

related both to the labels themselves and the classifications, were assessed. The facets

of performance that were focused upon are discussed within Section 8.3.3.

The primary objective of this analysis was to scrutinize the performance differences

between the investigated approaches, as measured on the tested data sets. Additionally,

this study aimed to determine whether performance was detrimentally affected as a result

of the potential for neurons to be left unlabeled when example-centric neuron labeling

and (to a lesser extent) example-centric cluster labeling were used for classification.

8.3.2 Implementations of the Algorithms

This analysis used a SOM implementation that extends version 3.2 of SOM PAK1. The

original SOM PAK software [148] was developed under the supervision of Teuvo Koho-

nen, and is widely used in the literature. This dissertation also considers SOM PAK to

be a reference implementation, because of Kohonen’s direct involvement.

1 The source implementation files and installation documentation for version 3.2 of the SOM PAK

software are available for free download at http://cis.legacy.ics.tkk.fi/hynde/lvq/tars/. This

version is an unofficial release, but addresses only software stability issues present in the previous version.

http://cis.legacy.ics.tkk.fi/hynde/lvq/tars/
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Unfortunately, SOM PAK suffers from the following limitations, which made the

original software package less suitable for the reported experimental analysis:

• Data shuffling is biased, and uses a weak pseudo-random number generator.

• The only available stopping condition is an iteration limit specified by the user.

• The implemented decay functions for η(t) and σ(t) depend on the iteration limit.

Furthermore, because SOM PAK version 3.2 was developed in 1997, several compatibility

issues arise when compiling the source program using modern compilers.

Due to these shortcomings, the original implementation of SOM PAK was adapted2,

to correspond with the discussion on SOMs given in Chapter 3. In addition to adapting

the program code for a modern compiler, four main modifications were made:

• A Fisher-Yates shuffle [79, 141], which used the MT19937 implementation of the

Mersenne Twister pseudo-random number generator [90, 166], was used to reorder

the data set of training examples after the completion of each epoch.

• The hypercube-based weight initialization scheme proposed by Su et al has been

demonstrated to produce good map training performance [231]. This technique

was therefore used to provide initial weight values for all simulations.

• Two stopping conditions were used. Firstly, training ceased when the standard

deviation of the training quantization error over a 30 iteration window, calculated

according to Equation (3.9), dropped below a 0.0001 limit. Secondly, a training

iteration cut-off of 100 000 ensured termination in a reasonable time frame.

• Exponential decay functions for η(t) and σ(t) were implemented according to Equa-

tion (3.11) in Section 3.5.2, and Equation (3.12) in Section 3.5.3, respectively.

The stopping conditions for stochastic training were intentionally chosen to be relatively

strict. This resulted in longer training times, but ensured that every SOM had completely

converged prior to the application of any neuron labeling algorithms to the maps.

2 The modified SOM PAK implementation, which was used throughout all of the reported experi-

ments, is available for free download at http://cirg.cs.up.ac.za/resources/som_pak.tar.gz.

http://cirg.cs.up.ac.za/resources/som_pak.tar.gz
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In every simulation, SOM PAK was configured to use a hexagonal map lattice. The

stochastic training process used the smooth Gaussian kernel neighborhood function, as

described by Equation (3.6) within Section 3.3.2. These choices are common in SOM

literature, and are therefore justified for use in the reported experiments. In order to

prevent any a priori bias resulting from classification attribute values in the training

data set, a fully unsupervised SOM was used in all simulations.

The three tested labeling algorithms were custom implemented for the purposes

of this analysis, and were also used during the investigation into the performance of

SOM-based rule extractors. The implementations of example-centric neuron labeling,

example-centric cluster labeling, and weight-centric neuron labeling followed the algo-

rithmic descriptions presented in Sections 6.2.1, 6.2.2, and 6.2.3, respectively.

As previously noted, example-centric cluster labeling was tested with both the Ward

and k-means clustering algorithms. These clustering algorithms were respectively imple-

mented according to the descriptions in Sections 5.3.1 and 5.3.2 of this dissertation.

8.3.3 Algorithmic Performance Measures

Several facets of performance were measured for each algorithm tested by means of a

cross-validation on a specific experimental data set. These measures provide insight

into two aspects of performance: the error rate of the various labeling techniques when

performing the classification task outlined in Section 8.3.1, as well as the proportion of

neurons in the map lattice that were left unlabeled by each technique. This section de-

scribes the measures recorded for each cross-validation that was performed for a labeling

algorithm applied to the classification of a benchmark data set.

Three measures were used to assess the error performance of each labeling technique

over a cross-validation on the training data set. Firstly, the overall training set error

mean (ET ) and standard deviation (ST ) were measured as the percentage of classification

errors. Two additional error rates, which are both components of the overall training

set error, are reported in order to provide further insight into the training performance.

Firstly, the mean (ETM) and standard deviation (STM) of the training set error due to

misclassified data examples were measured as the percentage of classifications that were

applied, but were incorrect. Secondly, the mean (ETU) and standard deviation (STU) of
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the training set error due to unclassified data examples recorded the percentage of cases

in which no classifications could be applied, due to unlabeled BMUs.

Three measures were also used to characterize test set error performance. Firstly,

the overall test set error mean (EG) and standard deviation (SG), were recorded as the

percentage of all classification errors. The overall test set error was sub-divided into

the mean (EGM) and standard deviation (SGM) of the test set error due to misclassified

data examples, measured as the percentage of incorrectly applied classifications, and the

mean (EGU) and standard deviation (SGU) of the test set error due to unclassified data

examples, which is the percentage of classifications that were not applied.

Test set error is generally considered to be more informative than training set error,

because this measure provides insight into the performance of a technique on data that

is not presented during training. Test set error therefore provides insight into how well

the error performance of each of the assessed techniques generalizes.

The final performance measure that was recorded described the proportion of map

neurons with no assigned labels, measured as the percentage of unlabeled neurons. As for

the training and test error measure, both the mean (EU) and standard deviation (SU) of

this measure were recorded for each algorithm executed on a particular data set.

8.3.4 Parameter Optimization Procedure

All the algorithms compared in this section have parameters that affect algorithmic

performance. As suggested by the no free lunch theorem [270], no set of algorithmic pa-

rameters is optimal for all problems [58]. It was thus necessary to tune the parameters of

all the investigated algorithms for each classification problem, so that near-optimal re-

sults were achieved in all cases. To ensure a fair algorithmic comparison, it was necessary

to apply the same optimization procedure to all the tested algorithms.

The optimization approach applied to each algorithm and data set pair was based on

a method proposed by Franken [82]. The technique was originally applied to parameter

tuning for particle swarm optimization (PSO) [136, 219], but is applicable to any algo-

rithm with tunable parameters. The method uses Sobol’ sequences to generate candidate

parameter configurations, and parallel coordinate plots to visualize the search space of

possible parameter settings. Sections 8.3.4.1 and 8.3.4.2 discuss these two components.
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8.3.4.1 Generating Candidate Parameter Configurations

A näıve parameter optimization approach is called one-factor-at-a-time design. The

values of all parameters are fixed, except the one currently being tuned. Cross-validations

are then performed for varying values of the tuned parameter, and the setting producing

the most desirable cross-validated performance (in terms of one or more measures) is

chosen as the optimal value. This parameter setting is then fixed, and the process is

repeated for each of the remaining parameters, until all have been optimized.

One-factor-at-a-time design is essentially a greedy search of the parameter space, and

thus does not take parameter dependencies into account. This is because it is impossible

to adapt a previously fixed parameter in response to a newly optimized one, should a

relationship exist between the two. Even if the former parameter is re-optimized, it is

quite possible that additional dependencies will be affected in turn. The optimization

process is also likely to be sensitive to the initial values of the parameters. For these

reasons, one-factor-at-a-time design was not used during this investigation.

Factorial design is another simple approach to optimizing parameters, and requires

a cross-validation for every combination of parameter values that is possible. The ap-

propriate performance measures are then analyzed for every cross-validation, and the

settings with the most desirable performance are selected as optimal. While this ap-

proach does consider the interactions between parameters, the optimization process is

usually computationally intractable, due to the large number of parameter value com-

binations that must be compared. The time complexity increases as a larger number of

parameters are optimized, and more possible settings for each parameter are investigated.

This drawback made factorial design an unattractive choice for this work.

A random sampling of the parameter space generates a set of random points in the

parameter space. While inter-parameter relationships are not ignored, a random sample

simply ensures that every point in the search space has the same probability of being

analyzed, and does not imply that the search space is sampled evenly. This means that

it is possible for better parameter settings to be unintentionally overlooked. One way of

mitigating the likelihood of this scenario is to increase the number of random samples, but

this will necessarily increase the computational complexity of the optimization further.

For these reasons, random sampling was also discarded for these experiments.
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Sobol’ sequences [225] are low-discrepancy sequences of quasi-random points in a

multi-dimensional space. The quasi-random points in the sequence have similar char-

acteristics to randomly sampled points, but are designed to fill a unit hypercube as

uniformly as possible. While other low-discrepancy sequences exist, studies have been

inconclusive as to whether one is clearly superior [93]. However, a very efficient technique

exists to generate Sobol’ sequences using Gray code binary encoding [124, 125].

The cycle length of a Sobol’ sequence is the number of points in the sequence, where

a longer cycle length gives a greater level of detail. The cycle length must be a power of

two, to ensure an even coverage of the hypercube at a certain detail level.

The points in a Sobol’ sequence are used to create a set of candidate parameter values,

by associating each dimension of a point with a parameter value. Every dimension value,

which is in the range [0, 1], is then scaled to the appropriate range for the parameter

represented by the dimension, using min-max normalization. For ordinal parameters, the

scaled value is also rounded. Quasi-random parameter values are preferable to purely

random ones, because the former sample the parameter space more uniformly.

The sampled parameter settings used for the reported experiments were produced us-

ing a Sobol’ sequence generator that uses the Gray code binary encoding approach [154],

which was implemented by Frances Kuo, one of the originators of the technique. Every

candidate configuration was produced using the generator configuration recommended

by Kuo. A cycle length of 512 was chosen for all the investigated algorithm and data set

combinations. This cycle length was chosen because 512 cycles produced well-performing

configurations, and the next largest cycle length (that is, 1 024 configurations) resulted

in a prohibitively time complex optimization process over the conducted experiments.

8.3.4.2 Visualizing the Search Space of Parameter Settings

Once the candidate parameter configurations were generated, the performance of each

had to be assessed. This was achieved by performing a cross-validation for each param-

eter configuration, and analyzing the performance measures of each.

The overall test data set error was of primary interest for neuron labeling technique

optimization, because this measure indicates the proportion of classification errors that

can be expected on data that is unseen. The overall training error is an overly optimistic
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measure of classification performance, and was therefore of secondary importance during

parameter optimization. The percentage of unlabeled neurons was not used, because it

was unclear whether fewer unlabeled neurons affected SOM-based classification (however,

Section 6.2.1 argues that fewer unlabeled neurons are desirable for EDA).

Parallel coordinate plots [121] were used as a basis for the performance analysis of the

parameter space for an algorithm executed on a data set. A parallel coordinate plot is a

popular visualization for many high-dimensional data records in two dimensions. While

the 1980s saw an increase in the popularity of these plots, it is possible to identify early

examples of these visualizations from the late nineteenth century [107].

A parallel coordinate plot consists of a series of parallel lines, where each line repre-

sents a dimension of the visualized data. The endpoints of a line represent the maximum

and minimum that values for the associated dimension range between, with intermediate

values appropriately scaled between the endpoints. One data record is represented as

a single set of connected line segments (or a polyline), with vertices located on each

vertical line. Each vertex is positioned at the location representing the data record value

for the appropriate dimension. It is then possible to overlay an arbitrary number of data

records on the same plot, giving an overview of the entire data set.

For all of this dissertation’s parameter optimizations, parallel coordinate plots were

used to represent the parameter values of the algorithm being investigated, and one or

more performance measures that were being optimized for. The parallel lines of the plot

were oriented vertically, with one line representing each algorithmic parameter. The

upper and lower endpoints of these lines indicated the upper and lower attribute value

bounds. The rightmost parallel lines were reserved for the applicable mean performance

measures, where the upper and lower bounds represented the maximum and minimum

mean performance measures produced over all the examined parameter configurations.

For the parameter optimization of the supervised neuron labeling techniques, the mean

of the overall test set error was the only performance measure represented.

Each polyline represented a candidate parameter configuration and the associated

mean test set error. The results were first sorted in ascending order of the overall test

set error mean, with ties settled first in favor of test set standard deviation, then mean

training set error, and finally training set error standard deviation. To avoid dense and
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uninterpretable visualizations, the plots only visualized the configurations responsible for

the first 20% of the sorted results (that is, the best performing 20% of the configurations).

Finally, the first configuration in the sorted list was deemed to be optimal.

8.3.5 Results of Parameter Optimization

This subsection presents the results of the parameter optimizations for the four tested

supervised neuron labeling techniques, namely example-centric neuron labeling, example-

centric cluster labeling configured with Ward clustering, example-centric cluster labeling

configured with k-means clustering, and weight-centric neuron labeling. Each approach

was optimized using parallel coordinate plots, for the classification task described in

Section 8.3.1, run on the six experimental data sets discussed in Section 8.2.

Due to the fact that none of the supervised neuron labeling techniques have algorith-

mic parameters, the experiments involving these approaches only required the optimiza-

tion of parameters for the underlying SOM. For each of the analyzed data sets, Table 8.15

summarizes the value ranges within which candidate parameter settings varied.

For simplicity, square maps were used throughout all experiments, meaning that one

value was optimized for both Y and X. The minimum grid size was 2×2, because a map

consisting of a single neuron is not meaningful, even for a non-emergent feature map.

The maximum tested map dimension for each data set produced the largest grid that

still contained fewer neurons than the number of training examples. This decision was

based on the implied maximum number of neurons in an emergent feature map, noted

in Section 3.4.3, which is equivalent to the number of training examples.

The initial kernel width of each parameter configuration was a percentage of the map

grid dimension for the configuration in question, in the range (0, 1]. The initial kernel

width was thus greater than 0.0, with a maximum value of the largest grid dimension,

but never exceeded the grid width and height in any parameter configuration. The

remaining parameters used the same ranges for all data sets, and were chosen to balance

a reasonable execution time with an adequate coverage of the parameter space.

This chapter presents all performance and optimized parameter values with three

fractional digits. Figure 8.1 shows an example of a parallel coordinate plot for the

parameters of a supervised neuron labeling algorithm. The plot visualizes the parameter
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Table 8.15: The ranges within which parameter values varied for supervised neuron labeling.

Parameter Symbol Data Type Data Set Range

Map dimensions Y,X Ordinal

Iris plants [2, 12]

Ionosphere [2, 18]

Monk’s problems [2, 20]

Pima Indians diabetes [2, 27]

Initial learning rate η(0) Continuous All [0.0, 10.0]

Learning rate decay constant τ1 Continuous All (0.0, 1 500.0]

Kernel width σ(0) Continuous All (0.0, Y ]

Kernel width decay constant τ2 Continuous All (0.0, 100.0]

2 0.0 0.0 0.0 0.0 4.000

12 10.0 1 500.0 12.0 100.0 34.667

Y,X η(0) τ1 σ(0) τ2 EG

5

5.488

1 432.617

2.119

77.539

Figure 8.1: The parallel coordinate plot of the parameter value optimization performed for

example-centric neuron labeling, when applied to the Iris plants experimental data set.
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space for example-centric neuron labeling, when it was applied to the Iris plants data

set. The polylines representing the best performing 20% of the configurations are gray,

while the most optimal parameter setting is represented by a dashed line. Labels at

the vertices of the dashed polyline note the respective optimal parameter values. The

optimal parameter settings produced a mean overall test set error of 4.000%, while the

worst mean overall test set error over all configurations was 34.667%.

Parallel coordinate plots are also useful for more detailed analysis of the parameter

space. For example, Figure 8.1 illustrates that the configurations responsible for the best

results generally had map dimensions in the lower half of the tested range, paired with

lower initial kernel widths. The initial learning rate and both the decay constants did

not show strong correlations to good performance. Furthermore, the crossed polylines

between the initial learning rate and the learning rate decay constant indicate that these

parameters are inversely correlated. A study involving such detailed analysis is, however,

beyond the scope of this dissertation’s focus, and is left to future work.

Table 8.16 shows the optimal parameter configurations for example-centric neuron

labeling applied to the six experimental data sets. Tables 8.17 and 8.18 show the same

information for example-centric cluster labeling, respectively configured with Ward clus-

tering and k-means clustering. Finally, Table 8.19 represents the optimal parameter

configurations for weight-centric neuron labeling. The mean of the overall test set error

for each optimal parameter configuration is shown in the last row in all cases.

8.3.6 Comparison of Algorithmic Performance

This subsection presents and discusses the results of the statistical comparison performed

between the analyzed supervised neuron labeling algorithms, tested on each of the ex-

perimental data sets. To facilitate this discussion, all the results related to one of the

performance measures described in Section 8.3.3 are described separately. The statistical

analysis procedure described in Section 8.1.2 was followed throughout.

The remainder of this section is organized as follows: Section 8.3.6.1 discusses per-

formance related to the overall training set error. The training set error resulting from

misclassified and unclassified data examples are presented in Sections 8.3.6.2 and 8.3.6.3,

respectively. Section 8.3.6.4 focuses on the overall test set error, while Sections 8.3.6.5



Chapter 8. Experimental Results 207

Table 8.16: Optimal parameters for the example-centric neuron labeling algorithm.

Parameter Iris
Plants

Ionosphere Monk’s
Problem 1

Monk’s
Problem 2

Monk’s
Problem 3

Pima Indians
Diabetes

Y,X 5 7 14 15 11 12

η(0) 5.488 3.848 6.055 8.867 9.941 2.070

τ1 1 432.617 1 209.961 849.609 1 365.234 577.148 1 376.953

σ(0) 2.119 1.818 10.445 1.348 3.029 9.797

τ2 77.539 59.570 9.766 31.641 83.008 52.734

EG 4.000% 11.515% 20.000% 20.238% 26.429% 26.133%

Table 8.17: Optimal parameters for example-centric cluster labeling with Ward clustering.

Parameter Iris
Plants

Ionosphere Monk’s
Problem 1

Monk’s
Problem 2

Monk’s
Problem 3

Pima Indians
Diabetes

Y,X 9 15 16 19 16 12

η(0) 4.180 2.148 6.133 2.695 4.492 2.578

τ1 5.859 638.672 1 330.078 1 470.703 1 271.484 1 160.156

σ(0) 8.402 2.520 8.563 0.074 10.438 8.719

τ2 66.016 64.453 87.109 71.484 50.391 88.281

EG 18.000% 8.182% 27.619% 29.524% 28.333% 24.933%

Table 8.18: Optimal parameters for example-centric cluster labeling with k-means clustering.

Parameter Iris
Plants

Ionosphere Monk’s
Problem 1

Monk’s
Problem 2

Monk’s
Problem 3

Pima Indians
Diabetes

Y,X 4 18 19 18 17 17

η(0) 8.145 1.953 0.625 4.551 3.164 9.688

τ1 893.555 1 253.906 1 031.250 73.242 1 119.141 1 453.125

σ(0) 2.633 7.453 3.563 4.816 16.801 2.656

τ2 79.102 82.031 31.250 5.664 1.172 78.125

EG 21.333% 9.394% 33.571% 32.381% 27.619% 25.200%
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Table 8.19: Optimal parameters for the weight-centric neuron labeling algorithm.

Parameter Iris
Plants

Ionosphere Monk’s
Problem 1

Monk’s
Problem 2

Monk’s
Problem 3

Pima Indians
Diabetes

Y,X 12 17 14 15 19 24

η(0) 4.609 0.918 6.562 8.867 9.629 3.770

τ1 574.219 594.727 46.875 1 365.234 61.523 424.805

σ(0) 10.781 14.045 4.813 1.348 4.639 17.297

τ2 96.094 87.305 34.375 31.641 67.383 72.852

EG 3.333% 15.152% 31.667% 29.762% 27.619% 29.467%

and 8.3.6.6 respectively investigate the test set error due to misclassified and unclassified

data examples. Lastly, Section 8.3.6.7 analyzes the proportion of neurons in the map

structure that were left unlabeled by each supervised neuron labeling technique.

8.3.6.1 Overall Training Set Error

Tables 8.20 to 8.25 represent each experimental data set, comparing the performance of

every supervised neuron labeling method in terms of overall training set error. Table 8.20

shows the comparison for the Iris plans data set, Table 8.21 represents the ionosphere

data set, Tables 8.22 to 8.24 respectively portray the three monk’s problems data sets,

and Table 8.25 provides details on the Pima Indians diabetes data set.

Each of these tables compares all the supervised neuron labeling algorithms against

one another for a specific experimental data set. Each row and column of a table rep-

resents a labeling algorithm, as well as the mean and standard deviation of the overall

training set errors produced by the neuron labeling algorithm in question.

The intersection of a row and column shows, for a pair of algorithms, the p-value

determined when the two algorithms were compared using the two-sample Wilcoxon

signed-rank test described in Section 8.1.2. The p-values were assessed at a 0.05 signif-

icance level, with a Bonferroni correction. A square appears above a p-value indicating

that the pair of algorithms were not significantly different according to the overall train-

ing set error. When a p-value indicates that a significant difference was evident, an arrow

points to the row or column of the algorithm with the lowest overall training set error.
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Table 8.20: Statistical comparison of the overall training set error for the supervised neuron

labeling methods executed on the Iris plants data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

ET ST ET ST ET ST
3.655 0.705 25.057 10.178 16.989 9.022

Example-Centric
Cluster (k -Means) ↑

1.863× 10−9ET ST
25.057 10.178

Example-Centric
Cluster (Ward) ↑

1.863× 10−9

←
6.411× 10−3ET ST

16.989 9.022

Weight-Centric
Neuron ←

4.768× 10−6

←
1.863× 10−9

←
1.863× 10−9ET ST

2.575 0.700

Table 8.21: Statistical comparison of the overall training set error for the supervised neuron

labeling methods executed on the ionosphere data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

ET ST ET ST ET ST
10.137 1.221 7.912 1.391 8.598 1.961

Example-Centric
Cluster (k -Means) ←

2.503× 10−6ET ST
7.912 1.391

Example-Centric
Cluster (Ward) ←

1.485× 10−3

�

0.097ET ST
8.598 1.961

Weight-Centric
Neuron ↑

1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9ET ST

15.216 1.626
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Table 8.22: Statistical comparison of the overall training set error for the supervised neuron

labeling methods executed on the monk’s problem 1 data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

ET ST ET ST ET ST
18.126 1.084 26.643 2.781 24.848 1.924

Example-Centric
Cluster (k -Means) ↑

1.863× 10−9ET ST
26.643 2.781

Example-Centric
Cluster (Ward) ↑

1.863× 10−9

←
3.147× 10−3ET ST

24.848 1.924

Weight-Centric
Neuron ↑

1.863× 10−9

�

0.030

↑
5.748× 10−6ET ST

27.974 2.416

Table 8.23: Statistical comparison of the overall training set error for the supervised neuron

labeling methods executed on the monk’s problem 2 data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

ET ST ET ST ET ST
15.766 0.657 32.305 1.353 22.400 1.796

Example-Centric
Cluster (k -Means) ↑

1.863× 10−9ET ST
32.305 1.353

Example-Centric
Cluster (Ward) ↑

1.863× 10−9

←
1.863× 10−9ET ST

22.400 1.796

Weight-Centric
Neuron ↑

1.863× 10−9

←
3.725× 10−9

�

0.017ET ST
23.947 2.693
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Table 8.24: Statistical comparison of the overall training set error for the supervised neuron

labeling methods executed on the monk’s problem 3 data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

ET ST ET ST ET ST
23.828 1.792 26.619 2.278 25.000 1.460

Example-Centric
Cluster (k -Means) ↑

1.006× 10−5ET ST
26.619 2.278

Example-Centric
Cluster (Ward) �

0.019

←
5.657× 10−3ET ST

25.000 1.460

Weight-Centric
Neuron ←

6.333× 10−8

←
5.588× 10−9

←
1.863× 10−9ET ST

19.769 1.873

Table 8.25: Statistical comparison of the overall training set error for the supervised neuron

labeling methods executed on the Pima Indians diabetes data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

ET ST ET ST ET ST
20.588 0.971 24.047 1.083 25.276 1.287

Example-Centric
Cluster (k -Means) ↑

1.863× 10−9ET ST
24.047 1.083

Example-Centric
Cluster (Ward) ↑

1.863× 10−9

↑
9.290× 10−4ET ST

25.276 1.287

Weight-Centric
Neuron ↑

1.304× 10−7

←
1.675× 10−6

←
3.725× 10−9ET ST

22.391 1.121
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These results indicate that example-centric neuron labeling outperformed all the

other techniques on half of the data sets (the first and second monk’s problems, and the

Pima Indians diabetes data set), and was outperformed by only one competing algorithm

in two cases (the Iris plants and third monk’s problem data sets). Example-centric neuron

labeling was not the worst performing technique for any of the data sets.

Weight-centric neuron labeling outperformed all the other approaches on two of the

data sets (the Iris plants and third monk’s problem data sets), and was outperformed

by a single algorithm in two cases (the second monk’s problem and the Pima Indians

diabetes data set). However, the weight-centric approach performed the worst in two

cases (the ionosphere data set and monk’s problem 1), where example-centric cluster

labeling with k-means clustering performed equally poorly in the latter case.

Example-centric cluster labeling generally underperformed. Both cluster-based ap-

proaches jointly outperformed the other two methods on only the ionosphere data set.

The k-means configuration performed the worst overall in three cases (Iris plants, and

monk’s problems 2 and 3), and matched the worst performance of weight-centric labeling

on the first monk’s problem. Ward clustering performed worse than all other methods

on the Pima Indians diabetes set, narrowly outperformed by k-means.

Furthermore, the example-centric neuron labeling method outperformed the weight-

centric algorithm on four data sets (ionosphere, monk’s problems 1 and 2, and Pima

Indians diabetes), while the opposite only occurred for the Iris plants and monk’s prob-

lem 3 sets. Based on this analysis, example-centric neuron labeling is deemed the superior

approach over the benchmark data sets, when considering overall training error.

Focusing on only cluster labeling, Ward clustering outperformed k-means clustering

in four cases (on the Iris plants data set, and all of the monk’s problems), while the

opposite was true for only one data set (the Pima Indians diabetes data set). The two

approaches were indistinguishable in one further case (on the ionosphere data set).

8.3.6.2 Training Set Error Due to Misclassified Data Examples

To more deeply analyze the differences in error-based performance on training data, Ta-

bles 8.26 to 8.31 compare the labeling techniques in relation to the training classification

error due only to misclassified examples. Table 8.26 shows the results for the Iris plants
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Table 8.26: Statistical comparison of the training set error due to misclassified data examples

for the supervised neuron labeling methods executed on the Iris plants data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

ETM STM ETM STM ETM STM
3.655 0.705 25.057 10.178 16.989 9.022

Example-Centric
Cluster (k -Means) ↑

1.863× 10−9ETM STM
25.057 10.178

Example-Centric
Cluster (Ward) ↑

1.863× 10−9

←
6.411× 10−3ETM STM

16.989 9.022

Weight-Centric
Neuron ←

4.768× 10−6

←
1.863× 10−9

←
1.863× 10−9ETM STM

2.575 0.700

Table 8.27: Statistical comparison of the training set error due to misclassified data examples

for the supervised neuron labeling methods executed on the ionosphere data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

ETM STM ETM STM ETM STM
10.137 1.221 7.912 1.391 8.598 1.961

Example-Centric
Cluster (k -Means) ←

2.503× 10−6ETM STM
7.912 1.391

Example-Centric
Cluster (Ward) ←

1.485× 10−3

�

0.097ETM STM
8.598 1.961

Weight-Centric
Neuron ↑

1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9ETM STM

15.216 1.626
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Table 8.28: Statistical comparison of the training set error due to misclassified data examples

for the supervised neuron labeling methods executed on the monk’s problem 1 data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

ETM STM ETM STM ETM STM
18.126 1.084 26.643 2.781 24.848 1.924

Example-Centric
Cluster (k -Means) ↑

1.863× 10−9ETM STM
26.643 2.781

Example-Centric
Cluster (Ward) ↑

1.863× 10−9

←
3.147× 10−3ETM STM

24.848 1.924

Weight-Centric
Neuron ↑

1.863× 10−9

�

0.030

↑
5.748× 10−6ETM STM

27.974 2.416

Table 8.29: Statistical comparison of the training set error due to misclassified data examples

for the supervised neuron labeling methods executed on the monk’s problem 2 data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

ETM STM ETM STM ETM STM
15.766 0.657 32.305 1.353 22.400 1.796

Example-Centric
Cluster (k -Means) ↑

1.863× 10−9ETM STM
32.305 1.353

Example-Centric
Cluster (Ward) ↑

1.863× 10−9

←
1.863× 10−9ETM STM

22.400 1.796

Weight-Centric
Neuron ↑

1.863× 10−9

←
3.725× 10−9

�

0.017ETM STM
23.947 2.693
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Table 8.30: Statistical comparison of the training set error due to misclassified data examples

for the supervised neuron labeling methods executed on the monk’s problem 3 data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

ETM STM ETM STM ETM STM
23.828 1.792 26.619 2.278 25.000 1.460

Example-Centric
Cluster (k -Means) ↑

1.006× 10−5ETM STM
26.619 2.278

Example-Centric
Cluster (Ward) �

0.019

←
5.657× 10−3ETM STM

25.000 1.460

Weight-Centric
Neuron ←

6.333× 10−8

←
5.588× 10−9

←
1.863× 10−9ETM STM

19.769 1.873

Table 8.31: Statistical comparison of the training set error due to misclassified data examples

for the supervised neuron labeling methods executed on the Pima Indians diabetes data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

ETM STM ETM STM ETM STM
20.588 0.971 24.047 1.083 25.276 1.287

Example-Centric
Cluster (k -Means) ↑

1.863× 10−9ETM STM
24.047 1.083

Example-Centric
Cluster (Ward) ↑

1.863× 10−9

↑
9.290× 10−4ETM STM

25.276 1.287

Weight-Centric
Neuron ↑

1.304× 10−7

←
1.675× 10−6

←
3.725× 10−9ETM STM

22.391 1.121
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data set, while Table 8.27 illustrates the ionosphere data set results. Tables 8.28 to

8.30 compare performance on the three monk’s problem data sets, respectively. Finally,

Table 8.31 outlines the results for the Pima Indians diabetes data set.

These tables clearly show that the results for training set errors due to data example

misclassifications are identical to those obtained during the analysis of the overall training

set error. Because of this, all the findings from the previous section also hold for training

misclassifications viewed in isolation. Example-centric neuron labeling is thus considered

to be the best performing labeling approach in terms of the training set error resulting

solely from misclassifications, when considering the investigated data sets.

8.3.6.3 Training Set Error Due to Unclassified Data Examples

In contrast to the previous section, Tables 8.32 to 8.37 show the compared performance

for the training errors stemming from only unclassified data examples. An example was

only unclassified when mapped to an unlabeled neuron. Tables 8.32 to 8.33 summarize

the results for the Iris plants and ionosphere data sets, respectively. The comparisons for

the three monk’s problem data sets are outlined in Tables 8.34 to 8.36. Lastly, Table 8.37

lists the results that were obtained for the Pima Indians diabetes data set.

When an annotation of N/A appears at the intersection of a row and column, this

indicates that no p-value could be calculated for the corresponding two algorithms. This

was due to the fact that all the paired differences between the two populations of per-

formance values were 0.0. In other words, the simulations of both algorithms performed

identically. In such a case, therefore, the conclusion is obviously that no significant

difference can be determined between the performance of the two algorithms.

From the tabulated statistics, it is clear that the results were identical for all of the

neuron labeling algorithms on every experimental data set. Additionally, the means and

standard deviations for the training set error due to unclassified data examples are 0.0

in all cases, indicating that no training data examples were left unclassified by any of the

algorithms over all simulations. This is expected in the case of the weight-centric neuron

labeling algorithm, because this approach guarantees a label for every neuron. However,

it is interesting to note that the same behavior is exhibited by the other neuron labeling

approaches, because all these methods have the potential for leaving neurons unlabeled.
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Table 8.32: Statistical comparison of the training set error due to unclassified data examples

for the supervised neuron labeling methods executed on the Iris plants data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

ETU STU ETU STU ETU STU
0.000 0.000 0.000 0.000 0.000 0.000

Example-Centric
Cluster (k -Means) �

N/AETU STU
0.000 0.000

Example-Centric
Cluster (Ward) �

N/A

�

N/AETU STU
0.000 0.000

Weight-Centric
Neuron �

N/A

�

N/A

�

N/AETU STU
0.000 0.000

Table 8.33: Statistical comparison of the training set error due to unclassified data examples

for the supervised neuron labeling methods executed on the ionosphere data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

ETU STU ETU STU ETU STU
0.000 0.000 0.000 0.000 0.000 0.000

Example-Centric
Cluster (k -Means) �

N/AETU STU
0.000 0.000

Example-Centric
Cluster (Ward) �

N/A

�

N/AETU STU
0.000 0.000

Weight-Centric
Neuron �

N/A

�

N/A

�

N/AETU STU
0.000 0.000
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Table 8.34: Statistical comparison of the training set error due to unclassified data examples

for the supervised neuron labeling methods executed on the monk’s problem 1 data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

ETU STU ETU STU ETU STU
0.000 0.000 0.000 0.000 0.000 0.000

Example-Centric
Cluster (k -Means) �

N/AETU STU
0.000 0.000

Example-Centric
Cluster (Ward) �

N/A

�

N/AETU STU
0.000 0.000

Weight-Centric
Neuron �

N/A

�

N/A

�

N/AETU STU
0.000 0.000

Table 8.35: Statistical comparison of the training set error due to unclassified data examples

for the supervised neuron labeling methods executed on the monk’s problem 2 data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

ETU STU ETU STU ETU STU
0.000 0.000 0.000 0.000 0.000 0.000

Example-Centric
Cluster (k -Means) �

N/AETU STU
0.000 0.000

Example-Centric
Cluster (Ward) �

N/A

�

N/AETU STU
0.000 0.000

Weight-Centric
Neuron �

N/A

�

N/A

�

N/AETU STU
0.000 0.000
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Table 8.36: Statistical comparison of the training set error due to unclassified data examples

for the supervised neuron labeling methods executed on the monk’s problem 3 data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

ETU STU ETU STU ETU STU
0.000 0.000 0.000 0.000 0.000 0.000

Example-Centric
Cluster (k -Means) �

N/AETU STU
0.000 0.000

Example-Centric
Cluster (Ward) �

N/A

�

N/AETU STU
0.000 0.000

Weight-Centric
Neuron �

N/A

�

N/A

�

N/AETU STU
0.000 0.000

Table 8.37: Statistical comparison of the training set error due to unclassified data examples

for the supervised neuron labeling methods executed on the Pima Indians diabetes data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

ETU STU ETU STU ETU STU
0.000 0.000 0.000 0.000 0.000 0.000

Example-Centric
Cluster (k -Means) �

N/AETU STU
0.000 0.000

Example-Centric
Cluster (Ward) �

N/A

�

N/AETU STU
0.000 0.000

Weight-Centric
Neuron �

N/A

�

N/A

�

N/AETU STU
0.000 0.000
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8.3.6.4 Overall Test Set Error

The attention of this experimental investigation now turns away from the analysis of the

training data set, and focuses on algorithm performance for the sets of test data. While

the previous sections delineate how well the algorithms model the underlying training

data, this section and the two that follow indicate performance characteristics for data

unseen during the training process. These results thus better indicate the real-world

performance that can be expected from the labeling algorithms.

Tables 8.38 to 8.43 present the comparisons of the supervised neuron labeling tech-

niques with respect to the overall classification error produced for the test sets across

all of the experimental data sets. Table 8.38 compares the algorithms on the Iris plants

data set, and Table 8.39 does the same for the ionosphere data set. Tables 8.40, 8.41,

and 8.42 respectively present the results for the three monk’s problems, while Table 8.43

summarizes the results for the Pima Indians diabetes experimental set.

From the results in these tables, it is clear that there was no significant statistical

difference between the performance recorded for any of the algorithms when tested on two

of the experimental data sets (the third monk’s problem data set, and the Pima Indians

diabetes data set). In the case of the ionosphere data set, nearly all the algorithms

performed equally well, with only example-centric cluster labeling configured using Ward

clustering clearly outperforming weight-centric neuron clustering.

It is also observable that example-centric neuron labeling outperformed all the other

labeling algorithms in two of the six data sets (the first and second monk’s problem

data sets). In one further instance (on the Iris plants data set), this approach outper-

formed both the example-centric cluster labeling variants, but was not distinguishable

from weight-centric neuron labeling. No other labeling algorithm performed better than

example-centric neuron labeling on any of the investigated data sets.

In contrast, only the Iris plants data set saw weight-centric neuron labeling outper-

forming the two cluster labeling configurations, which example-centric neuron labeling

also achieved. Weight-centric labeling performed equivalently to the worst performing

algorithms on two of the data sets (the first and second monk’s problems).

Both the example-centric cluster labeling configurations again underperformed. The

approaches were statistically indistinguishable from one another for all experimental data
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Table 8.38: Statistical comparison of the overall test set error for the supervised neuron

labeling methods executed on the Iris plants data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EG SG EG SG EG SG
4.000 8.137 21.333 19.605 18.000 20.578

Example-Centric
Cluster (k -Means) ↑

1.659× 10−4EG SG
21.333 19.605

Example-Centric
Cluster (Ward) ↑

4.135× 10−3

�

0.621EG SG
18.000 20.578

Weight-Centric
Neuron �

1.000

←
3.357× 10−4

←
6.104× 10−4EG SG

3.333 7.581

Table 8.39: Statistical comparison of the overall test set error for the supervised neuron

labeling methods executed on the ionosphere data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EG SG EG SG EG SG
11.515 10.923 9.394 9.982 8.182 8.390

Example-Centric
Cluster (k -Means) �

0.262EG SG
9.394 9.982

Example-Centric
Cluster (Ward) �

0.049

�

0.421EG SG
8.182 8.390

Weight-Centric
Neuron �

0.208

�

0.026

↑
8.202× 10−4EG SG

15.152 12.016
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Table 8.40: Statistical comparison of the overall test set error for the supervised neuron

labeling methods executed on the monk’s problem 1 data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EG SG EG SG EG SG
20.000 12.358 33.571 12.178 27.619 10.895

Example-Centric
Cluster (k -Means) ↑

4.187× 10−6EG SG
33.571 12.178

Example-Centric
Cluster (Ward) ↑

2.730× 10−3

�

0.048EG SG
27.619 10.895

Weight-Centric
Neuron ↑

2.352× 10−4

�

0.254

�

0.158EG SG
31.667 11.817

Table 8.41: Statistical comparison of the overall test set error for the supervised neuron

labeling methods executed on the monk’s problem 2 data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EG SG EG SG EG SG
20.238 10.116 32.381 11.369 29.524 12.405

Example-Centric
Cluster (k -Means) ↑

2.131× 10−4EG SG
32.381 11.369

Example-Centric
Cluster (Ward) ↑

1.441× 10−3

�

0.236EG SG
29.524 12.405

Weight-Centric
Neuron ↑

8.988× 10−4

�

0.087

�

0.998EG SG
29.762 9.395



Chapter 8. Experimental Results 223

Table 8.42: Statistical comparison of the overall test set error for the supervised neuron

labeling methods executed on the monk’s problem 3 data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EG SG EG SG EG SG
26.429 12.178 27.619 9.329 28.333 8.894

Example-Centric
Cluster (k -Means) �

0.922EG SG
27.619 9.329

Example-Centric
Cluster (Ward) �

0.493

�

0.692EG SG
28.333 8.894

Weight-Centric
Neuron �

0.955

�

0.883

�

0.803EG SG
27.619 12.118

Table 8.43: Statistical comparison of the overall test set error for the supervised neuron

labeling methods executed on the Pima Indians diabetes data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EG SG EG SG EG SG
26.133 9.951 25.200 7.513 24.933 7.478

Example-Centric
Cluster (k -Means) �

0.532EG SG
25.200 7.513

Example-Centric
Cluster (Ward) �

0.559

�

0.937EG SG
24.933 7.478

Weight-Centric
Neuron �

0.060

�

0.026

�

0.016EG SG
29.467 8.565
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sets. The cluster labeling approaches were the worst performing techniques in half of

the investigated data sets (Iris plants, and the first two monk’s problems), and showed

no significant differences from the other methods in the remaining three.

Finally, example-centric neuron labeling outperformed its weight-centric counterpart

in two of the six cases (on the first and second monk’s problem data sets). Example-

centric neuron labeling performed as well as the weight-centric approach on the remaining

four investigated data sets. To summarize the outcome of the analysis, this investigation

again points to example-centric neuron labeling as the superior approach within the

context of overall test set accuracy performance on the analyzed benchmark data sets.

8.3.6.5 Test Set Error Due to Misclassified Data Examples

Once again, a finer-grained analysis on the test data set error performance was desired.

As in Section 8.3.6.2, only the classification errors due to incorrect data classification were

considered in Tables 8.44 to 8.49, but the test set was focused on instead. Table 8.44

summarizes performance on the Iris plants data set. Table 8.45 gives the ionosphere

data set results, while Tables 8.46 to 8.48 investigate the monk’s problems. Table 8.49

summarizes algorithm performance for the Pima Indians diabetes data set.

While the p-values for the Wilcoxon signed ranks tests on the misclassification-based

test set error differ from those observed for the overall test set error, the final conclusions

of the analyses for the two measures are identical. As a result, the conclusions drawn

from the overall test set error comparisons presented in the previous section also hold

for the errors stemming from only misclassified test set data examples.

Looking at the results holistically, the example-centric neuron labeling algorithm was

superior to the other approaches when considering the test set error arising from only

misclassified data examples on the investigated experimental data sets. The two vari-

ants of the supervised example-centric cluster labeling algorithm both always performed

equally poorly when any performance differences between techniques could be discerned.

8.3.6.6 Test Set Error Due to Unclassified Data Examples

As opposed to the analysis of the erroneous test set classifications that the previous

section concentrated on, this part of the discussion focuses on test set errors caused only
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Table 8.44: Statistical comparison of the test set error due to misclassified data examples for

the supervised neuron labeling methods executed on the Iris plants data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EGM SGM EGM SGM EGM SGM
3.333 7.581 21.333 19.605 18.000 20.578

Example-Centric
Cluster (k -Means) ↑

4.578× 10−5EGM SGM
21.333 19.605

Example-Centric
Cluster (Ward) ↑

1.617× 10−3

�

0.621EGM SGM
18.000 20.578

Weight-Centric
Neuron �

1.000

←
3.357× 10−4

←
6.104× 10−4EGM SGM

3.333 7.581

Table 8.45: Statistical comparison of the test set error due to misclassified data examples for

the supervised neuron labeling methods executed on the ionosphere data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EGM SGM EGM SGM EGM SGM
11.212 10.319 9.394 9.982 8.182 8.390

Example-Centric
Cluster (k -Means) �

0.299EGM SGM
9.394 9.982

Example-Centric
Cluster (Ward) �

0.056

�

0.421EGM SGM
8.182 8.390

Weight-Centric
Neuron �

0.143

�

0.026

↑
8.202× 10−4EGM SGM

15.152 12.016
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Table 8.46: Statistical comparison of the test set error due to misclassified data examples for

the supervised neuron labeling methods executed on the monk’s problem 1 data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EGM SGM EGM SGM EGM SGM
18.810 12.226 33.095 12.369 27.381 10.951

Example-Centric
Cluster (k -Means) ↑

8.665× 10−6EGM SGM
33.095 12.369

Example-Centric
Cluster (Ward) ↑

5.854× 10−4

�

0.061EGM SGM
27.381 10.951

Weight-Centric
Neuron ↑

8.643× 10−5

�

0.314

�

0.155EGM SGM
31.667 11.817

Table 8.47: Statistical comparison of the test set error due to misclassified data examples for

the supervised neuron labeling methods executed on the monk’s problem 2 data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EGM SGM EGM SGM EGM SGM
19.524 9.177 32.381 11.369 29.048 12.147

Example-Centric
Cluster (k -Means) ↑

5.356× 10−5EGM SGM
32.381 11.369

Example-Centric
Cluster (Ward) ↑

4.749× 10−4

�

0.182EGM SGM
29.048 12.147

Weight-Centric
Neuron ↑

1.184× 10−4

�

0.087

�

0.890EGM SGM
29.762 9.395
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Table 8.48: Statistical comparison of the test set error due to misclassified data examples for

the supervised neuron labeling methods executed on the monk’s problem 3 data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EGM SGM EGM SGM EGM SGM
25.952 12.082 27.381 9.205 28.333 8.894

Example-Centric
Cluster (k -Means) �

0.701EGM SGM
27.381 9.205

Example-Centric
Cluster (Ward) �

0.357

�

0.659EGM SGM
28.333 8.894

Weight-Centric
Neuron �

0.811

�

0.827

�

0.803EGM SGM
27.619 12.118

Table 8.49: Statistical comparison of the test set error due to misclassified data examples for

the supervised neuron labeling methods executed on the Pima Indians diabetes data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EGM SGM EGM SGM EGM SGM
25.467 9.937 25.067 7.570 24.933 7.478

Example-Centric
Cluster (k -Means) �

0.770EGM SGM
25.067 7.570

Example-Centric
Cluster (Ward) �

0.904

�

0.859EGM SGM
24.933 7.478

Weight-Centric
Neuron �

0.030

�

0.025

�

0.016EGM SGM
29.467 8.565
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by data examples that remained unclassified due to map neurons without associated

labels. Tables 8.50 to 8.55 compare the performance of the respective neuron labeling

approaches in terms of this error measure. Table 8.50 presents the algorithmic com-

parison for the Iris plants data set. The comparative algorithmic performance for the

ionosphere data set is outlined in Table 8.51. The three monk’s problem data sets are

compared in Tables 8.52, 8.53, and 8.54, respectively. Lastly, Table 8.55 includes the

statistics related to the Pima Indians diabetes experimental data set.

It is clear that all the neuron labeling algorithms produced comparable performance

when it came to the error due to unclassified data examples on the test data sets. It

should, however, be noted that p-values could be computed for most pairs of compared

algorithms, as opposed to the analysis on training set errors attributed to unclassified

examples presented in Section 8.3.6.3, which concluded that every algorithm’s results

were identical. When a p-value is present for a pair of algorithms, this indicates that

at least one of the approaches produced some unclassified examples from the test data.

It must be noted, however, that the number of unclassified data examples in all cases

were negligible, as evidenced by the very low performance measure means and standard

deviations observed for all labeling algorithms throughout the tables.

In contrast, p-values were not computable only when two approaches both produced

no unclassified test set examples. This situation arose between the weight-centric label-

ing method and the k-means based cluster labeling configuration on one occasion (for

the second monk’s problem), and between the weight-centric approach and the cluster

labeling method based on Ward clustering in two instances (on the third monk’s problem

and the Pima Indians diabetes data sets). For a further two data sets (namely, the Iris

plants and ionosphere sets) both example-centric cluster labeling approaches and the

weight-centric neuron labeling method left no test set examples unclassified.

8.3.6.7 Percentage of Unlabeled Neurons

The percentage of unlabeled neurons produced per map is the final performance measure

to be considered in the investigation of the supervised neuron labeling algorithms. The

results reported in the previous section indicate that unlabeled map neurons did not

have a very detrimental effect on the performance of a SOM used for automatic classi-
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Table 8.50: Statistical comparison of the test set error due to unclassified data examples for

the supervised neuron labeling methods executed on the Iris plants data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EGU SGU EGU SGU EGU SGU
0.667 3.651 0.000 0.000 0.000 0.000

Example-Centric
Cluster (k -Means) �

1.000EGU SGU
0.000 0.000

Example-Centric
Cluster (Ward) �

1.000

�

N/AEGU SGU
0.000 0.000

Weight-Centric
Neuron �

1.000

�

N/A

�

N/AEGU SGU
0.000 0.000

Table 8.51: Statistical comparison of the test set error due to unclassified data examples for

the supervised neuron labeling methods executed on the ionosphere data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EGU SGU EGU SGU EGU SGU
0.303 1.660 0.000 0.000 0.000 0.000

Example-Centric
Cluster (k -Means) �

1.000EGU SGU
0.000 0.000

Example-Centric
Cluster (Ward) �

1.000

�

N/AEGU SGU
0.000 0.000

Weight-Centric
Neuron �

1.000

�

N/A

�

N/AEGU SGU
0.000 0.000
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Table 8.52: Statistical comparison of the test set error due to unclassified data examples for

the supervised neuron labeling methods executed on the monk’s problem 1 data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EGU SGU EGU SGU EGU SGU
1.190 3.294 0.476 2.608 0.238 1.304

Example-Centric
Cluster (k -Means) �

0.375EGU SGU
0.476 2.608

Example-Centric
Cluster (Ward) �

0.312

�

1.000EGU SGU
0.238 1.304

Weight-Centric
Neuron �

0.125

�

1.000

�

1.000EGU SGU
0.000 0.000

Table 8.53: Statistical comparison of the test set error due to unclassified data examples for

the supervised neuron labeling methods executed on the monk’s problem 2 data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EGU SGU EGU SGU EGU SGU
0.714 2.179 0.000 0.000 0.476 1.812

Example-Centric
Cluster (k -Means) �

0.250EGU SGU
0.000 0.000

Example-Centric
Cluster (Ward) �

1.000

�

0.500EGU SGU
0.476 1.812

Weight-Centric
Neuron �

0.250

�

N/A

�

0.500EGU SGU
0.000 0.000
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Table 8.54: Statistical comparison of the test set error due to unclassified data examples for

the supervised neuron labeling methods executed on the monk’s problem 3 data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EGU SGU EGU SGU EGU SGU
0.476 1.812 0.238 1.304 0.000 0.000

Example-Centric
Cluster (k -Means) �

1.000EGU SGU
0.238 1.304

Example-Centric
Cluster (Ward) �

0.500

�

1.000EGU SGU
0.000 0.000

Weight-Centric
Neuron �

0.500

�

1.000

�

N/AEGU SGU
0.000 0.000

Table 8.55: Statistical comparison of the test set error due to unclassified data examples for

the supervised neuron labeling methods executed on the Pima Indians diabetes data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EGU SGU EGU SGU EGU SGU
0.667 1.516 0.133 0.730 0.000 0.000

Example-Centric
Cluster (k -Means) �

0.125EGU SGU
0.133 0.730

Example-Centric
Cluster (Ward) �

0.062

�

1.000EGU SGU
0.000 0.000

Weight-Centric
Neuron �

0.062

�

1.000

�

N/AEGU SGU
0.000 0.000
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fication tasks on the data sets that were investigated. However, these observations do

not present a complete picture. While unlabeled neurons were not observed to present a

large problem for the algorithmic SOM analysis reported within this investigation, the

exploratory interpretation of maps by humans often suffers greatly as the number of

unlabeled neurons increases, producing a less consistent representation.

Tables 8.56 to 8.61 compare the performance of each neuron labeling approach in

terms of the percentage of map neurons that were left unlabeled. The Iris plants data

set is investigated in Table 8.56, while Table 8.57 focuses on the ionosphere data set.

Tables 8.58, 8.59, and 8.60 respectively represent the three monk’s problem experimental

data sets, and Table 8.61 represents the Pima Indians diabetes data set.

Example-centric neuron labeling was outperformed by all the other algorithms on

every data set, except for Iris plants (where example-centric neuron and Ward-based

cluster labeling jointly performed the worst). The mean percentage was relatively low for

the ionosphere and Pima Indians diabetes data sets (3.810% and 3.264%, respectively).

However, the labeling approach produced substantially worse mean performance on the

remaining data sets, ranging from 19.467% for Iris plants, to 49.807% on the second

monk’s problem. These percentages were much higher than those observed for the other

methods, and represent a major potential challenge to human data analysts.

At the other extreme, weight-centric neuron labeling outperformed all the other meth-

ods, except on the Iris and Pima Indians diabetes sets. In the former case, weight-centric

labeling matched the performance of example-centric cluster labeling with k-means, while

outperforming the other two methods. In the latter, weight-centric labeling was equiva-

lent to Ward-based cluster labeling, while outperforming the other methods.

Cluster labeling performed better than example-centric neuron labeling and worse

than weight-centric labeling, except on the Iris data. The k-means method outperformed

Ward clustering on half of the data sets (Iris, and monk’s problems 1 and 3), the opposite

occurred for the Pima Indians diabetes set, and all other sets showed no difference.

8.3.7 Discussion

Taking into consideration the analyses of all the performance measures discussed pre-

viously, a number of general conclusions are now offered in relation to the holistic per-
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Table 8.56: Statistical comparison of the percentage of unlabeled neurons for the supervised

neuron labeling methods executed on the Iris plants data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EU SU EU SU EU SU
19.467 3.104 0.000 0.000 11.481 16.308

Example-Centric
Cluster (k -Means) ←

1.863× 10−9EU SU
0.000 0.000

Example-Centric
Cluster (Ward) �

0.011

↑
6.104× 10−5EU SU

11.481 16.308

Weight-Centric
Neuron ←

1.863× 10−9

�

N/A

←
6.104× 10−5EU SU

0.000 0.000

Table 8.57: Statistical comparison of the percentage of unlabeled neurons for the supervised

neuron labeling methods executed on the ionosphere data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EU SU EU SU EU SU
3.810 1.912 1.883 1.558 1.526 1.452

Example-Centric
Cluster (k -Means) ←

7.228× 10−5EU SU
1.883 1.558

Example-Centric
Cluster (Ward) ←

4.208× 10−6

�

0.431EU SU
1.526 1.452

Weight-Centric
Neuron ←

3.725× 10−9

←
5.960× 10−8

←
9.537× 10−7EU SU

0.000 0.000
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Table 8.58: Statistical comparison of the percentage of unlabeled neurons for the supervised

neuron labeling methods executed on the monk’s problem 1 data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EU SU EU SU EU SU
43.469 3.065 1.607 1.240 7.018 3.141

Example-Centric
Cluster (k -Means) ←

1.863× 10−9EU SU
1.607 1.240

Example-Centric
Cluster (Ward) ←

1.863× 10−9

↑
1.304× 10−8EU SU

7.018 3.141

Weight-Centric
Neuron ←

1.863× 10−9

←
5.960× 10−8

←
1.863× 10−9EU SU

0.000 0.000

Table 8.59: Statistical comparison of the percentage of unlabeled neurons for the supervised

neuron labeling methods executed on the monk’s problem 2 data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EU SU EU SU EU SU
49.807 1.885 6.101 4.077 6.944 3.522

Example-Centric
Cluster (k -Means) ←

1.863× 10−9EU SU
6.101 4.077

Example-Centric
Cluster (Ward) ←

1.863× 10−9

�

0.499EU SU
6.944 3.522

Weight-Centric
Neuron ←

1.863× 10−9

←
2.384× 10−7

←
1.863× 10−9EU SU

0.000 0.000
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Table 8.60: Statistical comparison of the percentage of unlabeled neurons for the supervised

neuron labeling methods executed on the monk’s problem 3 data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EU SU EU SU EU SU
32.700 4.967 2.134 1.767 6.771 3.392

Example-Centric
Cluster (k -Means) ←

1.863× 10−9EU SU
2.134 1.767

Example-Centric
Cluster (Ward) ←

1.863× 10−9

↑
1.416× 10−6EU SU

6.771 3.392

Weight-Centric
Neuron ←

1.863× 10−9

←
2.980× 10−8

←
1.863× 10−9EU SU

0.000 0.000

Table 8.61: Statistical comparison of the percentage of unlabeled neurons for the supervised

neuron labeling methods executed on the Pima Indians diabetes data set.

Example-Centric Example-Centric Example-Centric
Neuron Cluster (k -Means) Cluster (Ward)

EU SU EU SU EU SU
3.264 1.317 0.242 0.447 0.208 0.552

Example-Centric
Cluster (k -Means) ←

1.863× 10−9EU SU
0.242 0.447

Example-Centric
Cluster (Ward) ←

1.863× 10−9

�

0.670EU SU
0.208 0.552

Weight-Centric
Neuron ←

1.863× 10−9

←
7.812× 10−3

�

0.125EU SU
0.000 0.000
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formance of each of the supervised neuron labeling algorithms. These observations were

used to select the neuron labeling approach used by the SOM-based data mining algo-

rithms analyzed in the following section. While it is possible to use the HybridSOM

framework in conjunction with any of the labeling methods, only a method based on a

cluster discovery algorithm is appropriate for the SIG* algorithm.

For this investigation, example-centric neuron labeling was usually superior to the

other labeling approaches in terms of both training and test set error measures. This

performance advantage was, however, less overwhelming in the case of the test set anal-

ysis. Interestingly, this classification performance advantage was observed despite the

example-centric neuron labeling algorithm very clearly introducing the highest propor-

tion of unlabeled neurons over almost all the experimental analyses.

It has been previously noted that weight-centric neuron labeling will tend to apply

less accurate labels to neurons that do not map closely to any labeling data examples.

Weight-centric labeling also applies labels based on only a single data example, while

example-centric neuron labeling often uses several data examples to decide a neuron la-

bel. Furthermore, unlabeled neurons produced by example-centric neuron labeling are

typically interpolating neurons, which usually do not attract any mapped data examples,

and are thus less likely to be involved in example classification. These factors are pro-

posed as contributors to the phenomenon of example-centric neuron labeling generally

outperforming weight-centric labeling on the tested experimental data sets.

The tested example-centric cluster labeling configurations performed generally poorly

throughout the experiments that were conducted, in terms of both training and test set

classification error. These methods did leave some unlabeled neurons over the experi-

ments, but certainly far fewer than example-centric neuron labeling did.

Example-centric cluster labeling results in large groups of neurons that are labeled

uniformly. These uniform areas tend to mask much of the finer-grained detail found in

the map, and are thus likely to result in mislabeling. This effect is proposed as a factor

contributing to the poor training and test classification performance of the example-

centric cluster labeling methods, which was observed during the experiments.

These observations suggest that example-centric neuron labeling should be preferred

when classifying data examples using a SOM. This advantage is likely to be carried over
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to any algorithm relying on a map labeled by example-centric neuron labeling. This is

because a labeling with a superior classification ability models the underlying data more

accurately, and an algorithm using this model will benefit by extension.

The percentage of neurons left unlabeled by example-centric neuron labeling is con-

cerning when maps are to be analyzed by human experts. Use of example-centric neuron

labeling for EDA is therefore strongly discouraged by this research work. Instead, the

use of weight-centric neuron labeling is suggested, because of the fully labeled map that

the algorithm guarantees, and the poor performance of the cluster labeling approach

that was observed over this experimental investigation. Example-centric cluster labeling

should only be used when a higher-level, less detailed visualization is required.

Finally, the relative performance of the two example-centric cluster labeling config-

urations must be considered. Ward clustering and k-means clustering produced very

similar results throughout the experiments. The Ward clustering technique generally

outperformed the k-means method in terms of training error, but no significant dif-

ference was evident between the configurations when test set error was concerned. The

k-means configuration was found to outperform the Ward technique when the percentage

of unlabeled neurons were considered for the experiments that were conducted.

Based on the very similar performance of the example-centric cluster labeling con-

figurations, it is not possible to offer definitive practical guidelines as to the use of any

specific clustering algorithm. Future research will compare a wider variety of clustering

techniques, in the hope of better understanding the relevant performance characteris-

tics. The SIG* algorithm implementation used during the experimentation reported in

Section 8.4 was configured with Ward clustering, based simply on the training error ad-

vantage observed during this investigation, and the fact that unlabeled neurons were not

observed to have a strong detrimental effect on classification performance.

8.4 Analysis of SOM-Based Data Mining Techniques

The focus of this section is on the second experimental analysis performed for this dis-

sertation, which investigated the relative performance of the SOM-based data mining

approaches. The SOM-based techniques were compared to one another, as well as two
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classical rule extraction algorithms, in order to give a detailed picture of the algorithmic

performance characteristics. Section 8.4.1 outlines the broad objectives of this investi-

gation. Section 8.4.2 discusses the implementation of the investigated algorithms, while

Section 8.4.3 describes the measures used to characterize the various performance aspects

of the investigated algorithms. The procedure followed by the optimization of algorithmic

parameters is detailed in Section 8.4.4, while Section 8.4.5 presents the actual outcomes

of the parameter optimization. Finally, the statistical comparison of the investigated

algorithms is discussed in Section 8.4.6, and Section 8.4.7 draws final conclusions.

8.4.1 Objectives of the Analysis

This experimental investigation analyzed the performance characteristics of the Hybrid-

SOM framework, described in Section 7.4, and the SIG* algorithm, discussed in Sec-

tion 7.3. Both these algorithms are unsupervised, in the sense that neither requires prior

knowledge about the class structure of the underlying training data. The boundary-

based rule extraction algorithm, which is outlined in Section 7.2, is excluded from this

analysis because the approach requires prior knowledge of the number of classes in the

training data, and is thus supervised in nature. The comparison of supervised and un-

supervised approaches is not fair, because the former class of techniques incorporates a

priori knowledge, which the latter category does not have access to.

The SOM-based approaches were also compared against two classical rule extraction

algorithms used for data mining, namely CN2 [38] and C4.5 [193]. Both CN2 and C4.5 are

well known and widely used in the literature, and thus sensible choices for this analysis.

The CN2 algorithm is described in Appendix A, while Appendix B provides details on

the C4.5 algorithm. Additionally, the HybridSOM framework must be configured with

a rule extraction algorithm. For this investigation, two such HybridSOM configurations

were tested, which gave broader insight into the performance of the framework. The

CN2 and C4.5 algorithms were again used as the rule extractors in the two versions of

HybridSOM. This decision allowed for the identification of any performance degradation

or improvement that could be ascribed only to the framework itself.

The outcomes of the analysis performed on the neuron labeling algorithms were used

to inform the decision as to which labeling schemes were used during this data mining
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algorithm analysis. Example-centric neuron labeling was thus used by the HybridSOM

framework. The SIG* algorithm uses labeled clusters, and example-centric cluster label-

ing configured with Ward clustering was used for that purpose. The labeling algorithm

implementations were identical to the ones used for the previous analysis.

A classification task, similar to the one used in the previous analysis, was employed

to analyze the data mining algorithms. Each approach was trained in order to generate a

rule set. In the case of the SOM-based algorithms, neuron labeling was performed using

the training data set. When the algorithm was assessed for accuracy, the generated

rule set was used to classify training or test set data examples. Correct classifications

occurred when the class of the data example matched the class predicted by the rule set,

while misclassifications happened when there was a mismatch. If an approach failed to

predict a class, the data example was considered to be unclassified.

The data mining algorithms were applied to the same benchmark data sets that were

used when analyzing the neuron labeling approaches. The performance of each rule

extraction algorithm was assessed over a 30-fold cross-validation, in the same way as the

investigation of the labeling algorithms did. The only differences to the performance

assessment lay in the nature of the measures used to assess each cross-validation. Each

of the measures that were used is described in detail within Section 8.4.3.

The most important objective of the analysis was to determine the general perfor-

mance characteristics for the assessed rule extraction algorithms when tested on the

investigated experimental data sets. These characteristics were to be used to compare

the data mining approaches. The investigation also aimed to assess any performance

advantages or disadvantages introduced specifically by the HybridSOM framework, after

discarding the effects of the rule extractors with which the framework was configured.

8.4.2 Implementations of the Algorithms

The implementation details for the SOM and rule extraction algorithms were exactly the

same as those used in the labeling algorithm experiments. The relevant details of these

algorithmic implementations are described in Section 8.3.2.

Both CN2 and C4.5 have standard implementations, outlined in Appendices A and B,

respectively. While other implementations exist, the standard versions were developed
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by the originators of the approaches. These implementations were thus considered to be

authoritative, and were not modified. The CN2 method was set up to build ordered rule

sets, thus allowing a fair comparison to the ordered rules produced by C4.5.

The SIG* algorithm used during these experiments had to be custom developed, be-

cause no standard implementation of the algorithm is available. The algorithm developed

for this experimental analysis precisely followed the description provided in Section 7.3.

This implementation used two significance measures to populate the significance matri-

ces of the algorithm, both suggested for unsupervised example-based cluster labeling in

Section 6.3.4.2. The K-S measure [5, 6], discussed in Section 6.3.3.2, was used for data

sets with only continuous attributes (i.e., the Iris plants, ionosphere, and Pima Indians

diabetes data sets). For data sets with only nominal attributes (i.e., all the monk’s

problem data sets), Pearson’s chi-squared statistic [180] was used instead.

It is critical to remember that the rules produced by SIG* were converted into stan-

dard production rule sets according to the procedure outlined in Section 7.3.4. This

conversion was performed in order to facilitate sensible comparisons of SIG* rules to the

rule sets that were produced by the other rule extraction algorithms.

It should be noted that the original description of the SIG* algorithm includes no

provision for a default rule, and no such feature was added to this work’s implementation.

It was thus possible for the approach to leave data examples unclassified.

Finally, the original SIG* literature does not describe how the order of rules is de-

termined. Because rule order is essential to production rule set evaluation, an ordering

scheme had to be introduced. The approach used here sorted the rules into an ascending

sequence, ordered by false positives. A false positive occurs when a data example is

matched by a rule, but does not belong to the class predicted by that rule.

The HybridSOM framework was implemented according to the description given

in Section 7.4. The implementation of the framework simply wrapped the previously

discussed standard implementations of the CN2 and C4.5 rule extraction algorithms.

8.4.3 Algorithmic Performance Measures

The SOM-based data mining algorithm analysis shared most of the performance mea-

sures used to analyze the labeling algorithms, which Section 8.3.3 describes. These mea-
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sures are the mean (ET ) and standard deviation (ST ) of the overall training set error, the

mean (ETM) and standard deviation (STM) of the training set error due to misclassified

data examples, the mean (ETU) and standard deviation (STU) of the training set error

due to unclassified data examples, the mean (EG) and standard deviation (SG) of the

overall test set error, the mean (EGM) and standard deviation (SGM) of the test set error

due to misclassified data examples, and the mean (EGU) and standard deviation (SGU) of

the test set error due to unclassified data examples. The mean and standard deviation

of the percentage of unlabeled neurons were not used during this analysis, because the

final rule sets were of interest, as opposed to the structure of the SOM itself.

An additional three measures were introduced, all of which assessed different aspects

of the rule set complexity. The complexity of a rule set is a factor of both the size of the

rule set, in terms of the number of rules making up the rule set, and the size of the rules

themselves, described using the number of conditions making up each rule.

The first new measure is the total number of conditions per rule set, which represents

the overall rule set complexity. The mean (EFT ) and the standard deviation (SFT ) of

the measure, each computed over a cross-validated experiment, were recorded. A default

rule was counted as a single condition (one that matches any data example), in order to

differentiate the methods that produce default rules from those that do not.

The second measure analyzed the complexity of only the rule set by tallying the

number of rules per rule set. Once again, this measure was represented by a mean (ER)

and standard deviation (SR) calculated over a cross-validation. The rule count measure

considered a default rule, in the event that one was present, to be a single rule.

Finally, the average number of conditions per rule were recorded using the mean (EFA)

and standard deviation (SFA) for a cross-validated experiment. In a similar fashion to

the previous two measures, a default rule was seen as a rule with one condition.

In general, excessive rule set complexity is undesirable, because complex rule sets are

difficult to understand and manage. There is, however, typically a tradeoff between error

performance and rule set complexity [119]. Rule set complexity must usually increase to

improve accuracy, while simpler rule sets are normally less accurate. A balance between

these two aspects of performance must therefore be found. Of course, this trend does not

always hold. Simple rule sets are sometimes highly accurate, and redundancy introduced
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into a complex rule set will not improve accuracy. It is even possible for very complex

rule sets to reduce accuracy, due to the introduction of noise into the rule model.

8.4.4 Parameter Optimization Procedure

Once again, all the algorithms compared in this analysis have parameters that needed

to be optimized to ensure near-optimal results. The optimization procedure followed for

each algorithm was the same. The optimization procedure for this study was, however,

somewhat more complex, due to the differing nature of the parameters between the

approaches, the inclusion of SOM parameters that required optimization for all the

SOM-based data mining methods, and the need to consider rule set complexity.

The method based on Franken’s work, which uses Sobol’ sequences to generate po-

tential parameter configurations and parallel coordinate plots to visualize the parameter

space, was again applied for the reported experiments. The procedure was, however,

complicated by the fact that several of the algorithmic parameters are not continuous.

Section 8.4.4.1 discusses the procedure that was followed to generate the candidate pa-

rameter configurations, while Section 8.4.4.2 covers the parameter space visualization.

8.4.4.1 Generating Candidate Parameter Configurations

The parameter tuning of the data mining algorithms used the same Sobol’ sequence

that was used for the labeling algorithm optimization. Dimension values in the Sobol’

sequence were scaled as previously described for continuous and ordinal parameters. The

same cycle length of 512 was used for all algorithms optimized for this analysis.

CN2 and C4.5 each have one binary parameter, respectively describing the error

estimate used by CN2, and the test heuristic of C4.5. The Sobol’ sequence dimensions

correlating to these parameters were rounded to the nearest integer. A value of 0.0

denoted the first parameter setting, while a 1.0 value represented the second.

C4.5 builds a decision tree, which is converted into a rule set. One C4.5 parameter

configures, for each generated decision tree node, the minimum number of training set

examples that must be classified by at least two outcomes of the node. Because values

larger than the available number of training examples are meaningless, these experiments

capped the parameter setting at the training set size for the data set being used.
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In C4.5, a pessimistic error rate guides the pruning of redundant rule set conditions.

Fisher’s exact test, with a continuous confidence level in the range [0, 100], is optionally

also used during this pruning. For this parameter, the appropriate dimension of the

Sobol’ sequence was scaled to a [−100, 100] range, using min-max normalization. If the

scaled value fell within the [0, 100] range, the parameter was used with the scaled value

as the setting. If a negative scaled value was produced, the parameter was not used. This

ensured that the parameter was unused in approximately half the candidate parameter

settings, while the parameter value range was adequately sampled in the remaining cases.

8.4.4.2 Visualizing the Search Space of Parameter Settings

Once again, the parameter space visualization and optimization procedure required a

cross-validation to be performed for each parameter configuration. The previously dis-

cussed tradeoff between accuracy and complexity had to be taken into account during

optimization. For this reason, overall test set error was used as the primary indicator

of configuration quality, followed by the total number of rule set conditions. The overall

training set error was of the least concern during parameter optimization.

Parallel coordinate plots again visualized the parameter space for each algorithm

applied to a specific data set. Algorithmic parameters were visualized to the left of each

plot. The rightmost two parallel plot lines respectively represented the configuration’s

means of the overall test set accuracy and the total conditions per rule set.

The optimization procedure first sorted all the evaluated parameter configurations

into ascending order, based on the mean test set error. Ties were settled according to the

test error standard deviation, followed by the mean total rule set condition count, the

standard deviation of the condition count, the mean training error, and finally the stan-

dard deviation of the training error. The most optimal 20% of parameter configurations

in this list were selected from this sorted list to form a near-optimal sublist.

All the pairs of unique total condition count mean and standard deviation values in

the near-optimal sublist were recorded. The pairs were arranged in ascending order of

condition count means, with the standard deviation breaking ties. The first 20% of the

pairs formed a set of optimal condition counts. The optimal set of configurations were

then considered to be the near-optimal parameter configurations with total condition
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count means and standard deviations that appeared in the set of optimal condition

counts. Thus the near-optimal parameter settings were pruned of configurations with

sub-optimal rule set complexity, to form the optimal parameter configuration set. The

first configuration in the optimal parameter set was judged most optimal.

In some cases this parameter optimization procedure selects a configuration with

relatively high mean test error. In such cases, it is typically the case that configurations

with better test error performance produce overly large rule sets, which was undesirable.

8.4.5 Results of Parameter Optimization

This section presents the parameter optimizations of the DM methods applied to the

data sets listed in Section 8.2 for the classification task described in Section 8.4.1. The

DM methods were the standard CN2 and C4.5 algorithms, the HybridSOM framework

combined first with CN2 and then with C4.5, and SIG*. Parallel coordinate plots were

again used to optimize the candidate algorithmic parameter configurations.

Each DM algorithm had a unique set of parameters to optimize. The parameter value

ranges for CN2 and C4.5 were dictated by the values allowed by the algorithm implemen-

tations. The SOM and SIG* parameter ranges were chosen to balance time complexity

with adequate exploration of the parameter space. Tables 8.62 and 8.63 respectively

show the parameters and associated value ranges for CN2 and C4.5. Tables 8.64 and

8.65 show the parameter ranges that are applicable to the HybridSOM framework con-

figured with the CN2 and C4.5 algorithms, respectively. Finally, Table 8.66 shows the

parameter value ranges for this dissertation’s SIG* implementation.

In the case of the HybridSOM framework configurations and the SIG* algorithm,

the SOM parameters were not optimized independently. Instead, the SOM parameters

were treated as part of the rule extraction approach in question. This decision was made

because the underlying interactions between the algorithmic parameters are not currently

well understood. The decisions surrounding the tested SOM parameter ranges and the

interactions between these parameters were identical to those discussed in Section 8.3.5,

which were used during the supervised neuron labeling algorithm analysis.

The parallel coordinate plots of the parameter spaces for each of the DM algorithms

were similar to those used during the neuron labeling algorithm optimizations. Only the
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Table 8.62: The ranges within which parameter values varied for the CN2 algorithm.

Parameter Symbol Data Type Data Set Range

Error estimate cn2-err Ordinal All {Näıve, Laplacian}
Size of the star set cn2-star Continuous All [1, 200]

Significance threshold cn2-sig Continuous All [0.0, 200.0]

Table 8.63: The ranges within which parameter values varied for the C4.5 algorithm.

Parameter Symbol Data Type Data Set Range

Minimum examples in
two outcomes

c4.5-min Ordinal

Iris plants [1, 145]

Ionosphere [1, 340]

Monk’s problems [1, 418]

Pima Indians diabetes [1, 743]

Test heuristic c4.5-heur Nominal All {Gain, Gain ratio}
Pessimistic error confidence c4.5-pess Continuous All [0.0, 100.0]

Fisher threshold (optional) c4.5-Fisher Continuous All [0.0, 100.0]

Rule pruning redundancy c4.5-redun Continuous All (0.0, 10 000.0]

Table 8.64: The ranges within which parameter values varied for HybridSOM using CN2.

Parameter Symbol Data Type Data Set Range

Map dimensions Y,X Ordinal

Iris plants [2, 12]

Ionosphere [2, 18]

Monk’s problems [2, 20]

Pima Indians diabetes [2, 27]

Initial learning rate η(0) Continuous All [0.0, 10.0]

Learning rate decay constant τ1 Continuous All (0.0, 1 500.0]

Kernel width σ(0) Continuous All (0.0, Y ]

Kernel width decay constant τ2 Continuous All (0.0, 100.0]

Error estimate cn2-err Ordinal All {Näıve, Laplacian}
Size of the star set cn2-star Continuous All [1, 200]

Significance threshold cn2-sig Continuous All [0.0, 200.0]
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Table 8.65: The ranges within which parameter values varied for HybridSOM using C4.5.

Parameter Symbol Data Type Data Set Range

Map dimensions Y,X Ordinal

Iris plants [2, 12]

Ionosphere [2, 18]

Monk’s problems [2, 20]

Pima Indians diabetes [2, 27]

Initial learning rate η(0) Continuous All [0.0, 10.0]

Learning rate decay constant τ1 Continuous All (0.0, 1 500.0]

Kernel width σ(0) Continuous All (0.0, Y ]

Kernel width decay constant τ2 Continuous All (0.0, 100.0]

Minimum examples in
two outcomes

c4.5-min Ordinal

Iris plants [1, 145]

Ionosphere [1, 340]

Monk’s problems [1, 418]

Pima Indians diabetes [1, 743]

Test heuristic c4.5-heur Nominal All {Gain, Gain ratio}
Pessimistic error confidence c4.5-pess Continuous All [0.0, 100.0]

Fisher threshold (optional) c4.5-Fisher Continuous All [0.0, 100.0]

Rule pruning redundancy c4.5-redun Continuous All (0.0, 10 000.0]

Table 8.66: The ranges within which parameter values varied for the SIG* algorithm.

Parameter Symbol Data Type Data Set Range

Map dimensions Y,X Ordinal

Iris plants [2, 12]

Ionosphere [2, 18]

Monk’s problems [2, 20]

Pima Indians diabetes [2, 27]

Initial learning rate η(0) Continuous All [0.0, 10.0]

Learning rate decay constant τ1 Continuous All (0.0, 1 500.0]

Kernel width σ(0) Continuous All (0.0, Y ]

Kernel width decay constant τ2 Continuous All (0.0, 100.0]

Characterizing threshold θchar Continuous All [0.0, 100.0]

High characterizing constant φchar Continuous All [0.0, 3.0]

Low characterizing constant ψchar Continuous All [0.0, 3.0]

Differentiating threshold θdiff Continuous All [0.0, 100.0]

High differentiating constant φdiff Continuous All [0.0, 3.0]

Low differentiating constant ψdiff Continuous All [0.0, 3.0]
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final set of pruned optimal parameter settings were represented in all cases. Dashed lines

again represented the most optimal parameter settings determined for each algorithm and

data set combination. The last two parallel plot lines in each visualization represented,

respectively, the means of the overall test set error and total rule set conditions.

The parameters for the basic CN2 rule extraction algorithm were simply tested over

the full range of values that the standard implementation supported. Figure 8.2 shows an

example parallel coordinate plot of the parameter space that was explored for the CN2

algorithm executed on the Iris plants data set. From the plot, it is clear that the optimal

parameter settings produced a mean test set error of 2.667%, and a mean of 4.833 rule

set conditions. The worst mean test error over all simulations was 86.000%, while the

smallest and largest mean number of conditions were 1 and 20.900, respectively.

Figure 8.3 illustrates an example of the parallel coordinate plot of the parameter

space for the standard C4.5 algorithm, when it was tested on the Iris plants data set.

The parameters were tested over the full range of values accepted by the standard imple-

mentation. The optimal mean test set error was 5.333%, while a mean rule set condition

count of 5.000 was achieved. The test error means varied between 4.000% and 86.000%,

while the mean condition counts varied between 1.000 and 8.100 at the extremes.

The HybridSOM framework configured with the CN2 algorithm was also optimized

using parallel coordinate plots, where Figure 8.4 again shows an example of a plot for

the Iris plants data set. The parameters ranged over the values used for the SOMs of the

labeling algorithm analysis, and the previously mentioned CN2 settings. The optimal

mean test set error was 34.000%, where the minimum and maximum over all configura-

tions were 11.212% and 62.424%, respectively. The mean number of rule set conditions

for the selected parameter configuration was 2.000, while the lowest and highest mean

number of conditions were respectively 1.000 and 21.333 over all configurations.

Figure 8.5 depicts an example of a parallel coordinate plot for the parameter space

for the HybridSOM framework configured with the C4.5 rule extraction algorithm, once

again for the Iris plants data set. The tested parameters once again ranged over the

values previously used for the SOMs of the labeling algorithm optimizations, and the

C4.5 parameters described above. The optimal configuration produced a mean overall

test set error of 14.667%, as well as a 4.733 mean for the total conditions per rule set.
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Naïve 1 0.000 2.667 1.000

Laplacian 200 200.000 86.000 20.900

cn2 -err cn2-star cn2-sig EG EFT

77

24.609

4.833

Figure 8.2: The parallel coordinate plot of the parameter value optimization performed for

the CN2 algorithm, when applied to the Iris plants experimental data set.

1 Gain 0.0 Unused 0.0 4.000 1.000

0.0

145 Gain ratio 100.0 100.0 10 000.0 86.000 8.100

c4 .5 -min c4 .5 -heur c4 .5 -pess c4 .5 -Fisher c4 .5 -redun EG EFT

20

64.453

39.844

7 382.813

5.333

5.000

Figure 8.3: The parallel coordinate plot of the parameter value optimization performed for

the C4.5 algorithm, when applied to the Iris plants experimental data set.
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2 0.0 0.0 0.0 0.0 Naïve 1 0.0 11.212 1.000

12 10.0 1 500.0 18.0 100.0 Laplacian 200 200.0 62.424 21.333

Y,X η(0) τ1 σ(0) τ2 cn2 -err cn2-star cn2-sig EG EFT

8.301

635.742

4.711

18.164

123

51.953

34.000

2.000

Figure 8.4: The parallel coordinate plot of the parameter value optimization performed for

HybridSOM configured with CN2, when applied to the Iris plants experimental data set.

2 0.0 0.0 0.0 0.0 1 Gain 0.0 Unused 0.0 2.667 1.000

0.0

12 10.0 1 500.0 12.0 100.0 144 Gain Ratio 100.0 100.0 10 000.0 76.667 6.867

Y,X η(0) τ1 σ(0) τ2 c4 .5 -min c4 .5 -heur c4 .5 -pess c4 .5 -Fisher c4 .5 -redun EG EFT

8

4.297

1 089.844

5.438

86.719

15

24.219

234.375

14.667

4.733

Figure 8.5: The parallel coordinate plot of the parameter value optimization performed for

HybridSOM configured with C4.5, when applied to the Iris plants experimental data set.

The minimum test set error over the entire set of candidate parameter settings was

2.667%, while a maximum value of 76.667% was generated. The smallest mean number

of conditions per rule set was 1.000, with a maximum of 6.867 conditions.

Finally, Figure 8.6 presents an example of the parallel coordinate plot visualization of

the SIG* DM algorithm parameter space. The example again illustrates the parameter

optimization for the Iris plants data set. The optimal configuration’s mean overall test set
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2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.667 8.000

12 10.0 1 500.0 12.0 100.0 100.0 3.0 3.0 100.0 3.0 3.0 100.000 7.010× 1011

Y,X η(0) τ1 σ(0) τ2 θchar φchar ψchar θdiff φdiff ψdiff EG EFT

3

0.391

1 394.531

1.523

35.156

21.094

1.852

2.086

78.906

1.242

0.727

42.000

16.000

Figure 8.6: The parallel coordinate plot of the parameter value optimization performed for

the SIG* algorithm, when applied to the Iris plants experimental data set.

error was 42.000%, with the full set of configurations producing a minimum of 18.667%

and a maximum of 100.000%. The best configuration also produced a mean rule set

condition count of 16.000, where the minimum and maximum mean over the entire set

of candidate parameter settings were 8.000 and 7.010× 1011, respectively.

Tables 8.67 to 8.71 summarize the optimal parameter settings for each algorithm,

when applied to the benchmark data sets. The parameters for the basic CN2 and C4.5

algorithms are respectively shown in Tables 8.67 and 8.68. Tables 8.69 and 8.70 provide

the parameters for the HybridSOM framework, configured with the CN2 and C4.5 al-

gorithms, respectively. Finally, Table 8.71 presents the SIG* rule extraction algorithm

parameters. The last two rows in each of these tables list the mean of the overall training

set error and the mean of the total condition count for the optimal configurations.

8.4.6 Comparison of Algorithmic Performance

This section presents a detailed discussion on the results of the comparative analyses of

the investigated rule extraction algorithms. All of the performance measures described

in Section 8.4.3 are taken into account in separate sections. The statistical comparison

procedure described in Section 8.1.2 was followed throughout the investigation.

The discussion of the experiments on the DM algorithms is structured as follows:

Section 8.4.6.1 investigates the overall training set error performance of the algorithms,
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Table 8.67: Optimal parameters for the basic CN2 rule extraction algorithm.

Parameter Iris
Plants

Ionosphere Monk’s
Problem 1

Monk’s
Problem 2

Monk’s
Problem 3

Pima Indians
Diabetes

cn2-err Laplacian Näıve Laplacian Laplacian Laplacian Laplacian

cn2-star 77 185 45 129 196 140

cn2-sig 24.609 28.516 69.141 14.844 160.156 103.906

EG 2.667% 7.576% 0.000% 22.857% 2.857% 26.667%

EFT 4.833 4.967 8.000 24.667 3.000 2.933

Table 8.68: Optimal parameters for the basic C4.5 rule extraction algorithm.

Parameter Iris
Plants

Ionosphere Monk’s
Problem 1

Monk’s
Problem 2

Monk’s
Problem 3

Pima Indians
Diabetes

c4.5-min 20 42 93 11 56 97

c4.5-heur Gain ratio Gain Gain ratio Gain ratio Gain ratio Gain ratio

c4.5-pess 64.453 43.359 43.945 82.031 92.969 64.453

c4.5-Fisher 39.844 85.156 Unused 67.188 1.563 39.844

c4.5-redun 7 382.813 4 492.188 1 972.656 6 484.375 3 515.625 7 382.813

EG 5.333% 9.697% 24.286% 32.381% 2.857% 24.667%

EFT 5.000 5.000 3.000 56.600 5.000 3.500

Table 8.69: Optimal parameters for the HybridSOM framework configured with CN2.

Parameter Iris
Plants

Ionosphere Monk’s
Problem 1

Monk’s
Problem 2

Monk’s
Problem 3

Pima Indians
Diabetes

Y,X 12 8 13 11 20 3

η(0) 8.301 7.793 0.410 5.000 0.039 9.668

τ1 635.742 125.977 38.086 750.000 462.891 407.227

σ(0) 4.711 1.109 11.096 5.500 11.016 2.104

τ2 18.164 81.055 50.195 50.000 57.422 24.805

cn2-err Näıve Näıve Laplacian Näıve Näıve Näıve

cn2-star 123 128 68 101 163 165

cn2-sig 51.953 16.797 125.391 100.000 25.781 4.297

EG 34.000% 18.788% 46.429% 32.857% 38.333% 30.267%

EFT 2.000 2.567 1.000 1.000 1.733 1.667
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Table 8.70: Optimal parameters for the HybridSOM framework configured with C4.5.

Parameter Iris
Plants

Ionosphere Monk’s
Problem 1

Monk’s
Problem 2

Monk’s
Problem 3

Pima Indians
Diabetes

Y,X 8 7 20 19 16 25

η(0) 4.297 8.965 9.043 9.336 0.156 4.727

τ1 1 089.844 676.758 1 438.477 685.547 1 429.688 322.266

σ(0) 5.438 3.322 10.273 12.098 12.750 3.613

τ2 86.719 30.273 43.555 80.078 89.063 85.547

c4.5-min 15 12 106 151 44 101

c4.5-heur Gain ratio Gain ratio Gain ratio Gain Gain Gain

c4.5-pess 24.219 34.961 88.867 11.328 42.188 48.047

c4.5-Fisher Unused Unused Unused Unused Unused 36.719

c4.5-redun 234.375 722.656 3 769.531 7 929.688 7 968.750 3 945.313

EG 14.667% 20.000% 37.857% 32.857% 19.048% 26.400%

EFT 4.733 3.133 1.933 1.000 3.067 3.200

Table 8.71: Optimal parameters for the SIG* rule extraction algorithm.

Parameter Iris
Plants

Ionosphere Monk’s
Problem 1

Monk’s
Problem 2

Monk’s
Problem 3

Pima Indians
Diabetes

Y,X 3 8 18 11 9 7

η(0) 0.391 9.258 4.063 9.980 2.070 6.094

τ1 1 394.531 1 423.828 1 171.875 266.602 1 376.953 1 007.813

σ(0) 1.523 2.781 10.688 8.744 7.348 0.109

τ2 35.156 93.359 9.375 27.930 52.734 29.688

θchar 21.094 8.203 40.625 60.742 55.078 45.313

φchar 1.852 1.746 2.156 2.596 2.215 2.672

ψchar 2.086 1.957 2.719 2.572 2.613 2.484

θdiff 78.906 13.672 28.125 78.711 98.047 14.063

φdiff 1.242 2.168 2.156 2.725 1.324 2.297

ψdiff 0.727 2.684 1.219 2.865 1.090 2.578

EG 42.000% 16.970% 33.571% 32.857% 27.143% 31.467%

EFT 16.000 9.403× 1011 3.201× 109 34.000 8.449× 1013 1.242× 10101
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while Sections 8.4.6.2 and 8.4.6.3 analyze the contributions of misclassified and unclas-

sified data examples to this error. The results of the test set error investigation are

described in Section 8.4.6.4, where Sections 8.4.6.5 and 8.4.6.6 focus on the test set er-

rors that were due to misclassified and unclassified data examples, respectively. The

three rule set complexity measures are focused on in the final three sections, with Sec-

tion 8.4.6.7 considering the total rule set conditions, Section 8.4.6.8 discussing the total

rule count, and Section 8.4.6.9 looks at the average number of conditions per rule.

8.4.6.1 Overall Training Set Error

Tables 8.72 to 8.77 outline the comparative statistics used to analyze the overall training

set error for the investigated DM algorithms executed on the experimental data sets.

The Iris plants data set is focused on in Table 8.72, while Table 8.73 investigates the

ionosphere data set. Tables 8.74, 8.75, and 8.76 investigate the three monk’s problems.

Finally, the Pima Indians diabetes data set analysis is summarized in Table 8.77.

It is possible for a hypothesis test to conclude that two algorithms are significantly

different (which denotes that the results represent clearly distinct populations) while the

means and standard deviations of the results signify that the measures themselves are

almost identical. In such a case, the differences between the algorithms are statistically

significant, while being subjectively judged to be practically insignificant in a real-world

sense [66]. This analysis assumed practically insignificant performance differences when

the means and standard deviations of algorithms were equivalent to a precision of three

decimal digits. Table 8.75 shows that this situation arose for the overall training error

measured on the second monk’s problem for HybridSOM configured with CN2, and SIG*.

Table 8.76 shows the same outcome for basic CN2 and C4.5 on monk’s problem 3. Table

footnotes show the mean and standard deviation differences in these cases.

The SOM-based rule extraction algorithms generally performed poorly in comparison

to the basic CN2 and C4.5 algorithms. None of the SOM-based methods performed the

best, or equivalent to the best performing approaches, on any of the data sets.

The results indicate that the basic CN2 algorithm was the best performing technique.

CN2 outperformed all five of the other rule extraction approaches on three data sets (the

Iris plants, ionosphere, and first monk’s problem data sets), and jointly outperformed
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Table 8.72: Statistical comparison of the overall training set error for the rule extraction

algorithms executed on the Iris plants data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ET ST ET ST ET ST ET ST
2.138 0.491 3.977 0.348 33.678 2.097 14.345 10.718

Unmodified C4.5 ↑
7.451× 10−9ET ST

3.977 0.348

HybridSOM (CN2) ↑
1.863× 10−9

↑
1.863× 10−9ET ST

33.678 2.097

HybridSOM (C4.5) ↑
1.863× 10−9

↑
1.863× 10−9

←
8.009× 10−8ET ST

14.345 10.718

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

↑
3.725× 10−9

↑
1.863× 10−9ET ST

41.862 1.148

Table 8.73: Statistical comparison of the overall training set error for the rule extraction

algorithms executed on the ionosphere data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ET ST ET ST ET ST ET ST
6.049 0.455 9.118 0.278 18.873 5.097 20.941 4.276

Unmodified C4.5 ↑
1.863× 10−9ET ST

9.118 0.278

HybridSOM (CN2) ↑
1.863× 10−9

↑
1.863× 10−9ET ST

18.873 5.097

HybridSOM (C4.5) ↑
1.863× 10−9

↑
1.863× 10−9

�

0.061ET ST
20.941 4.276

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

�

0.035

←
7.994× 10−6ET ST

16.451 3.127
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Table 8.74: Statistical comparison of the overall training set error for the rule extraction

algorithms executed on the monk’s problem 1 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ET ST ET ST ET ST ET ST
0.000 0.000 25.024 0.395 50.120 0.425 38.349 12.723

Unmodified C4.5 ↑
1.863× 10−9ET ST

25.024 0.395

HybridSOM (CN2) ↑
1.863× 10−9

↑
1.863× 10−9ET ST

50.120 0.425

HybridSOM (C4.5) ↑
1.863× 10−9

↑
3.052× 10−5

←
7.358× 10−4ET ST

38.349 12.723

SIG* algorithm ↑
1.863× 10−9

←
2.316× 10−4

←
1.863× 10−9

←
5.718× 10−7ET ST

23.158 2.328

Table 8.75: Statistical comparison of the overall training set error for the rule extraction

algorithms executed on the monk’s problem 2 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ET ST ET ST ET ST ET ST
21.300 10.146 19.769 1.812 32.871 0.429 32.871 0.429

Unmodified C4.5
�

0.413ET ST
19.769 1.812

HybridSOM (CN2) ↑
2.384× 10−7

↑
1.863× 10−9ET ST

32.871 0.429

HybridSOM (C4.5) ↑
4.470× 10−8

↑
1.863× 10−9

�

6.233× 10−3ET ST
32.871 0.429

SIG* algorithm ↑
2.980× 10−8

↑
1.863× 10−9

↑ ∗
5.188× 10−4

�

6.233× 10−3ET ST
32.871 0.429

∗ Means differ by 3.081× 10−15, while standard deviations differ by 9.841× 10−16, indicating practically insignificant result differences.
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Table 8.76: Statistical comparison of the overall training set error for the rule extraction

algorithms executed on the monk’s problem 3 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ET ST ET ST ET ST ET ST
7.289 0.365 7.289 0.365 42.400 10.618 21.930 2.866

Unmodified C4.5 ← ∗
1.863× 10−9ET ST

7.289 0.365

HybridSOM (CN2) ↑
3.725× 10−9

↑
1.863× 10−9ET ST

42.400 10.618

HybridSOM (C4.5) ↑
3.725× 10−9

↑
3.725× 10−9

←
8.009× 10−8ET ST

21.930 2.866

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

←
7.758× 10−6

↑
5.588× 10−9ET ST

29.147 5.238

∗ Means differ by 6.951× 10−8, while standard deviations differ by 3.480× 10−9, indicating practically insignificant result differences.

Table 8.77: Statistical comparison of the overall training set error for the rule extraction

algorithms executed on the Pima Indians diabetes data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ET ST ET ST ET ST ET ST
25.953 1.711 25.141 0.407 31.175 4.232 26.563 1.339

Unmodified C4.5 ←
3.725× 10−9ET ST

25.141 0.407

HybridSOM (CN2) ↑
1.118× 10−8

↑
1.863× 10−9ET ST

31.175 4.232

HybridSOM (C4.5) ↑
1.207× 10−3

↑
2.980× 10−8

←
1.598× 10−5ET ST

26.563 1.339

SIG* algorithm ↑
4.470× 10−8

↑
1.863× 10−9

�

0.719

↑
1.863× 10−8ET ST

30.740 1.808
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the other methods in conjunction with the C4.5 algorithm on a further two data sets

(the second and third monk’s problems). For the remaining Pima Indians diabetes

experimental data set, CN2 was outperformed only by the raw C4.5 algorithm.

The raw C4.5 algorithm performed slightly worse than CN2 did, but better than the

SOM-based approaches. Unmodified C4.5 performed better than all other rule extractors

on the Pima Indians diabetes data set, and equivalently to CN2 on two data sets (the

previously mentioned second and third monk’s problems). On the Iris and ionosphere

data sets, C4.5 was only outperformed by CN2. When considering the first monk’s

problem, C4.5 only performed better than the HybridSOM configurations, while also

performing worse than both the CN2 and SIG* rule extraction algorithms.

In almost all cases the basic CN2 and C4.5 algorithms outperformed the SOM-based

techniques. Unmodified CN2 performed better than all the SOM-oriented techniques on

every data set in the analysis. The basic C4.5 approach achieved the same result on all

but the first monk’s problem, where the method was outperformed by SIG*.

The best performing SOM-based approach was the HybridSOM framework configured

with C4.5. On the Iris plants, third monk’s problem, and Pima Indians diabetes data

sets this HybridSOM configuration exhibited average performance by outperforming two

approaches, while being outperformed by the other two. The first monk’s problem saw

the C4.5 configured framework performing better than only one approach. For the

two remaining data sets (the monk’s problem 2 and ionosphere sets), the C4.5-based

configuration performed equivalently to the methods that performed the worst.

The SIG* algorithm performed slightly worse than the HybridSOM configuration

that used C4.5. On the first monk’s problem, SIG* was the second best performing

technique, beaten only by CN2. The third monk’s problem saw SIG* performing better

than only one approach. For the Iris data set, SIG* performed worse than every other

technique, while performing equivalently to the worst performing approaches for the last

three sets (ionosphere, the second monk’s problem, and Pima Indians diabetes).

The CN2 configuration of HybridSOM fared the worst out of all the algorithms.

Considering the general performance of CN2-based HybridSOM, this method was out-

performed by every other approach on monk’s problems 1 and 3. The HybridSOM con-

figuration was equivalent to the worst performing algorithms in three cases (ionosphere,
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monk’s problem 2, and Pima Indians diabetes). For ionosphere and monk’s problem 2,

HybridSOM with CN2 was equivalent to the other SOM-based methods, while in the

Pima Indians diabetes set the configuration was equivalent to only SIG*. All algorithms,

save SIG*, outperformed HybridSOM with CN2 on the Iris plants data set.

To consolidate the above analysis, the SOM-based rule extractors were compared

directly with one another. Firstly, the two HybridSOM frameworks were compared. On

four of the data sets the performance of the C4.5 configured framework exceeded the

performance of HybridSOM configured with CN2 (for Iris plants, monk’s problems 1

and 3, and Pima Indians diabetes). The remaining two instances, namely the iono-

sphere and monk’s problem 2 data sets, exhibited characteristics under which both of

the HybridSOM configurations performed equivalently to one another.

Next, the SIG* algorithm was compared to the two HybridSOM configurations. Three

data sets (Iris plants, monk’s problem 3, and Pima Indians diabetes) exhibited better

performance from the C4.5 configured HybridSOM framework, in comparison to SIG*,

while the opposite was true only within the first monk’s problem. In the outstanding two

experimental data sets, namely ionosphere and monk’s problem 2, SIG* and HybridSOM

with C4.5 performed equally well. SIG* outperformed CN2 configured HybridSOM on

two data sets (the first and third monk’s problems), and the opposite was true for only

the Iris plants data set. In the remaining three cases (the ionosphere, monk’s problem 2

and Pima Indians diabetes data sets), the methods performed equivalently.

Finally, the analysis also focused on the performance of each HybridSOM configura-

tion in relation to the algorithm with which the framework was configured. HybridSOM,

when configured with C4.5, was outperformed by the unmodified C4.5 algorithm on all

six of the benchmark data sets. Additionally, all six experimental data sets showed that

CN2 combined with HybridSOM performed worse than CN2 on its own.

8.4.6.2 Training Set Error Due to Misclassified Data Examples

Tables 8.78 to 8.83 compare the DM methods in terms of the training error due to only

misclassified data. Table 8.78 outlines the Iris plants data set, while Table 8.79 shows

the results for the ionosphere data set. Tables 8.80 to 8.82 represent the three monk’s

problems. Finally, the Pima Indians diabetes data set results are presented in Table 8.83.
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Table 8.78: Statistical comparison of the training set error due to misclassified data examples

for the rule extraction algorithms executed on the Iris plants data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ETM STM ETM STM ETM STM ETM STM
2.138 0.491 3.977 0.348 33.678 2.097 14.345 10.718

Unmodified C4.5 ↑
7.451× 10−9ETM STM

3.977 0.348

HybridSOM (CN2) ↑
1.863× 10−9

↑
1.863× 10−9ETM STM

33.678 2.097

HybridSOM (C4.5) ↑
1.863× 10−9

↑
1.863× 10−9

←
8.009× 10−8ETM STM

14.345 10.718

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

←
1.863× 10−9

↑
1.598× 10−5ETM STM

26.184 1.409

Table 8.79: Statistical comparison of the training set error due to misclassified data examples

for the rule extraction algorithms executed on the ionosphere data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ETM STM ETM STM ETM STM ETM STM
6.049 0.455 9.118 0.278 18.873 5.097 20.941 4.276

Unmodified C4.5 ↑
1.863× 10−9ETM STM

9.118 0.278

HybridSOM (CN2) ↑
1.863× 10−9

↑
1.863× 10−9ETM STM

18.873 5.097

HybridSOM (C4.5) ↑
1.863× 10−9

↑
1.863× 10−9

�

0.061ETM STM
20.941 4.276

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

�

0.013

←
4.422× 10−6ETM STM

16.147 3.118
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Table 8.80: Statistical comparison of the training set error due to misclassified data examples

for the rule extraction algorithms executed on the monk’s problem 1 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ETM STM ETM STM ETM STM ETM STM
0.000 0.000 25.024 0.395 50.120 0.425 38.349 12.723

Unmodified C4.5 ↑
1.863× 10−9ETM STM

25.024 0.395

HybridSOM (CN2) ↑
1.863× 10−9

↑
1.863× 10−9ETM STM

50.120 0.425

HybridSOM (C4.5) ↑
1.863× 10−9

↑
3.052× 10−5

←
7.358× 10−4ETM STM

38.349 12.723

SIG* algorithm ↑
1.863× 10−9

←
8.242× 10−6

←
1.863× 10−9

←
2.049× 10−7ETM STM

22.376 2.433

Table 8.81: Statistical comparison of the training set error due to misclassified data examples

for the rule extraction algorithms executed on the monk’s problem 2 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ETM STM ETM STM ETM STM ETM STM
21.300 10.146 19.769 1.812 32.871 0.429 32.871 0.429

Unmodified C4.5
�

0.413ETM STM
19.769 1.812

HybridSOM (CN2) ↑
2.384× 10−7

↑
1.863× 10−9ETM STM

32.871 0.429

HybridSOM (C4.5) ↑
4.470× 10−8

↑
1.863× 10−9

�

6.233× 10−3ETM STM
32.871 0.429

SIG* algorithm ↑
2.980× 10−8

↑
1.863× 10−9

↑ ∗
5.188× 10−4

�

6.233× 10−3ETM STM
32.871 0.429

∗ Means differ by 3.081× 10−15, while standard deviations differ by 9.841× 10−16, indicating practically insignificant result differences.
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Table 8.82: Statistical comparison of the training set error due to misclassified data examples

for the rule extraction algorithms executed on the monk’s problem 3 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ETM STM ETM STM ETM STM ETM STM
7.289 0.365 7.289 0.365 42.400 10.618 21.930 2.866

Unmodified C4.5 ← ∗
1.863× 10−9ETM STM

7.289 0.365

HybridSOM (CN2) ↑
3.725× 10−9

↑
1.863× 10−9ETM STM

42.400 10.618

HybridSOM (C4.5) ↑
3.725× 10−9

↑
3.725× 10−9

←
8.009× 10−8ETM STM

21.930 2.866

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

←
7.758× 10−6

↑
5.588× 10−9ETM STM

29.147 5.238

∗ Means differ by 6.951× 10−8, while standard deviations differ by 3.480× 10−9, indicating practically insignificant result differences.

Table 8.83: Statistical comparison of the training set error due to misclassified data examples

for the rule extraction algorithms executed on the Pima Indians diabetes data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ETM STM ETM STM ETM STM ETM STM
25.953 1.711 25.141 0.407 31.175 4.232 26.563 1.339

Unmodified C4.5 ←
3.725× 10−9ETM STM

25.141 0.407

HybridSOM (CN2) ↑
1.118× 10−8

↑
1.863× 10−9ETM STM

31.175 4.232

HybridSOM (C4.5) ↑
1.207× 10−3

↑
2.980× 10−8

←
1.598× 10−5ETM STM

26.563 1.339

SIG* algorithm ↑
7.702× 10−6

↑
9.313× 10−9

←
1.900× 10−3

↑
2.287× 10−4ETM STM

28.367 1.704
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As Table 8.75 demonstrates for the overall training error, Table 8.81 shows that

SIG* and HybridSOM configured with CN2 differed statistically significantly on monk’s

problem 2, but that the differences were slight, and not practically significant according to

the criteria mentioned in Section 8.4.6.1. Furthermore, as in Table 8.76 from the previous

section, Table 8.82 reveals statistically significant differences between unmodified CN2

and C4.5 for monk’s problem 3, which could not be judged practically significant.

The results described in this section were predominantly similar to those discussed in

the previous section, where the overall training error results were outlined. Once again,

none of the SOM-based rule extraction techniques were capable of outperforming all the

other data mining algorithms for any of the investigated experimental data sets.

The results for the training error due to misclassifications were compared to those for

the basic training error. Although several statistics differed, the overall interrelationships

between CN2 and the other rule extraction algorithms were the same for both measures.

As a result, the comparative performance analysis drew the same conclusions, and the

CN2 rule extraction algorithm was deemed to be the superior algorithm amongst the

analyzed approaches, when considering the investigated experimental data sets.

The performance of the basic C4.5 algorithm in relation to the other rule extractors

was also identical to what was observed in the context of the overall training set error.

As a result of this, C4.5 was again considered to be the second best performing approach

in terms of the training set error due to misclassification that was observed during the

reported analysis, where C4.5 performed slightly worse than the CN2 algorithm.

Once again, as was observed during the basic training error analysis, unmodified CN2

and C4.5 outperformed the SOM-based approaches in almost all cases. Exactly the same

relationships were observed, where CN2 outperformed every SOM-based approach in all

cases, and C4.5 succeeded in achieving the same result on all but one data set.

The interrelationships between C4.5 configured HybridSOM and the other data min-

ing algorithms were also the same as those observed in the previous section. Just as was

seen when the overall training error was analyzed, the HybridSOM framework combined

with C4.5 thus clearly performed the best out of the SOM-based algorithms.

SIG* was again the second best performing technique amongst the SOM-oriented ap-

proaches. The relationships between SIG* and the other algorithms was very similar to
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what was observed when the overall training error was concerned. The only differences

were found in the Iris and Pima Indians diabetes data sets. In the former case, SIG*

outperformed one technique, instead of being outperformed by all the other techniques.

In the latter case, SIG* again performed better than one algorithm, rather than per-

forming the worst in conjunction with HybridSOM’s CN2 configuration. Due to these

differences, SIG* much more definitively outperformed the CN2 configured HybridSOM

framework than was observed during the analysis of the basic training set error.

Finally, CN2 combined with HybridSOM performed the worst out of the data mining

algorithms. As was the case for the SIG* algorithm, the only differences between the

overall training error and the training error due to misclassification were observed on the

Iris plants and Pima Indians diabetes data sets. On the Iris data set CN2 configured

HybridSOM was outperformed by every other technique, instead of outperforming one

method. For the Pima Indians diabetes data set, HybridSOM with CN2 also underper-

formed in relation to all other approaches, as opposed to performing equivalently to the

SIG* algorithm. These differences mean that CN2-based HybridSOM performed even

more poorly than was observed during the overall training error analysis.

The performance interrelationships between the SOM-based methods were again an-

alyzed in more detail. When the two HybridSOM methods were compared, the relation-

ship demonstrated during the basic training error analysis was again observed.

When focusing on the relationship between the SIG* algorithm and the two Hybrid-

SOM configurations, the relationships between SIG* and HybridSOM configured with

C4.5 were unchanged from what was seen in the overall training error analysis. The

relationship between SIG* and CN2-based HybridSOM differed somewhat, however. On

the Iris data set, SIG* was observed to outperform HybridSOM with CN2, as opposed

to the opposite, which was the case for the overall training error. The Pima Indians dia-

betes data set revealed that SIG* also outperformed HybridSOM with CN2, rather than

performing equivalently. These differences resulted in SIG* outperforming HybridSOM

with CN2 four times, and the approaches performing equivalently twice.

The last analysis for the training error due to misclassified data compared each Hy-

bridSOM configuration to the unmodified version of the algorithm with which the frame-

work was configured. C4.5 again outperformed the C4.5 version of HybridSOM for every



264 8.4. Analysis of SOM-Based Data Mining Techniques

analyzed data set. The CN2 rule extraction algorithm combined with HybridSOM was

also always outperformed by the CN2 algorithm alone. This was exactly the same as the

behavior that was observed during the analysis of the overall training set error.

8.4.6.3 Training Set Error Due to Unclassified Data Examples

The errors resulting only from unclassified training data examples are presented and

analyzed in Tables 8.84 to 8.89. Table 8.84 focuses on the performance interrelation-

ships observed on the Iris plants data set, while Table 8.85 investigates the performance

within the ionosphere experimental data set. The performance characteristics of the al-

gorithms on the three monk’s problem benchmark data sets are respectively outlined in

Tables 8.86, 8.87, and 8.88. Finally, Table 8.89 considers the training error performance

due to unclassified data examples for the Pima Indians diabetes data set.

When attention is focused on the error due to only the unclassified training set ex-

amples, it was readily apparent that the SIG* rule extraction algorithm underperformed

in relation to the other data mining techniques when the methods were tested on the in-

vestigated benchmark data sets. No Wilcoxon signed-rank test significance values could

be computed when comparing the basic CN2 algorithm, the unmodified C4.5 algorithm,

and both HybridSOM framework configurations to one another. This indicates that the

approaches performed identically in terms of this performance measure. The means and

standard deviations of 0.0 further point to the fact that none of these methods produced

any unclassified training set examples. This was because CN2 and C4.5 produce rule

sets with default rules, guaranteeing a classification for all presented data.

Four experimental data sets exhibited SIG* performance that was worse than all the

other rule extraction techniques in a statistically significant manner. This was the case

for the Iris plants, ionosphere, first monk’s problem, and Pima Indians diabetes data

sets. While the effect was not overwhelming in most of these instances, more than 15%

of the training set data examples in the Iris plants data set remained unclassified. In

only two of the data sets, namely the second and third monk’s problems, there was no

statistically significant difference between SIG* and the other data mining approaches.

In fact, the SIG* algorithm executed on these two data sets produced no unclassified

training data examples at all, exactly like the other tested rule extraction algorithms.
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Table 8.84: Statistical comparison of the training set error due to unclassified data examples

for the rule extraction algorithms executed on the Iris plants data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ETU STU ETU STU ETU STU ETU STU
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Unmodified C4.5
�

N/AETU STU
0.000 0.000

HybridSOM (CN2)
�

N/A

�

N/AETU STU
0.000 0.000

HybridSOM (C4.5)
�

N/A

�

N/A

�

N/AETU STU
0.000 0.000

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9ETU STU

15.678 0.991

Table 8.85: Statistical comparison of the training set error due to unclassified data examples

for the rule extraction algorithms executed on the ionosphere data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ETU STU ETU STU ETU STU ETU STU
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Unmodified C4.5
�

N/AETU STU
0.000 0.000

HybridSOM (CN2)
�

N/A

�

N/AETU STU
0.000 0.000

HybridSOM (C4.5)
�

N/A

�

N/A

�

N/AETU STU
0.000 0.000

SIG* algorithm ↑
6.104× 10−5

↑
6.104× 10−5

↑
6.104× 10−5

↑
6.104× 10−5ETU STU

0.304 0.412
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Table 8.86: Statistical comparison of the training set error due to unclassified data examples

for the rule extraction algorithms executed on the monk’s problem 1 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ETU STU ETU STU ETU STU ETU STU
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Unmodified C4.5
�

N/AETU STU
0.000 0.000

HybridSOM (CN2)
�

N/A

�

N/AETU STU
0.000 0.000

HybridSOM (C4.5)
�

N/A

�

N/A

�

N/AETU STU
0.000 0.000

SIG* algorithm ↑
7.451× 10−9

↑
7.451× 10−9

↑
7.451× 10−9

↑
7.451× 10−9ETU STU

0.781 0.547

Table 8.87: Statistical comparison of the training set error due to unclassified data examples

for the rule extraction algorithms executed on the monk’s problem 2 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ETU STU ETU STU ETU STU ETU STU
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Unmodified C4.5
�

N/AETU STU
0.000 0.000

HybridSOM (CN2)
�

N/A

�

N/AETU STU
0.000 0.000

HybridSOM (C4.5)
�

N/A

�

N/A

�

N/AETU STU
0.000 0.000

SIG* algorithm
�

N/A

�

N/A

�

N/A

�

N/AETU STU
0.000 0.000
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Table 8.88: Statistical comparison of the training set error due to unclassified data examples

for the rule extraction algorithms executed on the monk’s problem 3 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ETU STU ETU STU ETU STU ETU STU
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Unmodified C4.5
�

N/AETU STU
0.000 0.000

HybridSOM (CN2)
�

N/A

�

N/AETU STU
0.000 0.000

HybridSOM (C4.5)
�

N/A

�

N/A

�

N/AETU STU
0.000 0.000

SIG* algorithm
�

N/A

�

N/A

�

N/A

�

N/AETU STU
0.000 0.000

Table 8.89: Statistical comparison of the training set error due to unclassified data examples

for the rule extraction algorithms executed on the Pima Indians diabetes data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ETU STU ETU STU ETU STU ETU STU
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Unmodified C4.5
�

N/AETU STU
0.000 0.000

HybridSOM (CN2)
�

N/A

�

N/AETU STU
0.000 0.000

HybridSOM (C4.5)
�

N/A

�

N/A

�

N/AETU STU
0.000 0.000

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9ETU STU

2.373 0.643
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8.4.6.4 Overall Test Set Error

Tables 8.90 to 8.95 present the overall test set classification error, which was assessed

on the experimental data sets. Table 8.90 illustrates results for the Iris plants data set.

The ionosphere data set results are summarized in Table 8.91, while Tables 8.92 to 8.93

respectively focus on the three monk’s problem data sets. Lastly, Table 8.90 considers

the overall test set error performance on the Pima Indians diabetes set.

Table 8.94 shows that there was a difference between the unmodified CN2 and C4.5

algorithms that was statistically significant. However, this difference was not considered

practically significant, based on the criteria that Section 8.4.6.1 mentioned.

In general, the overall test set error was much more uniform than the overall training

set error was observed to be. All of the data sets saw several groups of equivalently

performing rule extraction algorithms. This indicates that it is more difficult to tell the

approaches apart from one another when it comes to test set performance.

The unmodified CN2 algorithm again performed generally the best out of the five

tested rule extraction techniques in the context of the investigated data sets. CN2

outperformed all the other approaches on two data sets, namely the first and second

monk’s problems. On the remaining four benchmark data sets (Iris plants, ionosphere,

monk’s problem 3, and Pima Indians diabetes) CN2 performed equivalently to the other

best performing rule extraction algorithms. The CN2 method was not outperformed by

any of the other algorithms across all the tested experimental data sets.

The basic C4.5 algorithm did not perform as well as CN2, but still outperformed the

SOM-based rule extraction approaches over the full set of benchmark data sets. C4.5 did

not outperform every algorithm on any data set, but did perform equivalently to the best

performing CN2 algorithm in four cases (the Iris plants, ionosphere, monk’s problem 3,

and Pima Indians diabetes data sets). The basic C4.5 method was outperformed by only

the CN2 algorithm in two cases, on the first and second monk’s problem experimental

data sets. In the latter data set, C4.5 jointly performed the worst, in conjunction with

all the SOM-based data mining methods that were experimented upon.

The unmodified CN2 and C4.5 algorithms generally outperformed all the SOM-based

rule extraction approaches. The CN2 and C4.5 techniques both successfully performed

better than all the SOM-based algorithms on the Iris plants, ionosphere, and monk’s
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Table 8.90: Statistical comparison of the overall test set error for the rule extraction algo-

rithms executed on the Iris plants data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EG SG EG SG EG SG EG SG
2.667 6.915 5.333 10.417 34.000 20.443 14.667 13.830

Unmodified C4.5
�

0.219EG SG
5.333 10.417

HybridSOM (CN2) ↑
1.192× 10−7

↑
1.907× 10−6EG SG

34.000 20.443

HybridSOM (C4.5) ↑
1.526× 10−5

↑
3.723× 10−3

←
7.771× 10−4EG SG

14.667 13.830

SIG* algorithm ↑
1.490× 10−8

↑
2.384× 10−7

�

0.209

↑
8.449× 10−6EG SG

42.000 23.104

Table 8.91: Statistical comparison of the overall test set error for the rule extraction algo-

rithms executed on the ionosphere data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EG SG EG SG EG SG EG SG
7.576 7.581 9.697 8.586 18.788 8.247 20.000 9.369

Unmodified C4.5
�

0.725EG SG
9.697 8.586

HybridSOM (CN2) ↑
2.384× 10−7

↑
1.088× 10−4EG SG

18.788 8.247

HybridSOM (C4.5) ↑
2.235× 10−7

↑
3.815× 10−6

�

0.741EG SG
20.000 9.369

SIG* algorithm ↑
2.377× 10−4

↑
1.044× 10−3

�

0.181

�

0.277EG SG
16.970 13.018
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Table 8.92: Statistical comparison of the overall test set error for the rule extraction algo-

rithms executed on the monk’s problem 1 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EG SG EG SG EG SG EG SG
0.000 0.000 24.286 11.804 46.429 12.688 37.857 16.369

Unmodified C4.5 ↑
1.863× 10−9EG SG

24.286 11.804

HybridSOM (CN2) ↑
1.863× 10−9

↑
5.513× 10−7EG SG

46.429 12.688

HybridSOM (C4.5) ↑
1.863× 10−9

↑
6.104× 10−5

�

0.048EG SG
37.857 16.369

SIG* algorithm ↑
1.863× 10−9

�

0.019

←
1.180× 10−4

�

0.133EG SG
33.571 10.300

Table 8.93: Statistical comparison of the overall test set error for the rule extraction algo-

rithms executed on the monk’s problem 2 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EG SG EG SG EG SG EG SG
22.857 11.317 32.381 10.895 32.857 12.805 32.857 12.805

Unmodified C4.5 ↑
8.794× 10−4EG SG

32.381 10.895

HybridSOM (CN2) ↑
3.967× 10−4

�

0.903EG SG
32.857 12.805

HybridSOM (C4.5) ↑
1.375× 10−4

�

0.841

�

0.046EG SG
32.857 12.805

SIG* algorithm ↑
5.887× 10−4

�

0.919

�

0.112

�

0.047EG SG
32.857 12.805
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Table 8.94: Statistical comparison of the overall test set error for the rule extraction algo-

rithms executed on the monk’s problem 3 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EG SG EG SG EG SG EG SG
2.857 4.023 2.857 4.023 38.333 16.512 19.048 9.441

Unmodified C4.5 ← ∗
9.766× 10−4EG SG

2.857 4.023

HybridSOM (CN2) ↑
3.725× 10−9

↑
1.863× 10−9EG SG

38.333 16.512

HybridSOM (C4.5) ↑
7.451× 10−9

↑
7.451× 10−9

←
1.151× 10−6EG SG

19.048 9.441

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

←
9.553× 10−4

�

0.012EG SG
27.143 14.335

∗ Means differ by 2.725× 10−8, while standard deviations differ by 3.837× 10−8, indicating practically insignificant result differences.

Table 8.95: Statistical comparison of the overall test set error for the rule extraction algo-

rithms executed on the Pima Indians diabetes data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EG SG EG SG EG SG EG SG
26.667 8.683 24.667 8.604 30.267 9.017 26.400 8.700

Unmodified C4.5
�

0.175EG SG
24.667 8.604

HybridSOM (CN2)
�

0.040

↑
2.356× 10−3EG SG

30.267 9.017

HybridSOM (C4.5)
�

0.961

�

0.130

�

0.074EG SG
26.400 8.700

SIG* algorithm ↑
4.742× 10−5

↑
7.153× 10−7

�

0.221

↑
1.726× 10−3EG SG

31.467 8.320
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problem 3 data sets. Conversely, neither of the two unmodified techniques were outper-

formed by any of the SOM-based algorithms throughout the experiments.

In almost all cases no SOM-based data mining technique outperformed both the

other two SOM-based methods, indicating that no SOM-oriented approach was over-

whelmingly superior in this analysis. The only exception was the Iris data set, where

C4.5 configured HybridSOM was able to outperform both SIG* and HybridSOM com-

bined with CN2. This was not observed within the overall training error analysis, where

most data sets exhibited a statistically superior SOM-based algorithm.

The HybridSOM framework, when used with C4.5, performed the best out of the

SOM-based techniques, and was the only SOM-based method to perform as well as the

overall best performing techniques in one case (for the Pima Indians diabetes data set).

In one further case, on the Iris plants data set, the C4.5-based HybridSOM configuration

demonstrated average performance, outperforming two methods (HybridSOM with CN2

and SIG*) while being outperformed by the other two. In one more instance, for the

third monk’s problem, the C4.5 HybridSOM configuration outperformed one method

(HybridSOM with CN2), while being outperformed by two (raw CN2 and C4.5). How-

ever, the C4.5-based framework was equivalent to the worst performing approaches in

half of the data sets (the ionosphere, and monk’s problems 1 and 2 data sets).

The SIG* algorithm, in turn, performed slightly better than the CN2 configured

HybridSOM framework. The SIG* algorithm never outperformed all of the other ap-

proaches, but did succeed in being outperformed by only the CN2 algorithm on the first

monk’s problem. Additionally, SIG* was outperformed by only the two unmodified CN2

and C4.5 rule extraction algorithms in the case of the third monk’s problem. In the

remaining four data sets (namely Iris plants, ionosphere, monk’s problem 2, and Pima

Indians diabetes) SIG* was equivalent to the worst performing methods.

HybridSOM configured with CN2 was the worst performing approach out of those

tested on the analyzed data sets. In almost all cases the CN2-based HybridSOM config-

uration was equivalent to the worst performing techniques for the data set in question.

This was the case for Iris plants, ionosphere, monk’s problem 1, monk’s problem 2, and

Pima Indians diabetes sets. In the remaining instance, the third monk’s problem, the

CN2 configured framework was outperformed by every other DM algorithm.
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In support of the above analysis, the SOM-based approaches were again compared

directly to one another, starting with a comparison between the two HybridSOM vari-

ants. Two data sets, namely the Iris plants and third monk’s problem data sets, saw

C4.5 configured HybridSOM outperform its CN2-based counterpart, while the remain-

ing four data sets showed equivalent performance between the two configurations. The

CN2-based framework never performed better than C4.5-based HybridSOM. The reader

should note that the difference in performance was not as clearly delineated as was

observed during the overall and misclassified data analysis of the training error.

When compared directly to SIG*, the C4.5 HybridSOM configuration performed

better on two data sets (Iris and Pima Indians diabetes), while the techniques were

equivalent in the remaining four cases. HybridSOM configured with the CN2 algorithm

underperformed in comparison to the SIG* rule extraction algorithm in two of the six

cases, namely on the first and third monk’s problem data sets. In the remaining four

investigated data sets, the two approaches were equivalent to one another.

Finally, a direct comparison was performed between each HybridSOM variant and

the rule extractor with which the framework was configured. The CN2 variation on

the HybridSOM framework was outperformed by unmodified CN2 in five of the six

cases (on the Iris, ionosphere, and all three monk’s problem data sets), whereas the two

techniques performed equivalently on the Pima Indians diabetes data set. The basic

C4.5 algorithm outperformed HybridSOM configured with C4.5 in four cases (on the

Iris plants, ionosphere, monk’s problem 1, and monk’s problem 3 data sets), while the

remaining two data sets (the second monk’s problem, and the Pima Indians diabetes data

set) showed equivalent performance between the two. The two unmodified approaches

were therefore clearly better performing than their HybridSOM counterparts.

8.4.6.5 Test Set Error Due to Misclassified Data Examples

Tables 8.96 to 8.101 outline the classification error that was attributable only to misclas-

sified test set data. The Iris plants data set is examined in Table 8.96, while Table 8.97

summarizes algorithmic performance on the ionosphere data set. The monk’s problem

data sets are considered in Tables 8.98, 8.99, and 8.100, respectively. Finally, Table 8.101

tabulates the performance achieved on the Pima Indians diabetes data set.
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Table 8.96: Statistical comparison of the test set error due to misclassified data examples for

the rule extraction algorithms executed on the Iris plants data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EGM SGM EGM SGM EGM SGM EGM SGM
2.667 6.915 5.333 10.417 34.000 20.443 14.667 13.830

Unmodified C4.5
�

0.219EGM SGM
5.333 10.417

HybridSOM (CN2) ↑
1.192× 10−7

↑
1.907× 10−6EGM SGM

34.000 20.443

HybridSOM (C4.5) ↑
1.526× 10−5

↑
3.723× 10−3

←
7.771× 10−4EGM SGM

14.667 13.830

SIG* algorithm ↑
8.345× 10−7

↑
1.836× 10−5

�

0.384

↑
4.232× 10−3EGM SGM

27.333 18.557

Table 8.97: Statistical comparison of the test set error due to misclassified data examples for

the rule extraction algorithms executed on the ionosphere data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EGM SGM EGM SGM EGM SGM EGM SGM
7.576 7.581 9.697 8.586 18.788 8.247 20.000 9.369

Unmodified C4.5
�

0.725EGM SGM
9.697 8.586

HybridSOM (CN2) ↑
2.384× 10−7

↑
1.088× 10−4EGM SGM

18.788 8.247

HybridSOM (C4.5) ↑
2.235× 10−7

↑
3.815× 10−6

�

0.741EGM SGM
20.000 9.369

SIG* algorithm ↑
1.057× 10−3

↑
2.778× 10−3

�

0.107

�

0.095EGM SGM
16.061 13.007
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Table 8.98: Statistical comparison of the test set error due to misclassified data examples for

the rule extraction algorithms executed on the monk’s problem 1 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EGM SGM EGM SGM EGM SGM EGM SGM
0.000 0.000 24.286 11.804 46.429 12.688 37.857 16.369

Unmodified C4.5 ↑
1.863× 10−9EGM SGM

24.286 11.804

HybridSOM (CN2) ↑
1.863× 10−9

↑
5.513× 10−7EGM SGM

46.429 12.688

HybridSOM (C4.5) ↑
1.863× 10−9

↑
6.104× 10−5

�

0.048EGM SGM
37.857 16.369

SIG* algorithm ↑
1.863× 10−9

�

0.622

←
7.283× 10−7

�

5.268× 10−3EGM SGM
28.333 10.185

Table 8.99: Statistical comparison of the test set error due to misclassified data examples for

the rule extraction algorithms executed on the monk’s problem 2 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EGM SGM EGM SGM EGM SGM EGM SGM
22.857 11.317 32.381 10.895 32.857 12.805 32.857 12.805

Unmodified C4.5 ↑
8.794× 10−4EGM SGM

32.381 10.895

HybridSOM (CN2) ↑
3.967× 10−4

�

0.903EGM SGM
32.857 12.805

HybridSOM (C4.5) ↑
1.375× 10−4

�

0.841

�

0.046EGM SGM
32.857 12.805

SIG* algorithm ↑
5.887× 10−4

�

0.919

�

0.112

�

0.047EGM SGM
32.857 12.805
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Table 8.100: Statistical comparison of the test set error due to misclassified data examples

for the rule extraction algorithms executed on the monk’s problem 3 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EGM SGM EGM SGM EGM SGM EGM SGM
2.857 4.023 2.857 4.023 38.333 16.512 19.048 9.441

Unmodified C4.5 ← ∗
9.766× 10−4EGM SGM

2.857 4.023

HybridSOM (CN2) ↑
3.725× 10−9

↑
1.863× 10−9EGM SGM

38.333 16.512

HybridSOM (C4.5) ↑
7.451× 10−9

↑
7.451× 10−9

←
1.151× 10−6EGM SGM

19.048 9.441

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

←
9.553× 10−4

�

0.012EGM SGM
27.143 14.335

∗ Means differ by 2.725× 10−8, while standard deviations differ by 3.837× 10−8, indicating practically insignificant result differences.

Table 8.101: Statistical comparison of the test set error due to misclassified data examples

for the rule extraction algorithms executed on the Pima Indians diabetes data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EGM SGM EGM SGM EGM SGM EGM SGM
26.667 8.683 24.667 8.604 30.267 9.017 26.400 8.700

Unmodified C4.5
�

0.175EGM SGM
24.667 8.604

HybridSOM (CN2)
�

0.040

↑
2.356× 10−3EGM SGM

30.267 9.017

HybridSOM (C4.5)
�

0.961

�

0.130

�

0.074EGM SGM
26.400 8.700

SIG* algorithm
�

6.752× 10−3

↑
1.068× 10−4

�

0.694

�

0.048EGM SGM
29.467 8.819
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The overall test set error for the third monk’s problem, illustrated within Table 8.94,

showed that the statistically significant difference between raw CN2 and C4.5 was not

deemed practically significant using the criteria of Section 8.4.6.1. Similarly, Table 8.100

indicates that there was also no practically significant difference between these methods

on the same data set in terms of the test error due to misclassification.

The results for the misclassification-based test error were almost identical to those

reported for the overall test error. The only exception was for the Pima Indians diabetes

data, where almost all the methods performed equivalently. The conclusions presented

here are thus largely the same as those outlined in the previous section.

The CN2 algorithm was once again the best performing rule extractor tested on

the experimental data sets. The performance interrelationships between CN2 and the

other approaches for the misclassification-based test error were exactly the same as those

observed for the overall test set error on all date sets, except for Pima Indians diabetes.

In the latter case, instead of CN2 outperforming SIG*, the two approaches performed

equivalently. CN2 was therefore not as clearly superior to SIG*.

Similarly, the general interrelationships between the unmodified C4.5 technique and

the other rule extraction algorithms, in terms of the misclassified example test set error,

were identical to those observed for the overall test set error. The C4.5 algorithm was

thus determined to be the second best performing rule extraction method, trailing behind

the basic CN2 algorithm, while outperforming the SOM-based rule extractors.

The interrelationships between the SOM-based rule extraction techniques and the

basic CN2 and C4.5 algorithms were again the same as those that were observed for

the overall test set classification error. The unmodified CN2 and C4.5 algorithms again

outperformed all the SOM-based algorithms for half of the experimental data sets, and

did not underperform in relation to any of the SOM-based approaches at all.

Again, no SOM-based technique showed overwhelmingly better performance than

the other SOM-based methods. The performance relationships between the SOM-based

techniques were exactly the same as those observed for the overall test error.

In relation to the other SOM-based rule extractors, C4.5-based HybridSOM exhib-

ited the general performance relationships that were seen seen during the overall test set

error analysis. The only deviation was for the Pima Indians diabetes data set, where
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HybridSOM with C4.5 was equivalent to SIG*, and not superior. Therefore, although

C4.5-based HybridSOM was again situated as the best performing SOM-based DM al-

gorithm, this trend was not as clearly illustrated as for the overall test error.

The SIG* algorithm again performed slightly worse than C4.5-based HybridSOM,

while producing better performance than HybridSOM configured with CN2. The general

performance relationships of the SIG* algorithm were the same as those observed during

the overall test set error analysis, except that the algorithm performed equivalently to

CN2 and C4.5-based HybridSOM, rather than worse, for the Pima Indians diabetes

data set. This means that SIG* performed slightly better in terms of test error due to

misclassifications than was observed in the case of the overall test error.

The last SOM-based rule extractor, the HybridSOM framework configured with CN2,

also had the same general performance interactions with the other algorithms as was

noted during the overall test error assessment. The CN2 configured framework was thus

the weakest algorithm in terms of the test set error due to misclassifications.

As in the analysis of the previous section, the direct relationships between the SOM-

based methods were also analyzed. Directly comparing the two HybridSOM variations

once again showed identical performance relationships between the two approaches. This

confirmed that the C4.5-based HybridSOM variant outperformed the CN2 configured

version, albeit not as decisively as observed during the training error analysis.

The direct relationships between SIG* and the CN2 version of HybridSOM were un-

changed from the overall test error analysis, confirming that SIG* was also superior in

this analysis. When directly comparing C4.5 configured HybridSOM and SIG*, however,

the HybridSOM configuration only outperformed SIG* on the Iris data set, and the ap-

proaches performed indistinguishably in all other cases. Consequently, while the holistic

analysis of the algorithms indicated that there was still a general performance advantage

associated with C4.5-based HybridSOM, the direct comparison illustrated that neither

of the approaches clearly outperformed the other. This suggests that the advantage was

not as clear when the misclassification-based test error was concerned.

To supplement this analysis, each HybridSOM configuration was once again compared

to the basic rule extraction algorithm with which it was combined. The exact same

relationships that were observed during the analysis of the previous section were again
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present during the analysis of the misclassification-based test error. The conclusion that

the HybridSOM configurations underperformed against the base methods thus still holds.

8.4.6.6 Test Set Error Due to Unclassified Data Examples

Tables 8.102 to 8.107 consider the final measure related to the test set error, namely the

test set classification error due to only unclassified data examples. Table 8.102 investi-

gates the Iris plants data set, while the ionosphere data set is summarized in Table 8.103.

Tables 8.104, 8.105, and 8.106 focus on the three monk’s problems, respectively. Finally,

Table 8.107 outlines the results achieved on the Pima Indians diabetes set.

In very much the same way as the training set error due to unclassified data examples

demonstrated, the SIG* algorithm clearly underperformed in relation to all the other DM

algorithms when the test set error due to unclassified data examples was considered for

the data sets under investigation. Once again, the unmodified CN2 and C4.5 algorithms,

as well as the HybridSOM configurations that used these two algorithms, did not leave

any test set data examples unclassified. This was, of course, due to the default rules

that the CN2 and C4.5 algorithms both incorporate into their rule set output.

The SIG* algorithm did not underperform as drastically as was observed within the

analysis of the training error due to unclassified data examples. It was only observed in

half of the data sets that SIG* performed worse in a statistically significant fashion. The

cases in question were the Iris plants, first monk’s problem, and Pima Indians diabetes

data sets. For the remaining three instances, namely the ionosphere and last two monk’s

problem data sets, all the tested data mining algorithms performed equivalently to one

another. In the case of the second and third monk’s problems, the SIG* technique left no

test set examples unclassified. The SIG* algorithm did fail to apply some classifications

in the case of the ionosphere data set, although this number was negligible.

For the data sets that demonstrated an underperforming SIG* algorithm, the per-

centage of unclassified test set examples was again not exceptionally high. The SIG*

algorithm left only approximately 2% of the test set examples unclassified when the al-

gorithm was run on the Pima Indians diabetes data set, while just over 5% of the test

set was unclassified in the first monk’s problem data set. The Iris data set, however, saw

almost 15% of the test set examples processed by SIG* remain without a classification.
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Table 8.102: Statistical comparison of the test set error due to unclassified data examples for

the rule extraction algorithms executed on the Iris plants data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EGU SGU EGU SGU EGU SGU EGU SGU
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Unmodified C4.5
�

N/AEGU SGU
0.000 0.000

HybridSOM (CN2)
�

N/A

�

N/AEGU SGU
0.000 0.000

HybridSOM (C4.5)
�

N/A

�

N/A

�

N/AEGU SGU
0.000 0.000

SIG* algorithm ↑
3.815× 10−6

↑
3.815× 10−6

↑
3.815× 10−6

↑
3.815× 10−6EGU SGU

14.667 13.830

Table 8.103: Statistical comparison of the test set error due to unclassified data examples for

the rule extraction algorithms executed on the ionosphere data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EGU SGU EGU SGU EGU SGU EGU SGU
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Unmodified C4.5
�

N/AEGU SGU
0.000 0.000

HybridSOM (CN2)
�

N/A

�

N/AEGU SGU
0.000 0.000

HybridSOM (C4.5)
�

N/A

�

N/A

�

N/AEGU SGU
0.000 0.000

SIG* algorithm
�

0.250

�

0.250

�

0.250

�

0.250EGU SGU
0.909 2.774
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Table 8.104: Statistical comparison of the test set error due to unclassified data examples for

the rule extraction algorithms executed on the monk’s problem 1 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EGU SGU EGU SGU EGU SGU EGU SGU
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Unmodified C4.5
�

N/AEGU SGU
0.000 0.000

HybridSOM (CN2)
�

N/A

�

N/AEGU SGU
0.000 0.000

HybridSOM (C4.5)
�

N/A

�

N/A

�

N/AEGU SGU
0.000 0.000

SIG* algorithm ↑
6.104× 10−5

↑
6.104× 10−5

↑
6.104× 10−5

↑
6.104× 10−5EGU SGU

5.238 6.480

Table 8.105: Statistical comparison of the test set error due to unclassified data examples for

the rule extraction algorithms executed on the monk’s problem 2 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EGU SGU EGU SGU EGU SGU EGU SGU
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Unmodified C4.5
�

N/AEGU SGU
0.000 0.000

HybridSOM (CN2)
�

N/A

�

N/AEGU SGU
0.000 0.000

HybridSOM (C4.5)
�

N/A

�

N/A

�

N/AEGU SGU
0.000 0.000

SIG* algorithm
�

N/A

�

N/A

�

N/A

�

N/AEGU SGU
0.000 0.000
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Table 8.106: Statistical comparison of the test set error due to unclassified data examples for

the rule extraction algorithms executed on the monk’s problem 3 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EGU SGU EGU SGU EGU SGU EGU SGU
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Unmodified C4.5
�

N/AEGU SGU
0.000 0.000

HybridSOM (CN2)
�

N/A

�

N/AEGU SGU
0.000 0.000

HybridSOM (C4.5)
�

N/A

�

N/A

�

N/AEGU SGU
0.000 0.000

SIG* algorithm
�

N/A

�

N/A

�

N/A

�

N/AEGU SGU
0.000 0.000

Table 8.107: Statistical comparison of the test set error due to unclassified data examples for

the rule extraction algorithms executed on the Pima Indians diabetes data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EGU SGU EGU SGU EGU SGU EGU SGU
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Unmodified C4.5
�

N/AEGU SGU
0.000 0.000

HybridSOM (CN2)
�

N/A

�

N/AEGU SGU
0.000 0.000

HybridSOM (C4.5)
�

N/A

�

N/A

�

N/AEGU SGU
0.000 0.000

SIG* algorithm ↑
2.441× 10−4

↑
2.441× 10−4

↑
2.441× 10−4

↑
2.441× 10−4EGU SGU

2.000 2.519
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8.4.6.7 Total Number of Conditions per Rule Set

Tables 8.108 to 8.113 outline the first performance measure that characterizes rule set

complexity, namely the total number of conditions per rule set. This measure is the

most general of the complexity measures, and assesses overall complexity while the other

complexity measures focus on specific aspects of the rule sets. Table 8.108 focuses on

the Iris plants data set. Table 8.109 considers the performance on the ionosphere data

set, while Tables 8.110, 8.111, and 8.112 summarize the three monk’s problem data sets.

Lastly, Table 8.113 outlines the results for the Pima Indians diabetes data set.

It should be noted that better performance in any complexity measure does not neces-

sarily point to a superior approach. It is possible for rule sets with very few conditions to

classify data inaccurately. The results presented here should thus be read in conjunction

with the conclusions of the analysis, which are presented in Section 8.4.7.

HybridSOM configured with CN2 was overwhelmingly the superior approach when

considering the total number of conditions per rule set that were produced by the assessed

algorithms when tested on the experimental data sets. The framework configuration

outperformed all the other approaches in five of the six data set cases, namely the Iris

plants, ionosphere, monk’s problems 1 and 3, and Pima Indians diabetes data sets. In

the final case, on the third monk’s problem, the two HybridSOM configurations were

indistinguishable, and outperformed all the other data mining methods. Of course, in

all cases HybridSOM with CN2 outperformed the unmodified CN2 method.

The C4.5 configuration of the HybridSOM framework performed substantially worse

than the CN2-based configuration, while still producing better performance than SIG*

and the basic CN2 and C4.5 implementations. The C4.5 and CN2 configurations per-

formed equivalently on the second monk’s problem, with both outperforming all the

other rule extraction methods. In two cases (the ionosphere and monk’s problem 1 data

sets) C4.5 configured HybridSOM was outperformed by the CN2-based variant, but per-

formed better than all the other methods. In the remaining four data sets (Iris, monk’s

problem 3, and Pima Indians diabetes), HybridSOM with C4.5 performed equivalently

to algorithms that were outperformed by only CN2-based HybridSOM.

The unmodified CN2 algorithm performed worse than both the HybridSOM config-

urations, but better than the C4.5 and SIG* techniques. CN2 did not perform better
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Table 8.108: Statistical comparison of the total number of conditions per rule set for the rule

extraction algorithms executed on the Iris plants data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EFT SFT EFT SFT EFT SFT EFT SFT
4.833 0.461 5.000 0.000 2.000 0.000 4.733 0.691

Unmodified C4.5
�

0.125EFT SFT
5.000 0.000

HybridSOM (CN2) ←
1.863× 10−9

←
1.863× 10−9EFT SFT

2.000 0.000

HybridSOM (C4.5)
�

0.656

�

0.125

↑
1.863× 10−9EFT SFT

4.733 0.691

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9EFT SFT

16.000 0.000

Table 8.109: Statistical comparison of the total number of conditions per rule set for the rule

extraction algorithms executed on the ionosphere data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EFT SFT EFT SFT EFT SFT EFT SFT
4.967 0.183 5.000 0.000 2.567 0.679 3.133 0.507

Unmodified C4.5
�

1.000EFT SFT
5.000 0.000

HybridSOM (CN2) ←
1.863× 10−9

←
1.863× 10−9EFT SFT

2.567 0.679

HybridSOM (C4.5) ←
7.451× 10−9

←
7.451× 10−9

↑
1.957× 10−3EFT SFT

3.133 0.507

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9EFT SFT

1 491.467 614.011
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Table 8.110: Statistical comparison of the total number of conditions per rule set for the rule

extraction algorithms executed on the monk’s problem 1 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EFT SFT EFT SFT EFT SFT EFT SFT
8.000 0.000 3.000 0.000 1.000 0.000 1.933 1.015

Unmodified C4.5 ←
1.863× 10−9EFT SFT

3.000 0.000

HybridSOM (CN2) ←
1.863× 10−9

←
1.863× 10−9EFT SFT

1.000 0.000

HybridSOM (C4.5) ←
1.863× 10−9

←
3.052× 10−5

↑
1.221× 10−4EFT SFT

1.933 1.015

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9EFT SFT

1 737.400 342.554

Table 8.111: Statistical comparison of the total number of conditions per rule set for the rule

extraction algorithms executed on the monk’s problem 2 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EFT SFT EFT SFT EFT SFT EFT SFT
24.667 13.520 56.600 7.356 1.000 0.000 1.000 0.000

Unmodified C4.5 ↑
1.863× 10−9EFT SFT

56.600 7.356

HybridSOM (CN2) ←
1.863× 10−9

←
1.863× 10−9EFT SFT

1.000 0.000

HybridSOM (C4.5) ←
1.863× 10−9

←
1.863× 10−9

�

N/AEFT SFT
1.000 0.000

SIG* algorithm ↑
1.157× 10−3

←
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9EFT SFT

34.000 0.000
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Table 8.112: Statistical comparison of the total number of conditions per rule set for the rule

extraction algorithms executed on the monk’s problem 3 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EFT SFT EFT SFT EFT SFT EFT SFT
3.000 0.000 5.000 0.000 1.733 0.980 3.067 0.365

Unmodified C4.5 ↑
1.863× 10−9EFT SFT

5.000 0.000

HybridSOM (CN2) ←
3.815× 10−6

←
1.863× 10−9EFT SFT

1.733 0.980

HybridSOM (C4.5)
�

1.000

←
3.725× 10−9

↑
3.815× 10−6EFT SFT

3.067 0.365

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9EFT SFT

1 556.067 584.961

Table 8.113: Statistical comparison of the total number of conditions per rule set for the rule

extraction algorithms executed on the Pima Indians diabetes data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EFT SFT EFT SFT EFT SFT EFT SFT
2.933 0.365 3.500 1.592 1.667 0.606 3.200 0.610

Unmodified C4.5
�

0.125EFT SFT
3.500 1.592

HybridSOM (CN2) ←
1.490× 10−8

←
7.451× 10−9EFT SFT

1.667 0.606

HybridSOM (C4.5)
�

0.125

�

0.438

↑
3.725× 10−9EFT SFT

3.200 0.610

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9EFT SFT

315.667 126.061
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than all of the other approaches on any of the data sets, and also did not jointly perform

the best with one or more of the other algorithms. CN2 was, however, outperformed

by only CN2-based HybridSOM in three cases (Iris, monk’s problem 3, and Pima Indi-

ans diabetes), but performed equivalently to other algorithms in all of these cases. For

the second monk’s problem, CN2 outperformed two approaches, while performing worse

than two other algorithms. On the first monk’s problem data set, CN2 only performed

better than the SIG* method. Finally, CN2 and C4.5 performed equivalently in the case

of the ionosphere data set, and both methods outperformed SIG* only.

The best performance achieved by the basic C4.5 technique was on the Iris Plants

and Pima Indians diabetes data sets, where C4.5 was equivalent to CN2 and C4.5-

based HybridSOM, and was only outperformed by CN2 configured HybridSOM. The

first monk’s problem saw C4.5 outperforming two approaches and performing worse

than the other two algorithms. Only the SIG* algorithm was outperformed by C4.5 for

the third monk’s problem. The same was true for the ionosphere data set, although CN2

was indistinguishable from C4.5 in this case. Finally, for monk’s problem 2, C4.5 was

outperformed by all the other rule extraction algorithms that were explored.

Finally, SIG* clearly exhibited the worst performance out of all the algorithms. Both

the means and standard deviations for this measure were substantially higher than the

other algorithms in most cases, indicating both poor and erratic performance. The best

performance achieved by SIG* was on the second monk’s problem data set, where the

approach outperformed only the worst performing C4.5 algorithm. On all other data

sets SIG* was outperformed by every other analyzed DM technique.

Two direct comparisons between the SOM-based algorithms were also conducted.

The two HybridSOM methods were compared first, and the second monk’s problem

saw the two approaches performing equivalently. On all other data sets, the CN2-based

configuration produced better results than the C4.5 configured version.

The final direct comparison for this performance measure was between each of the

HybridSOM framework variations and the algorithm with which the framework con-

figuration in question was combined. HybridSOM configured with C4.5 outperformed

unmodified C4.5 in four cases (for the ionosphere data set and all the monk’s problems),

while both were equivalent in two cases (on the Iris plants and Pima Indians diabetes
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data sets). Additionally, the CN2 variant of HybridSOM was observed to produce better

performance than the unmodified CN2 algorithm on ever data set in the analysis.

8.4.6.8 Number of Rules per Rule Set

Tables 8.114 to 8.119 provide the summarized statistics for the analysis performed on the

complexity performance measure that represents the number of rules making up a rule

set. Table 8.114 focuses on the Iris data set, while Table 8.115 outlines the ionosphere

data set. Tables 8.116, 8.117, and 8.118 respectively present results for the three monk’s

problems, and Table 8.119 presents results for the Pima Indians diabetes data set.

The CN2 configured HybridSOM framework once again definitively outperformed all

the other tested approaches. On four of the six data sets, the HybridSOM and CN2

combination outperformed all the other techniques. The data sets in question were the

ionosphere, the first and third monk’s problem, and the Pima Indians diabetes sets. In

the remaining cases, namely the Iris plants data set and the second monk’s problem, the

CN2-based framework performed equivalently to the best performing algorithms.

The second best performing algorithm in the analysis was the basic CN2 algorithm.

This technique demonstrated performance exceeded by only one algorithm in two of the

six cases. The data sets in question were the monk’s problem 3 and Pima Indians diabetes

data sets. In another two instances, on the Iris plants and second monk’s problem data

sets, the performance of CN2 was surpassed by a single group of equivalently performing

algorithms. These groupings contained two techniques in the former case, and three

methods in the latter. CN2 was observed to outperform only SIG* in the remaining two

instances, namely the ionosphere and first monk’s problem benchmark data sets.

The HybridSOM framework set up with C4.5 demonstrated relatively erratic be-

havior over the analyzed data sets, producing fairly good results in some cases, and

particularly poor comparative performance on other data sets. Nevertheless, this Hy-

bridSOM variant generally performed better than unmodified C4.5 and SIG*. While

never outright performing better than all the other tested algorithms, the second monk’s

problem saw the C4.5-based framework perform equivalently to two other algorithms,

which jointly outperformed both C4.5 and CN2. On the ionosphere and first monk’s

problem data sets, C4.5-based HybridSOM was outperformed by only the CN2-based
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Table 8.114: Statistical comparison of the number of rules per rule set for the rule extraction

algorithms executed on the Iris plants data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ER SR ER SR ER SR ER SR
3.000 0.000 4.000 0.000 2.000 0.000 3.867 0.346

Unmodified C4.5 ↑
1.863× 10−9ER SR

4.000 0.000

HybridSOM (CN2) ←
1.863× 10−9

←
1.863× 10−9ER SR

2.000 0.000

HybridSOM (C4.5) ↑
2.980× 10−8

�

0.125

↑
1.863× 10−9ER SR

3.867 0.346

SIG* algorithm ←
1.863× 10−9

←
1.863× 10−9

�

N/A

←
1.863× 10−9ER SR

2.000 0.000

Table 8.115: Statistical comparison of the number of rules per rule set for the rule extraction

algorithms executed on the ionosphere data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ER SR ER SR ER SR ER SR
4.967 0.183 4.000 0.000 2.433 0.504 3.067 0.254

Unmodified C4.5 ←
3.725× 10−9ER SR

4.000 0.000

HybridSOM (CN2) ←
1.863× 10−9

←
1.863× 10−9ER SR

2.433 0.504

HybridSOM (C4.5) ←
3.725× 10−9

←
7.451× 10−9

↑
7.629× 10−6ER SR

3.067 0.254

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9ER SR

16.600 3.440
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Table 8.116: Statistical comparison of the number of rules per rule set for the rule extraction

algorithms executed on the monk’s problem 1 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ER SR ER SR ER SR ER SR
5.000 0.000 3.000 0.000 1.000 0.000 1.933 1.015

Unmodified C4.5 ←
1.863× 10−9ER SR

3.000 0.000

HybridSOM (CN2) ←
1.863× 10−9

←
1.863× 10−9ER SR

1.000 0.000

HybridSOM (C4.5) ←
1.863× 10−9

←
3.052× 10−5

↑
1.221× 10−4ER SR

1.933 1.015

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9ER SR

83.433 8.169

Table 8.117: Statistical comparison of the number of rules per rule set for the rule extraction

algorithms executed on the monk’s problem 2 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ER SR ER SR ER SR ER SR
8.900 4.950 15.033 1.732 1.000 0.000 1.000 0.000

Unmodified C4.5 ↑
3.498× 10−6ER SR

15.033 1.732

HybridSOM (CN2) ←
1.863× 10−9

←
1.863× 10−9ER SR

1.000 0.000

HybridSOM (C4.5) ←
1.863× 10−9

←
1.863× 10−9

�

N/AER SR
1.000 0.000

SIG* algorithm ←
1.863× 10−9

←
1.863× 10−9

�

N/A

�

N/AER SR
1.000 0.000
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Table 8.118: Statistical comparison of the number of rules per rule set for the rule extraction

algorithms executed on the monk’s problem 3 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ER SR ER SR ER SR ER SR
2.000 0.000 4.000 0.000 1.367 0.490 3.033 0.183

Unmodified C4.5 ↑
1.863× 10−9ER SR

4.000 0.000

HybridSOM (CN2) ←
3.815× 10−6

←
1.863× 10−9ER SR

1.367 0.490

HybridSOM (C4.5) ↑
1.863× 10−9

←
3.725× 10−9

↑
1.863× 10−9ER SR

3.033 0.183

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9ER SR

24.567 3.390

Table 8.119: Statistical comparison of the number of rules per rule set for the rule extraction

algorithms executed on the Pima Indians diabetes data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

ER SR ER SR ER SR ER SR
1.967 0.183 3.233 0.728 1.600 0.498 3.100 0.305

Unmodified C4.5 ↑
1.863× 10−9ER SR

3.233 0.728

HybridSOM (CN2) ←
9.766× 10−4

←
1.863× 10−9ER SR

1.600 0.498

HybridSOM (C4.5) ↑
1.863× 10−9

�

0.438

↑
1.863× 10−9ER SR

3.100 0.305

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9ER SR

12.700 3.196
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framework. HybridSOM with C4.5 achieved average performance on the third monk’s

problem, by outperforming two approaches while performing worse than two others. For

the Pima Indians diabetes data set, C4.5-oriented HybridSOM performed equivalently to

one method, where both approaches only outperformed the worst performing SIG* tech-

nique. Lastly, C4.5 configured HybridSOM performed the worst out of all the methods

tested on the Iris data set, in conjunction with the equivalent C4.5 algorithm.

Next, the unmodified C4.5 algorithm was investigated, and found to broadly un-

derperform in relation to all the algorithms, with the exception of SIG*. The best

performance produced by C4.5 was on the ionosphere and first monk’s problem data

sets, where C4.5 exhibited the median performance by producing better results than

two approaches and worse results in relation to two more on both sets. Unmodified

C4.5 only succeeded in outperforming SIG* in the case of the third monk’s problem.

The Pima Indians diabetes data set found C4.5 performing equivalently to C4.5-based

HybridSOM, where both algorithms outperformed only the SIG* algorithm. The C4.5

method performed worse than every other algorithm on the monk’s problem 2 data set.

Finally, C4.5 again performed equivalently to C4.5 configured HybridSOM on the Iris

data set, however neither algorithm outperformed any other rule extractors.

The worst performing approach was the SIG* technique. In only two instances, on

the Iris and monk’s problem 2 data sets, SIG* performed as well as the other approaches

that performed the best in terms of rule count. In the majority of cases, however, SIG*

was outperformed by every other method. This was the case four times, under the

ionosphere, monk’s problems 1 and 3, and Pima Indians diabetes data sets.

Several direct comparisons between pairs of approaches were again performed, to

further strengthen the results of the analysis. Firstly, the two HybridSOM configurations

were compared against one another. CN2 configured HybridSOM outperformed the C4.5-

based configuration five times, on the Iris plants, ionosphere, first and third monk’s

problem, and Pima Indians diabetes data sets. In the only outstanding case, for monk’s

problem 2, the C4.5-based method outperformed HybridSOM with CN2. These results

support the previous observation that the CN2 configuration was superior.

Next, the two HybridSOM configurations were compared to the SIG* algorithm. In

four instances (the ionosphere, monk’s problem 1 and 3, and Pima Indians diabetes data
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sets) the CN2-based HybridSOM configuration outperformed SIG*, while the opposite

was never true. The two techniques were indistinguishable from one another in the

remaining two cases, namely the Iris plants data set and the second monk’s problem. The

C4.5 HybridSOM configuration was also compared directly to SIG*. The HybridSOM

configuration also outperformed SIG* on the same four data sets that the CN2-based

HybridSOM variant achieved the same result. The opposite relationship held for the

Iris data set only, and C4.5-based HybridSOM and SIG* had equivalent performance

characteristics on the remaining data set, namely the second monk’s problem. Once

again, these results supported the assessment presented earlier in this section.

In the final comparison the two HybridSOM configurations were each contrasted to

the rule extraction algorithm on which they were respectively based. HybridSOM with

CN2 outperformed the unmodified CN2 algorithm on all six experimental data sets. The

C4.5-oriented HybridSOM configuration outperformed the basic C4.5 implementation

four times, for the ionosphere data set and all the monk’s problems. The opposite

relationship was never the case, although the Iris plants and Pima Indians diabetes data

sets exhibited equivalent performance between HybridSOM combined with C4.5 and the

raw C4.5 algorithm. Each HybridSOM configuration thus tended to produce fewer rules

per rule set than the basic algorithm with which the framework was combined.

8.4.6.9 Average Number of Conditions per Rule

The results for the final performance measure, namely the average number of conditions

per rule, are summarized in Tables 8.120 to 8.125. This measure focuses on the typical

complexity of the rules contained in a rule set. The Iris plants data set is investigated

in Table 8.120, while Table 8.121 focuses on the ionosphere data set. The three monk’s

problem data sets are dealt with in Tables 8.122, 8.123, and 8.124, respectively. The

Pima Indians diabetes data set was the last to be investigated, in Table 8.125.

For this performance measure there was little observable difference between the per-

formance of the two versions of HybridSOM, within the bounds of this experimental

analysis. Focusing first on the CN2 configuration, the approach outperformed all the

other algorithms on the Iris data set, and was outperformed by only one method while

performing equivalently to another for the third monk’s problem. On the other hand, the
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Table 8.120: Statistical comparison of the average number of conditions per rule for the rule

extraction algorithms executed on the Iris plants data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EFA SFA EFA SFA EFA SFA EFA SFA
1.611 0.154 1.250 0.000 1.000 0.000 1.217 0.086

Unmodified C4.5 ←
1.490× 10−8EFA SFA

1.250 0.000

HybridSOM (CN2) ←
3.725× 10−9

←
1.863× 10−9EFA SFA

1.000 0.000

HybridSOM (C4.5) ←
9.313× 10−9

�

0.125

↑
2.980× 10−8EFA SFA

1.217 0.086

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9EFA SFA

8.000 0.000

Table 8.121: Statistical comparison of the average number of conditions per rule for the rule

extraction algorithms executed on the ionosphere data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EFA SFA EFA SFA EFA SFA EFA SFA
1.000 0.000 1.250 0.000 1.050 0.132 1.017 0.063

Unmodified C4.5 ↑
1.863× 10−9EFA SFA

1.250 0.000

HybridSOM (CN2)
�

0.125

←
4.172× 10−7EFA SFA

1.050 0.132

HybridSOM (C4.5)
�

0.500

←
7.451× 10−9

�

0.250EFA SFA
1.017 0.063

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9EFA SFA

86.067 20.250
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Table 8.122: Statistical comparison of the average number of conditions per rule for the rule

extraction algorithms executed on the monk’s problem 1 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EFA SFA EFA SFA EFA SFA EFA SFA
1.600 0.000 1.000 0.000 1.000 0.000 1.000 0.000

Unmodified C4.5 ←
1.863× 10−9EFA SFA

1.000 0.000

HybridSOM (CN2) ←
1.863× 10−9

�

N/AEFA SFA
1.000 0.000

HybridSOM (C4.5) ←
1.863× 10−9

�

N/A

�

N/AEFA SFA
1.000 0.000

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9EFA SFA

20.713 2.759

Table 8.123: Statistical comparison of the average number of conditions per rule for the rule

extraction algorithms executed on the monk’s problem 2 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EFA SFA EFA SFA EFA SFA EFA SFA
2.754 0.270 3.761 0.115 1.000 0.000 1.000 0.000

Unmodified C4.5 ↑
1.863× 10−9EFA SFA

3.761 0.115

HybridSOM (CN2) ←
1.863× 10−9

←
1.863× 10−9EFA SFA

1.000 0.000

HybridSOM (C4.5) ←
1.863× 10−9

←
1.863× 10−9

�

N/AEFA SFA
1.000 0.000

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9EFA SFA

34.000 0.000
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Table 8.124: Statistical comparison of the average number of conditions per rule for the rule

extraction algorithms executed on the monk’s problem 3 data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EFA SFA EFA SFA EFA SFA EFA SFA
1.500 0.000 1.250 0.000 1.183 0.245 1.008 0.046

Unmodified C4.5 ←
1.863× 10−9EFA SFA

1.250 0.000

HybridSOM (CN2) ←
3.815× 10−6

�

0.200EFA SFA
1.183 0.245

HybridSOM (C4.5) ←
1.863× 10−9

←
3.725× 10−9

←
9.766× 10−4EFA SFA

1.008 0.046

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9EFA SFA

63.172 22.066

Table 8.125: Statistical comparison of the average number of conditions per rule for the rule

extraction algorithms executed on the Pima Indians diabetes data set.

Unmodified CN2 Unmodified C4.5 HybridSOM (CN2) HybridSOM (C4.5)

EFA SFA EFA SFA EFA SFA EFA SFA
1.483 0.091 1.049 0.155 1.033 0.127 1.025 0.076

Unmodified C4.5 ←
1.490× 10−8EFA SFA

1.049 0.155

HybridSOM (CN2) ←
1.490× 10−8

�

0.875EFA SFA
1.033 0.127

HybridSOM (C4.5) ←
3.725× 10−9

�

0.438

�

1.000EFA SFA
1.025 0.076

SIG* algorithm ↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9

↑
1.863× 10−9EFA SFA

23.885 4.197
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C4.5 configuration outperformed all other methods for the third monk’s problem bench-

mark data. When tested on the Iris data set, C4.5-based HybridSOM performed better

than half of other approaches, while underperforming in relation to the other half. In

four instances both HybridSOM variations together performed equivalently to the other

best performing techniques. The data sets that produced this equivalent performance

were ionosphere, the first two monk’s problems, and Pima Indians diabetes.

Trailing behind the two HybridSOM variants, in terms of the average conditions per

rule, were the basic CN2 and C4.5 algorithms. Both approaches produced relatively

similar results, although C4.5 produced slightly better overall performance.

The best performance for C4.5 was seen on the monk’s problem 1 and Pima Indians

diabetes data sets. In these cases, C4.5 had performance equivalent to both HybridSOM

configurations, which were also jointly the best performers. On the Iris data set, C4.5

performed better than all the other techniques, except for CN2-oriented HybridSOM.

C4.5 executed on the third monk’s problem was also outperformed by only one other

algorithm, but produced equivalent performance to one technique as well. For the iono-

sphere data set, C4.5 was outperformed by a single group of three equivalent algorithms,

and outperformed the SIG* approach. C4.5 performed relatively poorly on the second

monk’s problem data set, producing better performance than only SIG*.

Turning one’s attention to the unmodified CN2 technique, it is clear that the best

performance for the approach was seen on the ionosphere data set, where CN2 performed

equivalently to the HybridSOM versions, and all three algorithms outperformed the

other rule extraction methods. For the second monk’s problem, CN2 took up the middle

ground of performance, underperforming against the two HybridSOM configurations,

but performing better than the other two approaches. The third monk’s problem and

Pima Indians diabetes data sets both saw CN2 being outperformed by one group of three

equivalently performing techniques, while outperforming SIG*. Finally, CN2 performed

poorly on the Iris data set, where the algorithm outperformed only SIG*.

The SIG* algorithm was unequivocally the overall worst performing algorithm within

the investigation. The trend of poor SIG* performance was also observed for the other

complexity measures. SIG* underperformed in relation to every other method on all

six of the data sets used during this analysis. The SIG* implementation also produced
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substantially more conditions per rule than the other techniques, particularly on the

ionosphere and third monk’s problem data sets. The standard deviations of the perfor-

mance measure were also higher, indicating more erratic results overall.

Finally, to strengthen support for the above findings, three sets of direct comparison

between pairs of algorithms were performed. Firstly, the two HybridSOM configurations

were compared to one another. The configuration that used CN2 performed equivalently

to the C4.5-based approach in four cases, on the ionosphere, monk’s problem 1 and 2,

and Pima Indians diabetes data sets. On the Iris data set, the CN2-based technique

performed better than the C4.5 configuration, while the opposite was true for the third

monk’s problem. This consolidates the earlier observation that the HybridSOM variants

performed relatively similarly in terms of overall performance characteristics.

Next, CN2 and C4.5 were compared directly. The C4.5 algorithm performed better

than CN2 four times, on the Iris, monk’s problems 1 and 3, and Pima Indians diabetes

data sets. In the two other instances, for the ionosphere data set and the second monk’s

problem, the opposite was true. These results confirm that C4.5 was superior, which

was not as clear when the overall performance of each method was considered.

The final comparison was between each HybridSOM configuration and the rule ex-

traction algorithm used to configure the framework in question. CN2-based HybridSOM

outperformed the unmodified CN2 algorithm in five of the six cases, for the Iris plants

and Pima Indians diabetes data sets, and all of the monk’s problems. On the ionosphere

data set, both techniques demonstrated indistinguishable performance. Considering the

C4.5 based HybridSOM method, basic C4.5 is outperformed by C4.5-based HybridSOM

in three instances, namely the ionosphere data set, and monk’s problems 2 and 3. The

opposite relationship occurred only for the Iris data set. The two approaches performed

equivalently in two cases, for the first monk’s problem, and Pima Indians diabetes set.

Both HybridSOM configurations thus had better performance, although the C4.5-based

framework was somewhat less clearly superior to the unmodified C4.5 method.

8.4.7 Discussion

The focus now shifts to the general findings stemming from the experimental results that

were presented in the previous section. This section discusses, in fairly general terms,
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the strengths and shortcomings associated with the rule extraction techniques, all of

which were observed within the scope of the experimental work that was performed.

Several practical recommendations, which follow directly from these findings, are also

presented. The results reported on in the previous sections paint an interesting picture

of the relative performance characteristics of the investigated approaches.

Of particular interest were the performance relationships of the HybridSOM con-

figurations in relation to one another, and the basic CN2 and C4.5 algorithms with

which the frameworks were combined. There was also a very clear interplay between the

classification accuracy measures and the indicators of rule set complexity. These per-

formance aspects and interrelationships are discussed in detail through the remainder of

this discussion, in the context of each investigated SOM-based DM technique.

The SOM-based techniques generally produced significantly worse classification accu-

racy than the unmodified CN2 and C4.5 algorithms, both in terms of the overall training

and test error, and the training and test error due to only misclassifications. This result

stems from the fact that interpolating units are typically introduced into the data model

created by emergent feature maps. These neurons do not directly represent part of the

data model, but appear as a separation between emergent clusters. The introduction

of interpolating units is useful in the context of EDA, because these neurons delineate

the extent of emergent clusters. Interpolating units, however, introduce what amounts

to noise into SOM models. This noise is typically not problematic during EDA, because

visualizations tend to focus on general map characteristics, rather than finer details.

For SOM-based data mining, however, rules are extracted directly from the detailed

data model of the map. Because the classification performance of any rule extraction

algorithm is known to degrade in the presence of noise [276], it is very likely that all

SOM-based data mining techniques operate with this performance disadvantage.

Interestingly, when considering overall and misclassification-based training and test

set accuracy, the basic CN2 algorithm generally outperformed unmodified C4.5, whereas

the C4.5-based HybridSOM configuration tended to perform better than HybridSOM

with CN2. Sahami [209] suggests that C4.5 performs better than CN2 in the presence

of noise, due to several pruning strategies incorporated in the former algorithm. This

research proposes that the mechanism underlying the stronger performance of C4.5 con-
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figured HybridSOM is the ability of C4.5 to better handle noise. It has been noted that

a SOM-based data model introduces noise through the inclusion of interpolating units.

If an algorithm performs well in the presence of noise, as C4.5 does, it is likely that the

algorithm performance will degrade more gracefully when extracting knowledge from a

noisy SOM model. Conversely, a method that deals poorly with noise, like CN2, is likely

to exhibit more drastic performance degradation when combined with a SOM. Further

investigation of this hypothesis is, however, deferred to future analysis.

Considering overall and misclassification error on both the training and test data sets,

the SIG* algorithm produced relatively poor performance. The approach did, however,

succeed in holding its own in relation to the other SOM-based rule extraction approaches.

SIG* did typically succeed at outperforming the CN2-based HybridSOM framework, but

tended to underperform with respect to C4.5 configured HybridSOM.

Focusing on the training and test error that resulted from only unclassified data, all

the rule extraction algorithms other than SIG* never left any data examples unclassified.

This was due to the techniques catering for the inclusion of default rules. The inclusion

of inaccurate default rules can also be ruled out, due to the strong performance of the

CN2 and C4.5 algorithms when only misclassified data was considered.

The SIG* algorithm, in contrast, is capable of leaving data examples unclassified. In

several instances SIG* produced statistically significant higher error rates due to unclas-

sified examples. Even so, there were also a number of cases in which SIG* performed

equivalently to the other approaches. The magnitude of the effect of unclassified data

is therefore case dependent, varying between data sets. Nonetheless, the experiments

demonstrated the potential danger associated with the lack of SIG* support for default

rules. Future research should therefore conduct further testing, to determine the most

sensible means of including such default rules in SIG* implementations.

The simplest rule sets, in terms of all three complexity measures, were produced by

the two HybridSOM versions. This means that HybridSOM produced rule sets that

tended to consist of fewer rules, where each rule also contained fewer conditions on aver-

age. Between the two HybridSOM variants, the CN2 implementation tended to produce

the least complex output. When these findings are interpreted in conjunction with clas-

sification error performance, however, it becomes clear that the typically simpler rule
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sets produced generally poor classification performance. This is further highlighted by

the fact that the CN2 configuration of HybridSOM was responsible for both the sim-

plest rule sets and the worst training and test set classification errors, in terms of overall

error as well as the error attributed to only classification mistakes. Similarly, the C4.5

configuration was generally the better performing of the HybridSOM implementations,

and also produced slightly more complex rule sets. The output rule sets produced by

the HybridSOM framework therefore tended to be pathologically simple.

In contrast to the HybridSOM configurations, the basic CN2 and C4.5 rule extractors

produced more complex rule sets. This complexity is linked to the generally significantly

superior test and training classification performance of these rule extractors.

Finally, when focusing upon the SIG* algorithm, it is readily apparent that the tech-

nique generated exceptionally complex rule sets in comparison to the other algorithms.

This complexity was again witnessed in terms of all three complexity measures, meaning

that SIG* rule sets were much larger, and that the rules themselves were more complex.

Taken in conjunction with the general classification accuracy observed for SIG*, it is

apparent that the technique had relatively poor accuracy performance, despite the much

greater complexity of the algorithmic output. In the case of SIG*, therefore, there was

a great deal of redundancy in the rule sets produced by the algorithm.

There are a number of reasons for the increased complexity, which were suggested in

Section 7.3.5. One is the fact that SIG* develops a characterizing rule for every discovered

emergent cluster, even if a cluster is insignificant or uninteresting. Secondly, the attribute

marking procedure for characterizing rules guarantees that every attribute is included

in the final rule set, regardless of the importance of the attribute. Another contributor

to rule complexity is the rule differentiation method, which is too aggressive, and tends

to add a large number of additional conditions to both overlapping rule pairs, without

testing whether these conditions are already included in the rules. Another factor is the

conversion of the SIG* rule sets into a list of production rules. This conversion was, of

course, essential to the experimental work presented here, but it should be noted that

unconverted SIG* rules will be more succinct. It is important to realize, however, that

the non-standard nature of unmodified SIG* rule sets presents potential challenges in a

practical setting, both for rule analysis and integration into expert systems.
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Many of these problems are easy to address. Firstly, it is possible to employ fea-

ture selection methods to only add highly significant attributes to characterizing and

differentiating rules. Insignificant emergent clusters should also not be considered for

development into rules. The rule differentiation procedure is also an area to focus on in

order to simplify rule specializations. Possible optimizations include limiting rule spe-

cialization to only rule pairs with greater overlap, only specialize one of the rules in an

overlapping pair, and ensuring that duplicate or subsumed conditions are never added

to characterizing rules. These improvements are, however, left to further research.

Given the above discussion, SOM-based data mining is not recommended for small

to moderately sized data sets, because stand-alone rule extractors will produce adequate

results on such data. SOM-based methods should also not be used when classification

accuracy is of primary importance. The use of SOM-based data mining is, however,

sensible when any of the advantages described within Section 7.6 are desirable properties.

8.5 Summary

This chapter presented a detailed discussion of the results produced during the experi-

mental analysis of this dissertation. The discussion investigated both supervised neuron

labeling techniques and SOM-based data mining methods in conjunction with the clas-

sical CN2 and C4.5 rule extraction algorithms. Section 8.1 introduced the experimental

procedure that was followed for by both broad analyses. The benchmark data sets that

were used as a basis for both technique comparisons were described in Section 8.2. The

results achieved for the supervised neuron labeling and data mining algorithm investi-

gations were outlined and discussed in Sections 8.3 and 8.4, respectively.

The final chapter of this dissertation presents the concluding remarks for this research

work. The main findings of the research are listed and discussed, with a focus on the

novel contributions made by this work. The chapter also focuses upon future directions

that research emanating from the work presented within this dissertation will take.
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Conclusions

This chapter discusses the conclusions arrived at by this dissertation. The objectives

that this research set out to achieve are reiterated in Section 9.1, while the methodology

used in support of the research objectives is summarized in Section 9.2. The main

novel contributions introduced by this research are summarized in Section 9.3, while the

experimental findings of this research are summarized under Section 9.4. Finally, future

research topics that are suggested by this work are enumerated under Section 9.5.

9.1 Objectives

To contextualize the discussion of this conclusion, the research objectives of this research

work are briefly reiterated. These objectives are summarized as follows:

• To broadly contextualize, in a general and real-world practical situation, the place

of the SOM algorithm within the related fields of EDA and DM.

• To describe the most prevalent categories of SOM-based EDA and the related data

visualization techniques, which are possible in a practical situation.

• To describe and analyze approaches for labeling SOM neurons, due to the fact that

such labeling is important for many EDA and DM techniques based on SOMs.

• To investigate existing DM methods based on SOMs, which can be found in the

literature, and explore the possibility of new SOM-based DM techniques.

303
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9.2 Methodology

The methodology that was used within this dissertation is reiterated, to provide context

for this discussion. The components of the methodology included the following:

• A thorough literature survey covering SOMs, the existing neuron labeling methods

for SOMs, and the SOM-based EDA and DM approaches that have been developed.

• Algorithms and working prototypes for the new SOM-based neuron labeling and

DM techniques that have been proposed by this dissertation’s research work.

• Experimental analyses covering several performance categories linked to the exist-

ing and proposed neuron labeling and DM techniques based on SOMs.

9.3 Summary of Contributions

The first contribution of this work was the specification of several broad categories, which

classify the SOM-based EDA techniques that Chapter 4 discussed. These categories were

described in Section 4.5, and encompass characterization, feature selection, sensitivity

analysis, interpolation, and trend analysis. It is also possible to use these groupings for

the categorization of new SOM-based EDA techniques, as well as to serve as a basis for

expansion should radically new directions for SOM-based EDA be developed.

Secondly, this research presented a detailed survey of neuron labeling approaches for

SOMs, which had not previously been systematically taxonomized in this way. This dis-

sertation also thoroughly discussed the general behavior associated with each identified

neuron labeling method, as well as the broad tradeoffs for each technique.

Supervised neuron labeling, which derives labels from a set of classified labeling data

examples, was discussed in Section 6.2. These approaches include example-centric neuron

labeling, example-centric cluster labeling, and weight-centric neuron labeling.

Unsupervised neuron labeling techniques were described in Section 6.3, and do not

use classified labeling data. The unsupervised techniques include exploratory label-

ing, unique cluster labeling, unsupervised weight-based neuron labeling, unsupervised

example-based neuron labeling, and unsupervised example-based cluster labeling. The
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last three methods are algorithmic, and the descriptions in this work were general, where

interchangeable elements were derived from specific labeling algorithms.

One of the main contributions of this research was a novel unsupervised neuron

labeling algorithm called unsupervised weight-based cluster labeling. The technique

is generic in nature, with a number of interchangeable elements. Broadly speaking,

the approach derives descriptive labels for emergent clusters, each of which consists of

sub-labels derived from the weight vectors making up the emergent cluster in question.

Examples illustrated some labelings produced by the technique, and the approach was

critically discussed. Section 6.3.3.2 provided further details on the technique.

Details peculiar to the labeling of unsupervised and semi-supervised SOMs were

also outlined. In particular, techniques were suggested for exploiting the classification

attributes incorporated within such maps in order to build neuron labels.

The second main focus of this dissertation was on SOM-based DM algorithms. Two

existing rule extraction algorithms were identified, namely the boundary-based rule ex-

traction technique and the SIG* algorithm. The former approach was discussed in Sec-

tion 7.2, and is supervised in the sense that the number of classes in the training data

needs to provided as an algorithmic input. SIG*, which was described in Section 7.3,

does not require knowledge of the data set classes, and is thus entirely unsupervised.

Both of the approaches were described and critically discussed in detail.

The most important contribution of this research work was the introduction of the

HybridSOM framework, which allows for any rule extraction algorithm to be executed

on the data model of a trained SOM. Like the SIG* algorithm, HybridSOM is unsuper-

vised, because no training data pre-classifications are relied upon. The framework was

thoroughly described and critically discussed within Section 7.4 of this work.

Several recommendations related to SOM-based data mining, in a general sense, were

arrived at and presented in Section 7.6. The primary drawbacks that were discussed

include the additional time complexity introduced by SOM training, and the fact that

SOM-based DM is always based on an approximate data model. The advantages of SOM-

based DM include possibly improved performance in traditionally challenging domains,

the versatility of the SOM for both DM and EDA, improved handling of very large data

sets, and potentially improved performance in the presence of data set noise.
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9.4 Summary of Experimental Findings

Two related experimental investigations were performed through the course of this re-

search. The first focused on the relative performance of the three identified supervised

neuron labeling algorithms, and included two versions of example-centric cluster label-

ing, one configured with k-means clustering, and the other with Ward clustering. The

second set of experiments comparatively analyzed only the unsupervised SOM-based

DM techniques. As such, the boundary-based rule extraction approach was excluded

from the analysis, and only SIG* and HybridSOM were focused on. In addition, two

classical rule extraction algorithms, CN2 and C4.5, were used as baselines against which

the SOM-based approaches were compared. Two different HybridSOM variants were

investigated, one configured with CN2, and the other with the C4.5 algorithm.

Supervised neuron labeling was assessed by means of a classification task in Sec-

tion 8.3. The analysis found that example-centric neuron labeling was the superior

method within the conducted experiments when training and test set classification accu-

racy was concerned. It was interesting to note that example-centric neuron labeling also

produced the highest proportion of unlabeled map neurons, because this indicated that

unlabeled neurons were not indicative of poor classification performance. Poor classifica-

tion error performance was generally observed from the example-centric cluster labeling

approaches, where the Ward clustering algorithm generally performed better.

Section 8.4 investigated the DM algorithms. The SOM-based approaches generally

performed fairly poorly against the classical techniques when focusing on classification

performance, while producing less complex rule sets. The drawbacks of the SIG* al-

gorithm were twofold. Firstly, the algorithm generally failed to classify a proportion

of training and test data, due to the lack of default rules in the algorithmic results.

Secondly, SIG* produced very complex data sets, which were highly redundant.

9.5 Future Work

Several possible avenues for future work have been identified through the course of this

dissertation’s writing. This section briefly lists and summarizes these potential areas of

investigation focus, which will be scrutinized during upcoming research exploration.
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Firstly, supervised neuron labeling for SOMs offers interesting opportunities for fur-

ther research. Some avenues of investigation identified by this research are:

• The author intends to analyze a wider variety of clustering algorithms in more

detail, to assess the impact of each on example-centric cluster labeling.

• Extended work will investigate and empirically analyze the feasibility of the ex-

tension to example-centric neuron labeling that was proposed by Kayacık and

Zincir-Heywood [135], and which was described in Section 6.2.1.

• An experimental investigation should be made into the use of supervised labeling

methods that utilize multiple label mappings, as suggested in Section 6.2.4.

• Sensitivity analysis of the SOM parameters should be conducted in the context of

the neuron labeling approaches discussed in this dissertation.

Unsupervised SOM neuron labeling is a relatively unexplored topic, which is likely

to bear fruit in the future. Some examples of possible research include the following:

• An analysis considering additional clustering algorithms is also necessary to assess

the impact of each on unsupervised weight- and example-based cluster labeling.

• An analysis of significance measures and attribute selection schemes for unsuper-

vised weight- and example-based labeling is necessary, to find optimal methods.

• An important area of future research will focus on the development of an approach

to empirically analyze unsupervised neuron labeling algorithm performance, fol-

lowed by a thorough investigation into all performance aspects of the algorithms.

The following ideas for future investigation relate to some of the miscellaneous neuron

labeling approaches that were not the main focus of the presented research work:

• A detailed analysis of the miscellaneous SOM-specific cluster discovery algorithms

described in Section 5.3.3 is required. The application of these techniques to SOM

labeling and rule extraction has to be assessed and empirically analyzed.

• The use of classification attributes when labeling supervised and semi-supervised

maps, as was described in Section 6.4, is also of interest to future research.
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SOM-based DM also offers a number of areas that are likely to offer very fruitful

ground for future research efforts. These topics include the following:

• An analysis of the boundary-based rule extractor, from Section 7.2, is needed.

Adaptations of this method for unsupervised DM should be investigated.

• The miscellaneous SOM-based DM approaches, which were briefly described in

Section 7.5, should be empirically investigated and more extensively compared.

• As Section 7.6 noted, Ultsch [243] states that SOM-based DM can model certain

types of data that other approaches cannot. Further research is required to confirm

these results, and to establish the underlying characteristics of such data sets.

• The performance degradation of SOM-based DM in the presence of noise, which

Section 7.6 suggested as an advantage of these methods, should be investigated.

• The improvements to SIG*, which are proposed in Section 8.4.7, should be empiri-

cally analyzed to determine whether the algorithm’s performance can be improved.

• Section 8.4.7 suggested that configuring HybridSOM with more noise-resilient DM

algorithms is likely to lead to better rule set accuracy. This hypothesis should be

more thoroughly investigated with a variety of different stand-alone DM algorithms.

• Methods aiming to improve HybridSOM accuracy should be investigated. For

example, the benefit of reducing model noise by stripping interpolating units from

maps is a possibly fruitful avenue for further exploration. Another possibility is to

incorporate a weighting, which adjusts the contribution that each neuron weight

vector in the proxy data set has in the training process of the rule extractor.

One possibility is to base each weighting on the number of data examples in the

receptive field of the neuron in question. A similar approach has been used in

patch learning [101, 275], which has been effectively applied to large data sets.

• As for the neuron labeling approaches, a study of SOM parameter sensitivity should

be performed for the SOM-based DM approaches discussed in this work.

Lastly, the possible problems introduced by very high-dimensional data (noted in

Sections 3.6, 6.5, and 7.6) must be investigated, especially for neuron labeling and DM.
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[97] G. Guimarães, V. S. Lobo, and F. Moura-Pires. A taxonomy of Self-organizing

Maps for temporal sequence processing. Intelligent Data Analysis, 7(4):269–290,

September 2003.

[98] M. Hagenbuchner, A. Sperduti, and A. C. Tsoi. A self-organizing map for adaptive

processing of structured data. IEEE Transactions on Neural Networks, 14(3):491–

505, May 2003. Available on-line at doi:10.1109/TNN.2003.810735
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transliterated in [224], is: Н. В. Смирнов. Оценка расхождения между эмпирическими кривыми рас-
пределения в двух независимых выборках. Бюллетень Московского Университета, 2:3–14, 1939.

http://doi.org/10.1007/978-1-4471-0715-6_13
http://doi.org/10.1016/0041-5553(67)90144-9
http://doi.org/10.1109/IJCNN.2001.938451
http://doi.org/10.1109/ICSMC.2005.1571524


Bibliography 339
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[249] S. Vegas-Azcárate, T. Gautama, and M. M. Van Hulle. Topology preservation in

topographic maps. Technical Report on Statistics and Decision Sciences TR05/14,

Universidad Rey Juan Carlos, Grupo de Estad́ıstica y Ciencias de la Decisión,
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Appendix A

The CN2 Algorithm

This appendix briefly overviews the CN2 rule induction algorithm, which was used during

the experimentation reported on in Chapter 8 of this work. The original version of the

CN2 algorithm was jointly designed by Peter Clark and Tim Niblett in 1989 [38]. In 1990

several further improvements were added to the algorithm [23]. The problems that were

addressed by these additions, as well as the performance gains achieved, were discussed

and experimentally analyzed by Clark and Boswell in 1991 [37]. This appendix covers

the version of CN2 with these additions, which was used in the experimental work.

The remainder of this appendix is organized as follows: Section A.1 discusses the

availability of the algorithm’s implemented program package. CN2 derives a rule set in

a single phase by performing a search for a “best” rule defined within a rule space. This

process is discussed in Section A.2. Finally, Section A.3 summarizes the appendix.

A.1 Implementation Availability

There is no commercial version of CN2. The most recent version of CN2 (version 6.1

at the time of writing) is available for free download1, and was implemented by Robin

Boswell. A number of cross-platform porting issues were addressed by Rick Kufrin and

Johannes Fuernkranz, allowing execution on a range of other operating systems.

1 The source code, a Sparc executable and package documentation [23] are available for free download

from Peter Clark’s home page at http://www.cs.utexas.edu/users/pclark/software/.
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A.2 Rule Set Generation

CN2 builds a rule set from a training set, DT , with several nominal or continuous descrip-

tive attributes and one nominal classification attribute. Rules are ordered or unordered,

where the former were used in the experiments, and are assumed from this point.

Section A.2.1 discusses the general philosophy underlying the CN2 algorithm. Sec-

tion A.2.2 covers the search procedure that CN2 uses when building rule sets, while

algorithmic features that are not applicable to this work are discussed in Section A.2.3.

A.2.1 Basic Philosophy

Section 2.1.2.4 discusses the production rule sets CN2 generates. A rule’s antecedent

consists of a single condition on an attribute value, or a conjunction of such conditions

(called a complex in the original research work). It is important to note that the CN2

algorithm relies on the assumption that an empty complex classifies all examples.

The CN2 algorithm is based on a family of rule induction approaches known as AQ

algorithms. An AQ algorithm generates a single (initially simple) rule for each class in

training set DT . Each rule is specialized by iteratively increasing its complexity until

all the training examples of the rule’s class are covered, while no training examples of

other classes are covered. The specialization of each rule may be seen as several parallel

hill-climbing searches through a rule space, and is thus often called a beam search.

Unlike generic AQ algorithms, CN2’s beam search is more general, because the search

considers all possible rule specializations (including those that do not classify DT exam-

ples perfectly). In addition, the rule specialization uses a heuristic as a cut-off, which

facilitates a pruning of the search and prevents further specialization of poor rules.

A.2.2 Beam Search

This subsection deals with the details surrounding the beam search procedure that is

employed by the CN2 algorithm. In order to guide the search process, the algorithm

uses three heuristic tests, which evaluate every complex that has been specialized. Sec-

tion A.2.2.1 describes these tests. The characteristics of the iterative algorithm that is

executed in order to perform the actual beam search are discussed within Section A.2.2.2.
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A.2.2.1 Heuristic Evaluation of Complexes

CN2 uses three heuristic tests to identify the best complex that has been generated for a

subset of training data, and to guide pruning of the search. The tests focus on complex

accuracy, complex significance, and complex accuracy compared to a default rule.

The first test, denoted acc(comp ā, comp b̄), has a value of true when the first complex,

comp ā, is more accurate than the second, comp b̄, and a value of false otherwise:

acc(comp ā, comp b̄) =

{
true if acc(comp ā) > acc(comp b̄)

false otherwise
(A.1)

where acc(comp ā) is a heuristic that computes a numeric value, which represents a

measure of the accuracy that any particular complex, comp ā, demonstrates.

The CN2 algorithm provides two alternative measures for the accuracy of a com-

plex [23], namely a näıve error estimate and the Laplacian error estimate:

• The simplest accuracy measure used by CN2 is known as a näıve error estimate [23].

Using this error estimate, the accuracy of complex comp ā is calculated as:

acc(comp ā) =
cover(Cm, comp ā)

cover(comp ā)
(A.2)

where Cm is the majority class within the data examples that are covered by comp ā,

cover(Cm, comp ā) is the number of examples that are covered by comp ā and belong

to Cm, and cover(comp ā) is the total number of examples covered by comp ā.

• The Laplacian error estimate [37] is a more advanced accuracy measure used by

CN2. This estimate defines the accuracy of a complex, comp ā, as follows:

acc(comp ā) =
cover(Cm, comp ā) + 1

cover(comp ā) + ĉ(DT )
(A.3)

where ĉ(DT ) is the total number of classes that are present in the complete training

data set. The Laplacian error estimate is the accuracy measure that is used by

default within the latest available implementation of the CN2 algorithm.

The second heuristic test, which is denoted significant(comp ā), evaluates the signif-

icance of a complex, comp ā. This heuristic test estimates whether a complex expresses
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a pattern or regularity that is not likely to exist as a result of chance. This heuristic

test has a value of true if the complex is significant in accordance with a user-specified

significance threshold denoted cn2-sig, and false otherwise, and is expressed as:

significant(comp ā) =

{
true if sig heur(comp ā) > cn2-sig

false otherwise
(A.4)

where sig heur(comp ā) is a heuristic, which calculates a numeric value that represents

an estimate of the significance that an arbitrary complex, comp ā, exhibits.

The heuristic, sig heur(comp ā), which measures complex significance in CN2, is based

on the likelihood ratio statistic. This significance statistic is defined as follows:

sig heur(comp ā) = 2

ĉ(DT )∑

m=1

(
actualm · log

(
actualm

expectedm

))
(A.5)

where actualm is the actual frequency distribution of examples covered by comp ā that

belong to class Cm, and expectedm is the expected frequency of examples belonging to

class Cm (assuming that the complex comp ā were to select examples randomly).

The final heuristic test is denoted beats default(comp ā). This test has a value of true

when comp ā has a higher accuracy than a default rule that simply predicts the most

prevalent class in the training data set, and false otherwise. This test is expressed as:

beats default(comp ā) =

{
true if acc(comp ā) > acc(default)

false otherwise
(A.6)

where the acc(comp ā) measure used is the näıve error estimate that is defined in Equa-

tion (A.2), and default is an empty complex covering the full training data set.

A.2.2.2 Iterative Algorithm

The beam search is performed by an iterative algorithm, which this discussion breaks

down into two parts. Firstly, the main body of the CN2 algorithm repeatedly gener-

ates rules, which are inserted into a final rule set. This rule set building algorithm is

outlined in Algorithm A.1, and uses the algorithm’s second part, a function shown in Al-

gorithm A.2. This function searches for a complex that best describes the data examples

from the training set that have not been covered by previously generated rules.
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Define user-specified a maximum star size, denoted cn2-star

Define a training set, denoted DT
Define an empty rule set, denoted rule set

repeat:

Define a complex best comp = null

call function FindBestComplex(DT , best comp), outlined in Algorithm A.2

if best comp 6= null then

Define D′′T as the set of examples in DT covered by best comp

Remove examples in D′′T from DT
Define Cm as the most common class of examples in D′′T
Add a rule to rule set with antecedent = best comp and consequent = Cm

end if

until best comp = null or DT is empty

Add a default rule to rule set , predicting the majority class in DT

Algorithm A.1: Pseudocode of the CN2 rule set building algorithm.

The beam search follows a general-to-specific pattern of specializations on a set of

complexes, star , which initially contains an empty complex. The size of star is limited

to contain only the most acceptable complexes found so far. The search is performed on

star by specializing each of the complexes in the set in every possible way.

A set, denoted tests , contains every possible valid attribute test. A test is generated

for each value that a discrete attribute can take. In the case of a continuous attribute,

one or more attribute conditions in the tests set determine whether the attribute’s value

is greater than or less than a threshold. The valid thresholds are simply the midpoints

between every pair of consecutive values for the attribute in question, which are present in

the training data set. A “less than” candidate condition and a “greater than” candidate

condition are then defined for each threshold. Finally, the candidate conditions that

represent local maxima in acc(comp ā) values are added to tests . To avoid generating

too many tests for each continuous attribute, only a fixed number of the “less than” and

“greater than” tests with the highest acc(comp ā) values are added to tests .

The set of specializations that are valid for each complex in star is denoted new star .

The new star set is found by generating every possible complex that is a logical con-
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begin function FindBestComplex(DT , best comp) :

Define a set of complexes, star , containing only an empty complex

Define tests, a set of all possible attribute tests

while star contains complexes do

Define an empty set of complexes, denoted new star

for all compā ∈ star do

for all test ē ∈ tests, where test ē is not tested in compā do

Specialize a complex in star , and store the result in new star

Create a new complex, defined as comp′ā = compā ∧ test ē

Store the most accurate (while still significant) complex in new star

if acc(comp′ā, best comp) and significant(comp′ā) and beats default(comp′ā) then

Assign best comp = comp′ā
end if

Update and prune the new star set to maintain the maximum size

Add the newly specialized comp′ā to the new star set of complexes

if size of new star > cn2-star then

Remove compā with lowest acc(compā) from new star

end if

end for

end for

Replace star with new star

end while

end function

Algorithm A.2: Pseudocode of the function within CN2 with the objective of finding the best

complex that describes a subset of the training data, in terms of accuracy and significance.

junction between one complex in star and one attribute test in tests . Tests on attributes

that are already in the complex being specialized are ignored, so that specializations al-

ready in star (i.e., unspecialized complexes) and contradictory complexes (i.e., complexes

containing conjunctions that have a form similar to a = 1 ∧ a = 2) are excluded.

The heuristically best complex found thus far is maintained at each iteration. The

best complex is defined in terms of the three heuristic tests described in Section A.2.2.
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Firstly, the newly generated complex must be more accurate than the best complex

found thus far, according to Equation (A.1). The specific accuracy heuristic used by this

test is user configurable. Secondly, the new complex must be significant, in accordance

with Equation (A.4). Finally, the constructed complex must be judged to have a better

accuracy than that of a default rule, using Equation (A.6). A freshly generated complex

that satisfies all three conditions becomes the new best complex.

Each specialized complex is added to the new star set. A maximum size is defined

for new star , which is configurable by the user. Should the addition of the new complex

result in the number of complexes in the new star set exceeding the maximum size, the

complex in new star with the lowest acc(comp ā) is removed from the set. Discarding

such complexes prunes less promising portions of the search space.

Finally, the previous star , from which new star was specialized, is replaced by

new star . The entire search process is repeated, until all possible specializations have

been considered. This occurs as soon as an empty star set has been generated, which

indicates that no further attribute tests can be added to any of the complexes already

in star . At this point, the overall best complex represents the conjunction that most

optimally describes the majority of training data examples in DT .

The final best complex then becomes the antecedent of a new rule, which predicts the

majority class amongst the examples covered by the antecedent. The examples covered

by the rule are then removed from DT . The beam search is repeated on the trimmed DT ,

thus finding an optimal rule complex describing the majority of examples not covered by

the previously generated rule complexes. Searches continue until no further heuristically

acceptable complexes can be found, or all the examples in DT have been exhausted (in

which case the generated rules cover every example in the training set).

As a final step, a default rule, which classifies all examples not covered by any of the

preceding rules, is added to the rule set. This rule has a classification that is equivalent

to the class that occurs most commonly in the full training set’s data examples.

A.2.3 Additional Features

The CN2 algorithm additionally includes functionality that can be used to replace any

attribute values that are missing in the original training data set. This replacement
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mechanism is not considered further, because no missing attribute values occur in any

of the data sets used during the experimental work that Chapter 8 presents. Clark and

Niblett [38] provide further details on CN2’s missing value replacement.

It is also possible to assign a “do not care” value to attributes. Such values indicate

that an attribute is irrelevant for a particular data example. This feature was unused

during the experimental work reported in Chapter 8, because no such values exist in any

of the experimental data sets, and because none of the other tested algorithms support

this attribute value. More detail is provided in the CN2 documentation [23].

In addition, CN2 can also generate unordered rule sets. However, because C4.5

generates only ordered rule sets, and to facilitate the accurate comparison of experimental

results, CN2 was only used for ordered rule set building. The procedure that CN2 uses

for building unordered rule sets is discussed by Clark and Boswell [37].

CN2 is also capable of ensuring that a test on an attribute is included in every rule

condition that includes a test on another specified attribute. For example, it is possible

for the algorithm to force any condition containing a test on the attribute SALARY to also

contain a test for the EMPLOYED attribute (because people must be employed before they

have salaries). This feature was also unused in the experiments of Chapter 8, because

no assumptions were made about attribute interdependencies. The documentation for

the CN2 algorithm [23] gives additional detail on this functionality.

Finally, it is possible to assign weights to individual training examples used by the

CN2 algorithm. The inclusion of such a weight allows a data example to make either

a greater or smaller contribution to the rule induction process. Again, this feature was

ignored during the experimental work of Chapter 8, because appropriate weightings were

unknown, and because this feature is unsupported by the other algorithms that were

tested. The weighting of data examples is also discussed in the CN2 documentation [23].

A.3 Summary

This appendix provided a brief outline of the CN2 rule induction algorithm. The avail-

ability of CN2’s latest implementation was briefly covered in Section A.1. The technique

the algorithm employs for building rule sets was discussed in Section A.2, including the
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algorithm’s basic philosophy, the beam search carried out by the algorithm, and the

additional features of the algorithm that were not used in this research.

The algorithm performs a so-called iterative beam search for heuristically suitable

complexes (conjunctions of attribute conditions). The CN2 algorithm aims to find com-

plexes that adequately describe a set of training examples. Each iteration of the al-

gorithm generates a “best” complex, which is used as the antecedent of a rule. The

consequent becomes the class of the majority of examples covered by the rule. Sub-

sequent complexes (and their rules) are generated on the subset of training examples

not covered by previous rules. A “best” complex is found by iteratively building a set

of valid complex specializations. Complex specializations are evaluated according to

heuristic tests, which estimate the accuracy and significance of a complex. During the

specialization process, the worst complexes are culled, to simplify the search process.
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The C4.5 Algorithm

This appendix describes the most important aspects of the C4.5 rule induction algorithm,

used in the experiments described in Chapter 8. C4.5 was developed by J. Ross Quinlan,

and evolved from ID3 [190], one of his earlier systems. His own summarizing book [193]

describes C4.5 in detail. Several algorithmic improvements by Quinlan [194, 195, 197]

are also included in the most recent revision of the program, namely release 8.

Section B.1 describes the availability of the implementation used in this work’s em-

pirical investigation. The C4.5 algorithm constructs decision trees from a data set (for

a general description of decision trees, see Section 2.1.2.4). This process is described in

Section B.2. The experiments outlined in this work required the generation of rule sets.

C4.5 generates a rule set from an already-built decision tree. The rule building process

is described in Section B.3. Finally, the appendix is summarized in Section B.4.

B.1 Implementation Availability

Release 8 of the original implementation of C4.5 is no longer actively maintained, but

is freely available on-line for download1. The original algorithm has been extended in

a variety of ways, and is currently available under the names C5.0 for UnixR© and See5

for MicrosoftR© WindowsR©. Both implementations were only available commercially for

1 The implementation source files and documentation for C4.5 Release 8 are available for free down-

load from J. Ross Quinlan’s home page at http://www.rulequest.com/Personal/c4.5r8.tar.gz.
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many years, via Quinlan’s company, RuleQuest Research. Recently, however, the source

files for C5.0 were released to the open source software development community2.

Unfortunately, the technical details of the algorithmic extensions within C5.0 have

not been clearly documented in any published literature. Furthermore, the use of C5.0

and See5 appears to be much less prevalent in the literature than applications of C4.5.

For instance, at the time of publication, C4.5 was discussed in 774 publications within

the IEEE XploreR© Digital Library (available at http://ieeexplore.ieee.org/), while

C5.0 and See5 only appeared in a combination of 89 publications. For these reasons, this

work only focuses on C4.5, which was also used in the experiments of Chapter 8.

B.2 Decision Tree Building

In contrast to beam search algorithms (such as CN2, which is discussed in Appendix A),

C4.5 builds a decision tree from which production rules must be further refined. The

latter process is discussed in Section B.3. The tree building algorithm requires a training

set, denoted DT . Each training example in DT has descriptive attributes that are either

nominal or continuous, and must have a single nominal classification attribute. The

algorithm is recursive, using DT to build a decision tree, T , one node at a time.

To build a tree, a heuristic is required to quantify the quality of candidate attribute

tests at newly generated node branches. These heuristic evaluations are described in

Section B.2.1. Section B.2.2 covers the selection of appropriate candidate attribute

tests. Section B.2.3 discusses the recursive algorithm that builds decision trees. Finally,

algorithmic features not applicable in this work’s context are covered in Section B.2.4.

B.2.1 Attribute Test Evaluation

The C4.5 tree building algorithm generates attribute tests for each node added to the

decision tree being built. The technique relies on the evaluation of an attribute test,

denoted t′. This test is generated for a subset of the training data, denoted D′T , as

2 The implementation source files for C5.0 are available under the GNU General Public License for

free download from RuleQuest Research at http://www.rulequest.com/GPL/C50.tgz.

http://ieeexplore.ieee.org/
http://www.rulequest.com/GPL/C50.tgz
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Section B.2.3 describes. The test has n̂ outcomes, O = {O1, O2, . . . , On̂}, and partitions

D′T into n̂ further subsets, {D′T1,D′T2, . . . ,D′T n̂}, where each D′Tm̄ satisfies Om̄.

The optimality of t′ is measured using a heuristic, heur(t′), which is based on the

gain ratio criterion, or the older gain criterion. Both criteria use the information gain

achieved by partitioning D′T according to t′. The test with the highest heur(t′) is optimal.

Sections B.2.1.1 and B.2.1.2 cover the gain and gain ratio criteria, respectively.

B.2.1.1 Gain Criterion

The test evaluation heuristic based on the gain criterion is different for nominal and

continuous candidate attribute tests. For nominal attributes, the heuristic is simply:

heur(t′) = gain(t′) (B.1)

where gain(t′) represents the value produced by applying the original gain criterion to

the candidate attribute test, t′, for which the heuristic is being calculated.

The gain criterion favors continuous attributes with many distinct values in D′T .

Thus, for continuous attributes, a penalty term is introduced [197], as follows:

heur(t′) = gain(t′)− penalty(t′) (B.2)

where penalty(t′) is the penalty term for attribute test t′. The penalty term is derived

from the minimum description length (MDL) principle [206], and is defined as:

penalty(t′) =
log2

(
values(t′)− 1

)

|D′T |
(B.3)

where values(t′) denotes the number of distinct values throughout D′T for the attribute

evaluated by candidate test t′, and |D′T | is the total number of examples in D′T .

The basic gain criterion, used in the heuristic calculations for both nominal and

continuous attributes, is defined for the candidate attribute test, t′, as follows:

gain(t′) =

{
info(D′T )− infot′(D′T ) if two or more |D′Tm̄| > c4.5-min exist

0 otherwise
(B.4)

where info(D′T ) is the entropy of the D′T data subset, infot′(D′T ) is the expected entropy

after t′ partitions D′T , and c4.5-min is a user-specified algorithmic parameter value.
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The condition attached to the gain criterion ensures that if an attribute test is to

stand a chance of being considered optimal, the data subsets associated with at least

two of the outcomes of the test must contain a user-defined minimum number of training

data examples. Failing to enforce this requirement has been found to result in decision

trees that tend to suffer from a generally reduced predictive ability [193].

The entropy measure info(D′T ), which is the average information required to identify

the class of an example in a subset D′T of examples, is calculated as follows:

info(D′T ) = −
ĉ(D′T )∑

m=1

freq(Cm,D′T )

|D′T |
· log2

(
freq(Cm,D′T )

|D′T |

)
(B.5)

where ĉ(D′T ) denotes the number of classes found in D′T , and freq(Cm,D′T ) denotes the

number of examples in the subset D′T that belong to data example class Cm.

Finally, infot′(D′T ) is the average expected information required to identify an exam-

ple’s class once data subset D′T has been split by test t′, and is defined as:

infot′(D′T ) =
n̂∑

m̄=1

|D′Tm̄|
|D′T |

· info(D′Tm̄)

where |D′Tm̄| is the number of examples within the D′Tm̄ data subset, and info(D′Tm̄) is

the entropy, which is calculated using Equation (B.5), over the same data subset.

Attribute tests with many outcomes produce higher gain values. In the worst case,

attributes with unique values produce the maximum possible gain. This is problematic,

because tests on such attributes provide no insight into the underlying training data.

B.2.1.2 Gain Ratio Criterion

The gain ratio criterion counteracts the gain criterion’s bias towards tests with many

outcomes. The heuristic based on the gain ratio, for nominal and continuous tests, is:

heur(t′) =

{
gain ratio(t′) if gain(t′) ≥ ave gain(D′T )

0 otherwise
(B.6)

where gain ratio(t′) is the gain ratio computed for test t′, and ave gain(D′T ) is the average

value of gain(t′), calculated over all the valid tests that C4.5 can evaluate on the D′T
data subset. The condition attached to the heuristic ensures that the gain ratio is only
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used if the gain for a test is large. This is necessary because tests that are very close

to trivial tend to have inflated gain ratios. C4.5 uses the gain ratio criterion by default.

The gain criterion is, however, retained as a user-selectable alternative.

The gain ratio criterion is essentially the simple gain criterion, defined according

to Equation (B.4), normalized to avoid the bias towards tests with many outcomes.

The gain ratio, like the gain heuristic, must be computed differently for nominal and

continuous attributes. For nominal attributes, the gain ratio is defined as:

gain ratio(t′) =
gain(t′)

split info(t′)
(B.7)

where split info(t′) is a measure of the information that can potentially be created

through the act of splitting D′T into n̂ further separate subsets of data.

For continuous attributes, the gain ratio criterion must again incorporate a penalty

term, due to the fact that the gain criterion has a bias towards continuous attributes

with many unique values in D′T . The gain ratio in this case is defined as:

gain ratio(t′) =
gain(t′)− penalty(t′)

split info(t′)
(B.8)

where penalty(t′) is the same penalty term that is used by the gain criterion heuristic

for continuous valued attributes, and is defined according to Equation (B.3).

Finally, the split info(t′) measure for candidate attribute test t′, by which the gain

criterion value is normalized, is defined according to the following equation:

split info(t′) = −
n̂∑

m̄=1

|D′Tm̄|
|D′T |

· log2

( |D′Tm̄|
|D′T |

)

The gain ratio shifts the heuristic’s bias away from tests with many outcomes, because

such tests have increased split info(t′) values, resulting in lower gain ratio values. How-

ever, almost trivial tests have very small values for split info(t′), resulting in large gain

ratios. The condition attached to Equation (B.6) counteracts this situation.

Because Equations (B.7) and (B.8) make use of the gain criterion of Equation (B.4),

the gain ratio is subject to the same condition that the gain criterion is. In other words,

if at least two of the data subsets partitioned by attribute test t′ do not contain at least

c4.5-min data examples, both the gain and gain ratio criteria have values of 0.



360 B.2. Decision Tree Building

B.2.2 Attribute Test Selection

Whenever an attribute test must be added to a decision tree, the C4.5 algorithm must

propose a set of possible candidate tests. One candidate is proposed for each attribute.

It is possible to base a candidate on either a nominal or a continuous attribute.

All the candidates attribute tests are evaluated using one of the heur(t′) measures

discussed in the previous section. Should the gain criterion be chosen, Equation (B.1)

computes the heuristic values for nominal attribute tests, while Equation (B.2) is used

for continuous valued tests. If the default gain ratio criterion is used, Equation (B.6)

computes the heuristic values, but uses Equation (B.7) as the gain ratio for nominal

attributes, and Equation (B.8) for tests on attributes with continuous values.

The nominal or continuous candidate test with the highest value for the appropriate

heuristic is considered to be optimal, and is chosen to be added to the tree, as outlined

in Section B.2.3. The processing of nominal and continuous attributes also differs in

terms of the method that is used for determining the set, O, of possible test outcomes.

B.2.2.1 Nominal Attributes

The simplest candidate tests that C4.5 can generate are for nominal attribute values,

where each potential attribute value represents a possible test outcome. Each Om̄ is then

equivalent to a value for the attribute in question, and n̂ is the number of values.

B.2.2.2 Continuous Attributes

The C4.5 algorithm must construct a new test for each continuous attribute [197]. This

is achieved by building a set of candidate threshold values, which define a number of

possible tests on the same attribute. C4.5 uses an approach that is similar to the method

CN2 uses to generate a set of candidate continuous valued test thresholds: thresholds

are simply the midpoints between consecutive values that the attribute takes on, over

the D′T training example subset for which the attribute test is being generated.

Each of the possible threshold values is used to define a separate candidate test for

the continuous attribute. A heuristic value based on the penalized gain criterion is cal-

culated for each threshold-based candidate test, according to Equation (B.2), regardless
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of whether gain or gain ratio is being used to compare attribute tests to one another.

The threshold with the highest adjusted heuristic value is chosen for the condition of

the candidate test on the attribute. The test has only two outcomes, which means that

n = 2. The first outcome matches attribute values less than or equal to the threshold,

while the second outcome covers attribute values greater than the threshold.

B.2.3 Recursive Divide and Conquer

C4.5 builds trees using a recursive divide and conquer approach. Each tree sub-branch is

refined on the subset of examples classified by that branch. The algorithm is “greedy”,

with no backtracking to find a better solution once a sub-branch has been refined. Al-

gorithm B.1 illustrates an outline of the tree building sub-algorithm of C4.5.

The recursive algorithm has three base cases and one recursive case, and is executed

on a sub-tree that requires specialization, in conjunction with a data subset upon which

the specialization will be based. Initially, the algorithm is executed on an empty node,

which becomes the root of the decision tree, and the full training data set.

The algorithm begins by encountering a data subset, D′T , which contains examples

from several classes. The algorithm then generates every attribute test that is valid

for the data set, according to the procedures discussed in Section B.2.2. The optimal

test, which has n̂ outcomes, is found within the set of valid tests, according to the

heuristics covered in Section B.2.1. Next, a non-leaf node, with n̂ branches to sub-trees

{T ′1 , T ′2 , . . . , T ′n̂}, is defined for this test. The test sub-divides D′T into further subsets,

each of which satisfies one of the attribute test outcomes. The procedure is then repeated

recursively on each new sub-tree, and the data subset that satisfies the test outcome

leading to the new sub-tree. Consequently, each sub-tree is further refined.

The recursive algorithm’s first base case is invoked when a data subset is reached that

contains only examples belonging to a single class. A perfectly homogeneous data subset

has thus reached this point in the tree. This means that the sub-tree must become a leaf

node, which predicts the class of the training examples in the data subset.

The second base case handles a situation in which no examples satisfy a test outcome,

and the outcome’s new sub-tree thus has an empty data subset. The new sub-tree again

becomes a leaf node, but with the most frequent class at the parent node as the outcome.
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Define a decision tree, T , consisting of an empty node

Initialize training set DT
call function BuildSubTree(T , DT )

begin function BuildSubTree(T ′, D′T ) :

if D′T contains 1 or more examples belonging only to a single class, Cm then

Make T ′ a leaf node, identifying class Cm

else if D′T contains 0 examples then

Identify the most frequent class Cm at the parent node

Make T ′ a leaf node, identifying class Cm

else if every possible attribute test, t′, produces gain(t′) ≤ 0 then

Identify the class, Cm, which is the most common in D′T
Make T ′ a leaf node, identifying class Cm

else

Define candidates, a set of all valid attribute tests, according to Section B.2.2

Associate the appropriate heur(t′) from Section B.2.1 with each t′ ∈ candidates

Select attribute test, t′ ∈ candidates, with highest heur(t′) within candidates

Identify the n̂ outcomes, O = {O1, O2, . . . , On̂}, of attribute test t′

Make T ′ a non-leaf node, with n̂ branches for each Om̄ ∈ O
Define n̂ empty sub-trees {T ′1 , T ′2 , . . . , T ′n̂} connected to each branch of T ′

Divide D′T into n̂ subsets {D′T1,D′T2, . . . ,D′T n̂}, where each D′Tm̄ satisfies Om̄

for all D′Tm̄ ∈ DT and T ′m̄ that corresponds to D′Tm̄ do

call function BuildSubTree(T ′m̄, D′Tm̄)

end for

end if

end function

Algorithm B.1: Pseudocode of the C4.5 sub-algorithm responsible for building trees.
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The final base case, like the recursive case, deals with data subsets containing exam-

ples from a mixture of different classes. However, no tests have a gain criterion value

above 0 for the data subset. Every test is thus insignificant, and no further refinement

of the subtree will be fruitful. In this case, as for the first recursive case, the sub-tree

becomes a leaf node predicting the most frequent class in the data subset.

Figure B.1 shows an example of the algorithm’s operation. Using the full DT , test t′1

is chosen. Examples satisfying the first outcome of t′1 are used to select test t′2. Finally,

sets of examples satisfying the first and second outcomes of t′2, and the second outcome

of t′1, consist of homogeneous data subsets, which are used to generate leaf nodes.

B.2.4 Additional Features

C4.5 supports missing value replacement, but the feature is unused because the bench-

mark data sets used in Chapter 8 lack such values. Consequently, the missing value

replacement scheme used by C4.5 is not considered further in this dissertation.

It is also possible for C4.5 to create attribute tests for nominal attributes with out-

comes that possibly include groups of values. Such tests effectively create disjunctions

in rule conditions. Because the other algorithms considered in the experimental com-

parisons of Chapter 8 produce rule conditions that are simple conjunctions of attribute

tests, grouped outcomes are not investigated further within this research work.

Tree pruning is also supported, and removes nodes from a generated decision tree

to produce a more compact and understandable representation. However, the feature is

unused during the experimental work, because the study focused on rule sets, and C4.5

builds rule sets from unpruned trees. Pruning is therefore not discussed further.

The process of windowing grows a decision tree from a small subset of training data,

known as the window. Misclassified training examples from outside of the window are

added to the window, and a new tree is built from the larger data set. This is repeated

until a sufficiently accurate tree is found. However, windowing is essentially applicable

to any rule extractor, and is therefore not considered in greater detail.

Finally, bagging and boosting has been tested with C4.5 [196]. Like windowing,

these methods are also applicable to any rule extraction algorithm, including the other

methods investigated in this work. Bagging and boosting are therefore not focused on.
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t′1

C2C1

C3t′2

O1 O2

O1

Step 1 Step 4

Step 2

Examples satisfying O1 of t′2

Examples satisfying O2 of t′1

O2

Step 3

Examples satisfying O2 of t′2

Examples satisfying O1 of t′1

Figure B.1: An example of the recursive tree building performed by the C4.5 algorithm.

B.3 Generating a Rule Set

C4.5 uses a relatively complex method to translate an unpruned tree output into a set

of production rules. The production rule set has the form described in Section 2.1.2.4,

where the rule antecedents are only conjunctions of attribute tests. The rules are ordered,

and a default rule is also generated to classify uncovered data examples.

The rule extraction process consists of several phases, each of which is discussed

separately. Section B.3.1 discusses the initial extraction of rules from an unpruned

decision tree, and the first pruning phase, which removes redundant conditions from the

rules. Section B.3.2 discusses the second pruning phase, which involves the removal of

redundant rules. The pruned rule set requires ordering, and the addition of a default

rule, which Section B.3.3 discusses. The last step of the rule extraction process performs

a final pruning of globally redundant rules, which is outlined in Section B.3.4.

B.3.1 Initial Rule Extraction and Condition Pruning

The algorithm first generates a rule for every leaf node in the tree. Each leaf node’s

outcome becomes the consequent of a rule. The rule’s antecedent is the conjunction of

non-leaf test conditions along the path traced from the tree’s root to the leaf. Figure B.2

shows an example of a decision tree converted to an initial set of rules.

These initial rules are unoptimized, and generally relatively redundant in nature. As

each initial rule is generated, all the redundant conditions in the rule antecedent are

removed. Conditions are pruned one at a time in a greedy fashion, with no backtracking

once a condition has been deleted, until no further conditions can be removed.
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t′1

C2C1

O1 O2

O2O1

t′2 C3

IF t′1 = O2 THEN C3

IF t′1 = O1 AND t′2 = O2 THEN C2

IF t′1 = O1 AND t′2 = O1 THEN C1

Figure B.2: An example of the initial conversion of a C4.5 decision tree into a rule set.

C4.5 must assess the importance of each condition, to decide which should be deleted

at each pruning step. C4.5 has two measures for the desirability of a condition, namely

the pessimistic error rate, and Fisher’s exact significance test. The former method is

always used for condition pruning. The latter is an older approach, used in addition to

the pessimistic error rate when invoked by means of an algorithmic parameter.

A rule’s error rate is the percentage of classification errors made by the rule over the

full training set. The pessimistic error rate, pess err(rule), of a rule, denoted rule, is a

more accurate estimate of the rule’s classification performance on unseen data, and is

the upper confidence interval bound of the rule’s error rate, at a user-specified confidence

level denoted c4.5-pess. Condition cond is removable if the pessimistic error rate of the

rule with cond removed does not exceed the pessimistic error rate for the original rule:

prunable(cond) =

{
true if pess err(rule ′) ≤ pess err(rule)

false otherwise

where rule ′ denotes the original unpruned rule with cond removed, and pess err(rule ′)

therefore represents the pessimistic error rate computed for this pruned rule. A lower

value for the user-defined confidence level, which is used to calculate the pessimistic error

rates in the equation, tends to result in more drastic pruning of conditions.

Fisher’s exact significance test [76, 78] was the only method for judging condition

pruning in earlier releases of C4.5 [191]. The test is based on all the data examples

from the training set that are covered by the pruned rule from which the condition has

been removed. Each data example either satisfies or does not satisfy the condition being

considered for removal, and is either correctly or incorrectly classified. A contingency

table records the numbers of examples in each category, as illustrated in Figure B.3.
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Examples covered by rule′, Examples covered by rule′,
which still satisfy cond , which still satisfy cond ,

and belong to Cm and do not belong to Cm

Examples covered by rule′, Examples covered by rule′,
which do not satisfy cond , which do not satisfy cond ,

and belong to Cm and do not belong to Cm

Figure B.3: The format of the contingency tables used by Fisher’s exact significance test.

Pruning cond from rule, which predicts class Cm, produces a simplified rule, denoted rule ′.

The value of the significance test, performed on the contingency table for rule ′ (the

rule produced by pruning cond from rule) is exact sig(rule ′). The significance test value

signifies the probability that the division of training data examples in the contingency

table has occurred by chance. A condition is considered to be prunable when the signif-

icance value is greater than a user-specified significance threshold, as follows:

prunable(cond) =

{
true if exact sig(rule ′) > c4.5-Fisher

false otherwise

where c4.5-Fisher is the significance threshold, which is specified by the user as an

algorithmic parameter. A lower value for the threshold results in heavier pruning.

All conditions are tested using the pessimistic error rate and, optionally, Fisher’s

significance test. A simplification must be performed if the tests performed on the con-

ditions conclude that at least one condition is removable. In such a case, the algorithm

records the pessimistic error rate produced when each condition is removed. The condi-

tion giving the lowest error rate is removed, regardless of whether the pessimistic error

rate or Fisher’s significance test concluded that the condition should be pruned.

The entire pruning process is repeated until no further conditions are deemed remov-

able from the rule by the pessimistic error rate, as well as Fisher’s significance test, if

the test has been enabled by the user. Once a generated rule has been fully pruned of

redundant conditions, the next rule is generated and pruned. The process is continued

until a pruned rule has been created for every leaf node in the decision tree.

It is possible for every condition in a rule to be removed due to the condition pruning

process. In such a case, the rule is naturally not added to the rule set. Furthermore,
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should the pruning process result in a rule that is a duplicate of another rule already

in the rule set, the pruned rule is also discarded. Finally, rules that are considered too

inaccurate are omitted from the rule set. This final condition is assessed as follows:

accurate(rule) =

{
true if pess err(rule) < default err(rule)

false otherwise

where rule has undergone a complete cycle of antecedent condition pruning before pos-

sibly being added to the rule set, and default err(rule) is computed as follows:

default err(rule) = 1− class(DT , rule) + 1

|DT |+ 3

where class(DT , rule) is the number of data examples in DT with the same class as the

antecedent of rule predicts, and |DT | is the number of data examples in DT .

Algorithm B.2 shows the process for building and pruning rules as pseudocode. Com-

ments indicate the parts of the program responsible for rule building and pruning as

Steps 1 and 2, respectively. Comments also mark the instructions performing the detec-

tion of prunable conditions and the actual pruning as Steps 2.1 and 2.2, respectively.

B.3.2 Pruning of Redundant Rules

Once all rule antecedents have been simplified, a second pruning phase is performed [195].

C4.5 finds entire rules that are deemed unnecessary, and removes these from the rule set.

Rules with a predicted class in common are grouped together, for all classes.

The redundant rule pruning phase selects only a subset of the rules contained in each

group, while eliminating the unselected rules. The MDL principle [206] is applied to

guide the selection of rule subsets. This principle is also used in the calculation of the

penalty term for the gain criterion, which was discussed in Section B.2.1.1.

The MDL method treats the selection of a rule subset as a two-class problem. The

first class is the consequent of the rule group in question, and the second includes every

other class in the training set. The process must choose a rule subset that covers training

set examples of the first class, while not covering examples in the second class.

An MDL encoding is built up out of two components, namely a theory cost and

an exception cost. The former encodes the rules in a subset, while the latter identifies
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Build a decision tree, T , according to Algorithm B.1

Define the set of l̂ leaf nodes in T as leaves = {leaf 1, leaf 2, . . . , leaf l̂}
Define a rule set, denoted rule set

for all leaf n̄ ∈ leaves do

Step 1: Generate a new rule for each leaf in the decision tree

Define a new rule, denoted rule, with consequent = outcome of leaf n̄

Trace a route, denoted R, from the root of T to leaf n̄

Add non-leaf test outcomes along R to the antecedent conjunction of rule

Step 2: Prune the conditions of the new rule

repeat:

Define the best condition for removal, denoted best cond

Step 2.1: Determine if any conditions are prunable

for all cond ∈ rule do

Compute prunable(cond), as described in Section B.3.1

if cond has a lower pessimistic error rate than best cond then

Assign best cond = cond

end if

end for

Step 2.2: Prune the condition with the lowest pessimistic error rate

if prunable(cond) = true for one or more cond ∈ rule then

Prune best cond from the antecedent of rule

end if

until no further conditions can be removed

Step 3: Add the new pruned rule to the rule set

if rule contains conditions and rule /∈ rule set and accurate(rule) then

Add rule to rule set

end if

end for

call function RefineRuleSet(rule set), outlined in Algorithm B.3

Algorithm B.2: Pseudocode of the C4.5 sub-algorithm responsible for rule set building.
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training examples that are misclassified by the subset. Furthermore, the exception cost

is biased, in order to penalize subsets with predicted class distributions that differ from

the observed class distributions in the original training data. The cost of encoding a rule

increases in the presence of redundant attributes. To compensate for this, a user-specified

redundancy factor, c4.5-redun, is incorporated into the MDL encoding.

Finally, for each rule group, the pruning process must select the subset of rules that

minimize the biased MDL encoding. The selection involves a search, which is conducted

differently depending on the number of rules in the group. If the group contains ten or

fewer rules, every possible subset of rules that can be created is evaluated. The subset

with the lowest MDL encoding then replaces the rule group being pruned.

When a group contains more than ten rules, several local greedy searches are per-

formed to find a subset with an approximately minimal encoding. In this scenario, each

search starts with a set, called the search set, containing rules randomly selected from

the rule group. For each successive search, the probability of including each rule in the

group increases from 0% to 100%, in increments of 10%. Thus no rules are selected for

the first search, roughly 10% of the rules are chosen for the second search, approximately

20% of the rules are used for the third search, and so on, until the last search set includes

all the rules in the group. Each initial search set must then be refined.

Each search begins by computing the MDL encoding for the initial search set. The

objective of the search is to repeatedly either add or delete a single rule, until no further

decrease in the MDL encoding for the search set can be achieved. A value is computed

for each rule in the full group, which indicates the reduction of the MDL encoding that

will result from the rule either being added to or removed from the search set. The

rule with the largest reduction is then either added or removed, as appropriate, with no

backtracking. This process is repeated until every possible rule addition and removal

will result in no improvement to the MDL encoding of the search set.

As all of the local searches proceed, the search set with the lowest MDL encoding value

over all the searches thus far is recorded. Once all the searches have been completed, the

search set with the lowest MDL encoding represents the approximately optimal subset

of rules for the rule group in question, and is finally chosen to replace the entire rule

group being optimized. Step 1 in Algorithm B.3 illustrates the rule pruning process.
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begin function RefineRuleSet(rule set) :

Step 1: Prune redundant rules

for all Cm ∈ consequents of rule set do

Define a rule group, group(Cm), containing all rules in rule set predicting Cm

if group(Cm) contains ten or fewer rules then

Generate every possible subset of the rules contained in group(Cm)

Replace group(Cm) with the subset giving the lowest MDL encoding

else

for all prob ∈ {0%, 10%, 20%, . . . , 100%} do

Build search set storing each rule ∈ group(Cm) with probability prob

repeat:

for all rule ∈ group(Cm) do

Find reduction in search set MDL for adding or removing rule

end for

Add or remove rule ∈ search set with maximal MDL reduction

until no modification reduces the MDL encoding of search set

end for

Replace group(Cm) with the search set that has the lowest MDL encoding

end if

end for

Step 2: Order rules and define a default rule

Order rule groups in ascending order of the number of false positives generated

Add a default rule to rule set , predicting the majority class of unclassified examples

Step 3: Perform final rule pruning

while a rule can be removed from rule set to reduce misclassifications do

Remove the first rule from rule set that reduces misclassifications

end while

end function

Algorithm B.3: Pseudocode of the C4.5 sub-algorithm responsible for rule set refining.
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B.3.3 Rule Ordering and Default Rule Definition

Once this series of optimizations has been completed, the resultant rule set is ordered.

This is done by ordering the rule groups that classify each class, such that those groups

with fewer false positives (examples that are covered by the rules, but are not members

of the predicted class of the rules) are placed earlier in the list. A default classification

is also added, which predicts the most prevalent class of the examples not classified by

any rule (ties are resolved in favor of the class with the higher absolute frequency).

The ordering of rules within a rule group is unimportant, because all rules in a group

predict the same class, and thus do not interfere with one another. The phase handling

rule ordering and default rule construction is marked as Step 2 in Algorithm B.3.

B.3.4 Final Rule Pruning

Finally, the entire rule set is once again evaluated, in order to find additional rules that

can be removed. If a rule’s omission reduces the rule set’s total number of misclassifica-

tions measured over the training data set, that rule is eligible for pruning. The first of

these candidate rules is removed before the rule set is re-evaluated for further pruning.

This step evaluates the entire rule set as a whole, based on the set’s overall performance.

Step 3 in the pseudocode of Algorithm B.3 marks the final rule pruning phase.

B.4 Summary

This appendix dealt with the basic operation of the C4.5 algorithm. Section B.1 briefly

summarized the availability of the standard implementation of the C4.5 algorithm, while

Sections B.2 and B.3, respectively, described the two phases this algorithm requires for

rule set induction. The first phase generates an initial decision tree, while the second

phase performs the translation of this tree into a concise production rule set.

The initial tree building phase uses a greedy, recursive divide and conquer algorithm.

The algorithm defines a non-leaf node, which specifies an attribute test and the outcomes

of the test, and then refines this test by adding sub-nodes. Leaf nodes are added when

no further specialization is required, and a classification can be decided upon.
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A decision tree built by the algorithm is refined into a set of rules by initially creating

a single rule for every leaf node outcome. This initial set of rules is then refined by

removing unnecessary conditions and rules. The rules are then ordered, after which a

default rule is added. As a final step, a further rule pruning optimization is performed,

with the objective of further optimizing the entire rule set’s overall performance.
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Derived Work

This appendix lists the academic publications derived from the work presented in this

dissertation. Accepted publications are listed in Section C.1, while details of work in

progress at the time of this dissertation’s writing are contained in Section C.2:

C.1 Accepted Publications

• W. S. van Heerden and A. P. Engelbrecht. Exploratory data analysis and data

mining using self-organising feature maps. In C. de Villiers and T. Alexander, ed-

itors, Proceedings of the Postgraduate Research Symposium, Annual Conference of

the South African Institute of Computer Scientists and Information Technologists,

pages 39–40, Pretoria, South Africa, 17 September 2003. SAICSIT.

Summary: This paper outlines the distinction between EDA and DM, described

in Section 2.5 of this dissertation. The five categories of SOM-based EDA that are

discussed in Section 4.5 of this research work (namely characterization, feature se-

lection, sensitivity analysis, interpolation, and trend analysis), are described. The

SIG* algorithm (discussed in Section 7.3 of this dissertation) is broadly outlined,

and the possibility of the algorithm generating inaccurate conditions on attribute

values (mentioned in Section 7.3.5) is hypothesized. Finally, the paper presents a

high-level description of the HybridSOM framework covered in Section 7.4.
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• W. S. van Heerden and A. P. Engelbrecht. A comparison of map neuron labeling

approaches for unsupervised self-organizing feature maps. In Proceedings of the

IEEE International Joint Conference on Neural Networks (part of the IEEE World

Congress on Computational Intelligence), pages 2139–2146, Hong Kong, 1–8 June

2008. Available on-line at doi:10.1109/IJCNN.2008.4634092

Summary: This paper discusses the three supervised neuron labeling techniques

described in Section 6.2. Three of the unsupervised labeling techniques that

were described in Section 6.3 of this research work (namely exploratory labeling,

Serrano-Cinca’s absolute weight value significance, and the LabelSOM method) are

also outlined in the paper. An additional focus of the paper is on the application of

neuron labeling to supervised, semi-supervised, and unsupervised SOMs, as inves-

tigated in Section 6.4 of this work. Finally, empirical results are presented, which

compare example-centric cluster labeling (configured with both Ward clustering

and k-means clustering) and weight-centric neuron labeling.

• W. S. van Heerden and A. P. Engelbrecht. HybridSOM: A generic rule extrac-

tion framework for self-organizing feature maps. In Proceedings of the IEEE

Symposium on Computational Intelligence and Data Mining (part of the IEEE

Symposium Series on Computational Intelligence), pages 17–24, Nashville, Ten-

nessee, United States of America, 30 March–2 April 2009. Available on-line at

doi:10.1109/CIDM.2009.4938624

Summary: The principal contribution of this paper is a detailed description and

critical discussion of the HybridSOM framework, as presented in Section 7.4 of

this dissertation. The paper contrasts the HybridSOM framework to the SIG*

algorithm, which is presented in Section 7.3 of this dissertation, and the boundary-

based rule extraction algorithm proposed by Malone et al, which is investigated

in Section 7.2 of this research. The paper experimentally compares the Hybrid-

SOM framework configured with CN2 and C4.5 to the stand-alone CN2 and C4.5

algorithms, while omitting a comparison to SIG*. Finally, the paper discusses the

general viability of SOM-based rule extraction, as presented in Section 7.6.

http://doi.org/10.1109/IJCNN.2008.4634092
http://doi.org/10.1109/CIDM.2009.4938624
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• W. S. van Heerden and A. P. Engelbrecht. Unsupervised weight-based cluster

labeling for self-organizing maps. In P. A. Estévez, J. C. Pŕıncipe, and P. Zegers,

editors, Advances in Self-Organizing Maps: Proceedings of the 9th International

Workshop, volume 198 of Advances in Intelligent Systems and Computing, pages

45–54, Santiago, Chile, 12–14 December 2012. Springer. Available on-line at

doi:10.1007/978-3-642-35230-0_5

Summary: This paper differentiates the general classes of supervised and unsu-

pervised neuron labeling schemes, which this dissertation details in Section 6.1 and

graphically represents in Figure 6.1. The main contribution of this publication is

the introduction of the unsupervised weight-based cluster labeling approach, which

is discussed in Section 6.3.3.2 of this dissertation. The labeling method is described

in detail, and several examples of the generated neuron labelings are presented. The

paper also critically discusses unsupervised weight-based cluster labeling in terms

of the advantages and disadvantages associated with the technique.

C.2 Work in Progress

• W. S. van Heerden and A. P. Engelbrecht. Unsupervised neuron labeling for self-

organizing maps: A taxonomy of generalized techniques. Submitted for review to

ACM Computing Surveys, December 2016.

Summary: This article focuses on the SOM-based unsupervised neuron label-

ing methods that are presented in Section 6.3 of this dissertation. Unsupervised

neuron labeling is differentiated from supervised neuron labeling, as described in

Section 6.1. The novel taxonomy of unsupervised labeling methods, outlined in

Figure 6.4, is described. The article also provides a detailed survey of the available

approaches in the category of unsupervised neuron labeling, which are discussed

in Section 6.3 of this dissertation. Particular attention is given to the significance

measures and attribute selection schemes available for the unsupervised weight-

based and example-based labeling methods described in Sections 6.3.3 and 6.3.4,

respectively. All the described techniques are compared and critically discussed.

http://doi.org/10.1007/978-3-642-35230-0_5
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• W. S. van Heerden and A. P. Engelbrecht. An empirical analysis of supervised

neuron labeling methods for self-organizing maps. Work in progress for journal

submission.

Summary: The primary objective of this article is to summarize the novel ex-

perimental work reported in Section 8.3 of this dissertation, which comparatively

analyzed the performance of supervised neuron labeling techniques used on unsu-

pervised self-organizing maps. The article also provides a brief background on the

differences between supervised and unsupervised neuron labeling, which is covered

in Section 6.1 of this dissertation, and an overview of the compared supervised

neuron labeling algorithms, which are discussed in Section 6.2 of this research.

• W. S. van Heerden and A. P. Engelbrecht. An empirical investigation of unsu-

pervised data mining algorithms based on self-organizing feature maps. Work in

progress for journal submission.

Summary: This article primarily focuses on reporting the results of the empiri-

cal investigation into the comparative performance of the SOM-based data mining

approaches and classical data mining algorithms that is presented in Section 8.4

of this dissertation. Background is also provided on the SIG* and HybridSOM

techniques used in the comparison, which are respectively discussed in Sections 7.3

and 7.4 of this work. The general justifications for the use of SOM-based data

mining techniques, which is presented in Section 7.6, are also enumerated.
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Symbol Definitions

This appendix lists and defines the mathematical symbols used in this dissertation.

Symbols are listed in order of appearance, and grouped according to relevant chapters.

D.1 Foundations of EDA and DM

t Moment in time or iteration

Ŝt State of an environment at time t

H Name of a relation

ñ Degree of a relation schema

Al Attribute l of a relation schema

dom(Al) Domain of attribute Al

m̃ Number of tuples in a relation

tup t̄ Tuple t̄ of a relation

fl Value l in a tuple

obj An object encapsulated by a state within an environment

V Set of all possible states within an environment

F State transition function within an environment

C Set of all classes within a model

Cm Class m in the set C

377
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Bm Class condition for class Cm

P Classification function of a model

Dm Class description of class Cm

F ′ Model transition function of a model

A Set of all attributes in a relation schema

Acls Set of classification attributes in a relation schema

Ades Set of descriptive attributes in a relation schema

f ′l Normalized value for fl

fl,min Minimum possible value for fl

fl,max Maximum possible value for fl

f ′l,min Minimum possible value f ′l should have

f ′l,max Maximum possible value f ′l should have

D.2 Self-Organizing Feature Maps

I Dimensionality of the input space for a SOM

DT Training set containing training patterns

D Data set containing all available data patterns

PT Number of patterns in training set DT
~zs Data vector s in training set DT
zsŵ Input parameter ŵ of training vector ~zs

Y Total number of rows within a SOM map grid

X Total number of columns within a SOM map grid

nyx Neuron at row y and column x

cyx Map grid coordinate of neuron at row y and column x

~wyx Weight vector associated with neuron nyx

wyxv Weight component v of weight vector ~wyx

V Dimensionality of an arbitrary vector

~q An arbitrary vector
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qp̂ Component p̂ of an arbitrary vector

nba Best matching unit (BMU)

cyx Map grid coordinate of best matching unit (BMU)

~wba Weight vector of best matching unit (BMU)

b Row of best matching unit (BMU)

a Column of best matching unit (BMU)

~wyx(t) Value of ~wyx at training iteration t

∆~wyx(t) Change applied to ~wyx at training iteration t

∆wyxv(t) Change applied to ~wyxv at training iteration t

hba,yx Neighborhood function for ~wyx in relation to ~wba

QT (t) Training quantization error at training iteration t

W Size of a sliding window

t̂ Training iteration offset from the end of a sliding window

QT (t) Moving average of QT at iteration t

dT (t) Moving standard deviation of QT at iteration t

∆wave(t) Average component weight change at iteration t

c ′yx Map coordinate of ôth closest neuron to nyx in map space

c ′′yx Map coordinate of ôth closest neuron to nyx in weight space

~w ′yx Weight vector of ôth closest neuron to nyx in map space

~w ′′yx Weight vector of ôth closest neuron to nyx in weight space

β Factor for upper bound on the optimal neuron count

η(t) Learning rate factor at training iteration t

τ1 Constant affecting rate of the learning rate factor decay

σ(t) Gaussian kernel width at training iteration t

τ2 Constant affecting rate of the neighborhood radius decay
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D.3 SOM-Based Visualization and EDA

res(~zs, ~wyx) Euclidean response of ~wyx to ~zs

~ryx Projection vector, which represents ~wyx

weights Set of all weight weight vectors in a map grid

Y Set containing all unique weight vector pairs in a map grid

δ Set of two non-equivalent weight vectors

E(t) Sammon’s mapping error function at iteration t

ryxê Component ê of projection vector ~ryx

∆ryxê(t) Change applied to ryxê at iteration t

ϕ Constant factor applied to ∆ryxê(t)

ϑ(~wba) Mean distance between ~wba and all ~zs mapped to nba

D.4 Emergent Neuron Cluster Discovery

L Set of clusters

k Size of L (derived from k-means algorithm, cf. Section D.7)

Si Cluster i in L
oi Number of weight vectors in Si

~gi Centroid vector of Si

index Davies-Bouldin index

intra(Si) Intra-cluster distance within Si

inter(Si, Sj) Inter-cluster distance between Si and Sj

map Map grid of a SOM, including weight vectors

ward dist(Si, Sj) Ward distance between clusters Si and Sj

D.5 Map Neuron Labeling

labelyx Label for nyx

Li Label for Si
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Myx Set of ~zs mapped to neuron nyx

Ni Set of ~zs mapped to cluster Si

~ze Data vector of the best matching example (BME)

q̄ Size of a set of the closest data examples to a neuron

sig(Al, nyx) Significance of attribute Al within nyx

sig(Al, Si) Significance of attribute Al within Si

mean(wyxl, Si) Mean of wyxl over all ~wyx in Si

out(Si) Set of all emergent clusters in L, excluding Si

sig(Al,Myx) Significance of attribute Al within Myx

out(Ni) Set of all ~zs not in Ni

sig(Al,Ni) Significance of attribute Al within Ni

mean(Al,Ni) Mean of Al over all ~zs in Ni

mean
(
Al, out(Ni)

)
Mean of Al over all ~zs in out(Ni)

D.6 SOM-Based Data Mining

rule set Rule set built by DM algorithm

umat U-matrix of a trained SOM

plane l Component plane representing Al

rule set Set of rules

umat boundu Candidate boundary u on a U-matrix

ruleu1 Rule predicting first area separated by umat boundu

ruleu2 Rule predicting second area separated by umat boundu

plane bound lm̂ Candidate boundary m̂ on plane l

plane mean lm̂ Mean value along plane bound lm̂

candyx Set of two candidate neurons that are neighbors of nyx

cand ′yx Set of neurons that are neighbors of nyx and are not in candyx

mean(candyx) Mean distances between ~wyx and weight vectors in candyx

mean(cand ′yx) Mean distances between ~wyx and weight vectors in cand ′yx



382 D.6. SOM-Based Data Mining

BDV (candyx) Boundary difference value for candyx

range(cand ′yx) Range of distances between ~wyx and weight vectors in cand ′yx

plane attribute l Attribute name for plane l

θchar Characterizing threshold for SIG*

mat char Characterizing significance matrix for SIG*

ψchar Low characterizing condition parameter for SIG*

φchar High characterizing condition parameter for SIG*

mat char li Characterizing significance matrix cell at row l and column i

sig(Al, Ni) Significance of Al in Ni

total char i Total of column i in mat char

rule i Rule corresponding to Si

select char i Set of selected attributes for column i of mat char

sum char Accumulator for column i of mat char

l char(Al, Si) Lower condition bound on Al in SIG* characterizing rule for Si

h char(Al, Si) Upper condition bound on Al in SIG* characterizing rule for Si

mean(Al, Ni) Mean value of Al over Ni

dev(Al, Ni) Standard deviation of Al over Ni

θdiff Differentiating threshold for SIG*

mat diff Differentiating significance matrix for SIG*

ψdiff Low differentiating condition parameter for SIG*

φdiff High differentiating condition parameter for SIG*

mat diffl1 Differentiating significance matrix cell in row l

sig(Al, Ni, Nj) Significance of Al in telling Ni and Nj apart

total diff Column total of mat char

cond diffi Differentiating condition expression i

select diff Set of selected attributes for mat diff

sum diff Accumulator for column of mat diff

l diff (Al, Si) Lower condition bound on Al in SIG* differentiating rule for Si
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h diff (Al, Si) Upper condition bound on Al in SIG* differentiating rule for Si

input Intermediate data set built by HybridSOM

record Record in input

output Rule set produced by HybridSOM

D.7 Experimental Results

k Number of folds in a k-fold cross validation (cf. Section D.4)

ET Mean of overall training error

ST Standard deviation of overall training error

ETM Mean of training error due to misclassified ~zs

STM Standard deviation of training error due to misclassified ~zs

ETU Mean of training error due to unclassified ~zs

STU Standard deviation of training error due to unclassified ~zs

EG Mean of overall test error

SG Standard deviation of overall test error

EGM Mean of test error due to misclassified ~zs

SGM Standard deviation of test error due to misclassified ~zs

EGU Mean of test set error due to unclassified ~zs

SGU Standard deviation of test set error due to unclassified ~zs

EU Mean of unlabeled neuron percentage

SU Standard deviation of unlabeled neuron percentage

EFT Mean of total number of conditions per rule set

SFT Standard deviation of total number of conditions per rule set

ER Mean of number of rules per rule set

SR Standard deviation of number of rules per rule set

EFA Mean of average number of conditions per rule

SFA Standard deviation of average number of conditions per rule

cn2-err CN2 parameter for error estimate (see Appendix A)
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cn2-star CN2 parameter for size of star set (see Appendix A)

cn2-sig CN2 parameter for significance threshold (see Appendix A)

c4.5-min C4.5 parameter for ~zs needed in two outcomes (see Appendix B)

c4.5-heur C4.5 parameter for test heuristic (see Appendix B)

c4.5-pess C4.5 parameter for pessimistic error confidence (see Appendix B)

c4.5-Fisher C4.5 parameter for Fisher’s exact test threshold (see Appendix B)

c4.5-redun C4.5 parameter for rule pruning redundancy (see Appendix B)

D.8 The CN2 Algorithm

comp ā Complex ā in a set of complexes

acc(comp ā, comp b̄) Heuristic test comparing accuracy of comp ā and comp b̄

acc(comp ā) Heuristic representing accuracy of comp ā

cover(Cm, comp ā) Number of examples covered by comp ā and belonging to Cm

cover(comp ā) Total examples covered by comp ā

ĉ(DT ) Number of classes present in DT
significant(comp ā) Heuristic test for significance of comp ā

sig heur(comp ā) Heuristic representing significance of comp ā

actualm Actual frequency for ~zs belonging to Cm and covered by comp ā

expectedm Expected frequency for ~zs belonging to Cm and covered by comp ā

beats default(comp ā) Heuristic test comparing accuracy of comp ā and a default rule

default Empty complex covering all ~zs in DT
star Set of complexes searched by CN2

best comp Best complex found by CN2

D′′T Set of ~zs in DT covered by best comp

tests Set of all valid attribute tests

test ē Test ē in tests

new star Set of specialized complexes

comp ′ā Specialized complex built from comp ā
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D.9 The C4.5 Algorithm

T Decision tree built by C4.5

t′ Attribute test selected during recursive tree building

D′T Training example subset created during recursive tree building

n̂ Number of outcomes in t′

O Set of outcomes of t′

Om̄ Outcome m̄ in O
D′Tm̄ New subset m̄ of D′T , generated when t′ is applied to D′T
heur(t′) Heuristic measuring optimality of t′

gain(t′) Information gain caused by t′

penalty(t′) Penalty term for continuous attribute test t′

values(t′) Number of distinct values in D′T for attribute evaluated by t′

|D′T | Number of ~zs in D′T
info(D′T ) Entropy over D′T
infot′(D′T ) Expected entropy over D′T after split by t′

ĉ(D′T ) Number of Cm in D′T
freq(Cm,D′T ) Number of ~zs belonging to Cm in D′T
|D′Tm̄| Number of ~zs in D′Tm̄
info(D′Tm̄) Entropy over D′Tm̄
gain ratio(t′) Gain ratio caused by t′

ave gain(D′T ) Average gain(t′) over all valid tests that can be evaluated on D′T
split info(t′) Information potentially created by t′ splitting D′T into n̂ subsets

T ′ Subtree of T refined during recursive tree building

candidates Set of every valid t′ during recursive tree building

T ′m̄ Subtree m̄ of T ′ generated by t′

rule New rule generated for rule set

pess err(rule) Pessimistic error rate of rule

cond Condition in the antecedent of rule
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prunable(cond) Heuristic test for prunability of cond from rule

rule ′ Pruned version of rule, with cond removed

exact sig(rule ′) Value of Fisher’s exact significance test for rule ′

accurate(rule) Heuristic test for whether rule is too inaccurate for rule set

default err(rule) Default error against which pess err(rule) is evaluated

class(DT , rule) Number of ~zs in DT with same Cm as rule predicts

|DT | Number of ~zs in DT
leaves Set of all leaf nodes in T

l̂ Number of leaf nodes in T
leaf n̄ Leaf node n̄ in leaves

R Route traced from root of T to leaf n̄

best cond Best cond to remove from rule

group(Cm) Rule group containing every rule in rule set predicting Cm

prob Probability of rule inclusion in group(Cm) as member of search set

search set Subset of rules in group(Cm) searched for lower MDL encoding



Appendix E

Acronym Definitions

This appendix alphabetically lists the acronyms used throughout this dissertation. Both

existing acronyms and new acronyms introduced by this research are listed.

AI Artificial intelligence

ANN Artificial neural network

BDV Boundary difference value

BME Best matching example

BMU Best matching unit

CI Computational intelligence

CNF Conjunctive normal form

DBMS Database management system

DM Data mining

DMQL Data Mining Query Language

DNF Disjunctive normal form

EDA Exploratory data analysis
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K-S Kolmogorov-Smirnov

KDD Knowledge discovery in databases

LVQ Learning vector quantizer

MDL Minimum description length

OLAP Online analytical processing

PSO Particle swarm optimization

SOM Self-organizing feature map

SQL Structured Query Language

SVM Support Vector Machine

VQ-P Vector quantization-projection
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